Fatty Acid Supplementation Affects Skin Wound Healing in a Rat Model
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MUNI/A/0910/2017
Masaryk University
MUNI/A/1255/2018
Masaryk University
MUNI/A/1307/2019
Masaryk University
MUNI/A/1246/2020
Masaryk University
PubMed
35684045
PubMed Central
PMC9182784
DOI
10.3390/nu14112245
PII: nu14112245
Knihovny.cz E-zdroje
- Klíčová slova
- 4-hydroxy-2-nonenal, healing, oxidative stress, polyunsaturated fatty acids, wound,
- MeSH
- hojení ran MeSH
- krysa rodu Rattus MeSH
- mastné kyseliny * MeSH
- nenasycené mastné kyseliny farmakologie MeSH
- omega-3 mastné kyseliny * farmakologie MeSH
- potkani Wistar MeSH
- potravní doplňky MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mastné kyseliny * MeSH
- nenasycené mastné kyseliny MeSH
- omega-3 mastné kyseliny * MeSH
Polyunsaturated fatty acids (PUFA) play an important role in reparative processes. The ratio of PUFAs n-3 to n-6 may affect wound healing. The study aimed to evaluate the effect of dietary supplementation with n-3 and n-6 PUFA in two proportions on skin wounds in laboratory rats. Adult male Wistar rats received 20% fat emulsion with a ratio of 1.4:1 (group A) or 4.3:1 (group B) for n-3:n-6 PUFAs at a daily dose of 1 mL/kg. The control group received water under the same conditions. The animals were supplemented a week before and a week after the skin excision performed on the back. The level of wound closure, various parameters of oxidative stress, and plasma fatty acids composition were evaluated. Wound tissue samples were examined by electron microscopy. The administration of fat emulsions led to significant changes in plasma polyunsaturated fatty acid composition. The increased production of reactive nitrogen species, as well as more numerous newly formed blood vessels and a greater amount of highly organized collagen fibrils in both groups A and B may indicate more intensive healing of the skin wound in rats supplemented with polyunsaturated fatty acids in high n-3:n-6 ratio.
Zobrazit více v PubMed
Pokorná A., Benešová K., Mužík J., Jarkovský J. Data sources for monitoring of non-healing wounds in a national health information system-epidemiology of non-healing wounds-Analysis of the national register of hospitalized patients in 2007–2015. Ceska Slov. Neurol. Neurochir. 2017;80:S8–S17. doi: 10.14735/amcsnn2017S8. DOI
Middleton J.E. Wound Healing: Process, Phases, and Promoting (Human Anatomy and Physiology) Nova Science Publishers Incorporated; Hauppauge, NY, USA: 2011.
Kavalukas S.L., Barbul A. Nutrition and wound healing: An update. Plast. Reconstr. Surg. 2011;127((Suppl. 1)):38S–43S. doi: 10.1097/PRS.0b013e318201256c. PubMed DOI
Alexander J.W., Supp D.M. Role of Arginine and Omega-3 Fatty Acids in Wound Healing and Infection. Adv. Wound Care. 2014;3:682–690. doi: 10.1089/wound.2013.0469. PubMed DOI PMC
Armstrong D.G., Hanft J.R., Driver V.R., Smith A.P., Lazaro-Martinez J.L., Reyzelman A.M., Furst G.J., Vayser D.J., Cervantes H.L., Snyder R.J., et al. Effect of oral nutritional supplementation on wound healing in diabetic foot ulcers: A prospective randomized controlled trial. Diabet. Med. 2014;31:1069–1077. doi: 10.1111/dme.12509. PubMed DOI PMC
Mohammed B.M., Fisher B.J., Kraskauskas D., Ward S., Wayne J.S., Brophy D.F., Fowler A.A., Yager D.R., Natarajan R. Vitamin C promotes wound healing through novel pleiotropic mechanisms. Int. Wound J. 2016;13:572–584. doi: 10.1111/iwj.12484. PubMed DOI PMC
McDaniel J.C., Belury M., Ahijevych K., Blakely W. Omega-3 fatty acids effect on wound healing. Wound Repair Regen. 2008;16:337–345. doi: 10.1111/j.1524-475X.2008.00388.x. PubMed DOI PMC
Calder P.C. Omega-3 fatty acids and inflammatory processes: From molecules to man. Biochem. Soc. Trans. 2017;45:1105–1115. doi: 10.1042/BST20160474. PubMed DOI
Silva J.R., Burger B., Kuhl C.M.C., Candreva T., dos Anjos M.B.P., Rodrigues H.G. Wound Healing and Omega-6 Fatty Acids: From Inflammation to Repair. Mediat. Inflamm. 2018;2018:2503950. doi: 10.1155/2018/2503950. PubMed DOI PMC
Jain A.P., Aggarwal K.K., Zhang P.Y. Omega-3 fatty acids and cardiovascular disease. Eur. Rev. Med. Pharmacol. Sci. 2015;19:441–445. PubMed
De Caterina R., Zampolli A. Omega-3 fatty acids, atherogenesis, and endothelial activation. J. Cardiovasc. Med. 2007;8((Suppl. 1)):S11–S14. doi: 10.2459/01.JCM.0000289267.13353.5a. PubMed DOI
Wu S., Ding Y., Wu F., Li R., Hou J., Mao P. Omega-3 fatty acids intake and risks of dementia and Alzheimer’s disease: A meta-analysis. Neurosci. Biobehav. Rev. 2015;48:1–9. doi: 10.1016/j.neubiorev.2014.11.008. PubMed DOI
Cardoso C.R., Souza M.A., Ferro E.A., Favoreto S., Pena J.D. Influence of topical administration of n-3 and n-6 essential and n-9 nonessential fatty acids on the healing of cutaneous wounds. Wound Repair Regen. 2004;12:235–243. doi: 10.1111/j.1067-1927.2004.012216.x. PubMed DOI
Lania B.G., Morari J., Almeida A.R., Silva M.N.D., Vieira-Damiani G., Lins K.A., César C.L., Velloso L.A., Maia N.B., Cintra M.L., et al. Topical essential fatty acid oil on wounds: Local and systemic effects. PLoS ONE. 2019;14:e0210059. doi: 10.1371/journal.pone.0210059. PubMed DOI PMC
Zong J., Jiang J., Shi P., Liu J., Wang W., Li B., Zhao T., Pan T., Zhang Z., Bi L., et al. Fatty acid extracts facilitate cutaneous wound healing through activating AKT, ERK, and TGF-β/Smad3 signaling and promoting angiogenesis. Am. J. Transl. Res. 2020;12:478–492. PubMed PMC
Komprda T., Sladek Z., Sevcikova Z., Svehlova V., Wijacki J., Guran R., Do T., Lackova Z., Polanska H., Vrlikova L., et al. Comparison of Dietary Oils with Different Polyunsaturated Fatty Acid n-3 and n-6 Content in the Rat Model of Cutaneous Wound Healing. Int. J. Mol. Sci. 2020;21:7911. doi: 10.3390/ijms21217911. PubMed DOI PMC
Rodrigues H.G., Vinolo M.A., Magdalon J., Vitzel K., Nachbar R.T., Pessoa A.F., dos Santos M.F., Hatanaka E., Calder P.C., Curi R. Oral administration of oleic or linoleic acid accelerates the inflammatory phase of wound healing. J. Investig. Dermatol. 2012;132:208–215. doi: 10.1038/jid.2011.265. PubMed DOI
Horman T., Fernandes M.F., Tache M.C., Hucik B., Mutch D.M., Leri F. Dietary n-6/n-3 Ratio Influences Brain Fatty Acid Composition in Adult Rats. Nutrients. 2020;12:1847. doi: 10.3390/nu12061847. PubMed DOI PMC
Lepczynski A., Ozgo M., Michalek K., Dratwa-Chalupnik A., Grabowska M., Herosimczyk A., Liput K.P., Polawska E., Kram A., Pierzchala M. Effects of Three-Month Feeding High Fat Diets with Different Fatty Acid Composition on Myocardial Proteome in Mice. Nutrients. 2021;13:330. doi: 10.3390/nu13020330. PubMed DOI PMC
Novak F., Borovska J., Vecka M., Rychlikova J., Vavrova L., Petraskova H., Zak A., Novakova O. Plasma Phospholipid Fatty Acid Profile is Altered in Both Septic and Non-Septic Critically Ill: A Correlation with Inflammatory Markers and Albumin. Lipids. 2017;52:245–254. doi: 10.1007/s11745-016-4226-x. PubMed DOI
Tvrzická E., Vecka M., Staňková B., Žák A. Analysis of fatty acids in plasma lipoproteins by gas chromatography–flame ionization detection: Quantitative aspects. Anal. Chim. Acta. 2002;465:337–350. doi: 10.1016/S0003-2670(02)00396-3. DOI
Hlaváčová M., Gumulec J., Stračina T., Fojtů M., Raudenská M., Masařík M., Nováková M., Paulová H. Different doxorubicin formulations affect plasma 4-hydroxy-2-nonenal and gene expression of aldehyde dehydrogenase 3A1 and thioredoxin reductase 2 in rat. Physiol. Res. 2015;64((Suppl. 5)):S653–S660. doi: 10.33549/physiolres.933223. PubMed DOI
Rao A.M., Dogan A., Hatcher J.F., Dempsey R.J. Fluorometric assay of nitrite and nitrate in brain tissue after traumatic brain injury and cerebral ischemia. Brain Res. 1998;793:265–270. doi: 10.1016/S0006-8993(98)00183-8. PubMed DOI
Orozco-Ibarra M., Medina-Campos O.N., Sánchez-González D.J., Martínez-Martínez C.M., Floriano-Sánchez E., Santamaría A., Ramirez V., Bobadilla N.A., Pedraza-Chaverri J. Evaluation of oxidative stress in D-serine induced nephrotoxicity. Toxicology. 2007;229:123–135. doi: 10.1016/j.tox.2006.10.008. PubMed DOI
Jimenez P.C., Wilke D.V., Takeara R., Lotufo T.M., Pessoa C., de Moraes M.O., Lopes N.P., Costa-Lotufo L.V. Cytotoxic activity of a dichloromethane extract and fractions obtained from Eudistoma vannamei (Tunicata: Ascidiacea) Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2008;151:391–398. doi: 10.1016/j.cbpa.2007.02.018. PubMed DOI
Mihalj M., Stupin A., Kolobaric N., Bujak I.T., Matic A., Kralik Z., Jukic I., Stupin M., Drenjancevic I. Leukocyte Activation and Antioxidative Defense Are Interrelated and Moderately Modified by n-3 Polyunsaturated Fatty Acid-Enriched Eggs Consumption-Double-Blind Controlled Randomized Clinical Study. Nutrients. 2020;12:3122. doi: 10.3390/nu12103122. PubMed DOI PMC
Meng F.X., Qiu J.Y., Chen H.J., Shi X.J., Yin M.F., Zhu M.S., Yang G. Dietary supplementation with N-3 polyunsaturated fatty acid-enriched fish oil promotes wound healing after ultraviolet B-induced sunburn in mice. Food Sci. Nutr. 2021;9:3693–3700. doi: 10.1002/fsn3.2330. PubMed DOI PMC
Lorente-Cebrián S., Costa A.G., Navas-Carretero S., Zabala M., Martínez J.A., Moreno-Aliaga M.J. Role of omega-3 fatty acids in obesity, metabolic syndrome, and cardiovascular diseases: A review of the evidence. J. Physiol. Biochem. 2013;69:633–651. doi: 10.1007/s13105-013-0265-4. PubMed DOI
Arterburn L.M., Hall E.B., Oken H. Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am. J. Clin. Nutr. 2006;83:1467S–1476S. doi: 10.1093/ajcn/83.6.1467S. PubMed DOI
Huo Y., Qiu W.Y., Pan Q., Yao Y.F., Xing K., Lou M.F. Reactive oxygen species (ROS) are essential mediators in epidermal growth factor (EGF)-stimulated corneal epithelial cell proliferation, adhesion, migration, and wound healing. Exp. Eye Res. 2009;89:876–886. doi: 10.1016/j.exer.2009.07.012. PubMed DOI
Janda J., Nfonsam V., Calienes F., Sligh J.E., Jandova J. Modulation of ROS levels in fibroblasts by altering mitochondria regulates the process of wound healing. Arch Dermatol. Res. 2016;308:239–248. doi: 10.1007/s00403-016-1628-9. PubMed DOI
Ayala A., Muñoz M.F., Argüelles S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014;2014:360438. doi: 10.1155/2014/360438. PubMed DOI PMC
Leonarduzzi G., Arkan M.C., Başağa H., Chiarpotto E., Sevanian A., Poli G. Lipid oxidation products in cell signaling. Free Radic. Biol. Med. 2000;28:1370–1378. doi: 10.1016/S0891-5849(00)00216-1. PubMed DOI
Hankenson K.D., Watkins B.A., Schoenlein I.A., Allen K.G., Turek J.J. Omega-3 fatty acids enhance ligament fibroblast collagen formation in association with changes in interleukin-6 production. Proc. Soc. Exp. Biol. Med. 2000;223:88–95. doi: 10.1046/j.1525-1373.2000.22312.x. PubMed DOI
Magalhes M.S.F., Fechine F.V., de Macedo R.N., Monteiro D.L.S., Oliveira C.C., Brito G.A.D., de Moraes M.E.A., de Moraes M.O. Effect of a combination of medium chain triglycerides, linoleic acid, soy lecithin and vitamins A and E on wound healing in rats. Acta Cir. Bras. 2008;23:262–269. doi: 10.1590/S0102-86502008000300009. PubMed DOI