A Rapid Method for the Detection of Sarcosine Using SPIONs/Au/CS/SOX/NPs for Prostate Cancer Sensing

. 2018 Nov 22 ; 19 (12) : . [epub] 20181122

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30467297

Grantová podpora
165/2016 Sarcotest

Sarcosine is an amino acid that is formed by methylation of glycine and is present in trace amounts in the body. Increased sarcosine concentrations in blood plasma and urine are manifested in sarcosinemia and in some other diseases such as prostate cancer. For this purpose, sarcosine detection using the nanomedicine approach was proposed. In this study, we have prepared superparamagnetic iron oxide nanoparticles (SPIONs) with different modified surface area. Nanoparticles (NPs) were modified by chitosan (CS), and sarcosine oxidase (SOX). SPIONs without any modification were taken as controls. Methods and Results: The obtained NPs were characterized by physicochemical methods. The size of the NPs determined by the dynamic light scattering method was as follows: SPIONs/Au/NPs (100⁻300 nm), SPIONs/Au/CS/NPs (300⁻700 nm), and SPIONs/Au/CS/SOX/NPs (600⁻1500 nm). The amount of CS deposited on the NP surface was found to be 48 mg/mL for SPIONs/Au/CS/NPs and 39 mg/mL for SPIONs/Au/CS/SOX/NPs, and repeatability varied around 10%. Pseudo-peroxidase activity of NPs was verified using sarcosine, horseradish peroxidase (HRP) and 3,3',5,5'-tetramethylbenzidine (TMB) as a substrate. For TMB, all NPs tested evinced substantial pseudo-peroxidase activity at 650 nm. The concentration of SPIONs/Au/CS/SOX/NPs in the reaction mixture was optimized to 0⁻40 mg/mL. Trinder reaction for sarcosine detection was set up at 510 nm at an optimal reaction temperature of 37 °C and pH 8.0. The course of the reaction was linear for 150 min. The smallest amount of NPs that was able to detect sarcosine was 0.2 mg/well (200 µL of total volume) with the linear dependence y = 0.0011x - 0.0001 and the correlation coefficient r = 0.9992, relative standard deviation (RSD) 6.35%, limit of detection (LOD) 5 µM. The suggested method was further validated for artificial urine analysis (r = 0.99, RSD 21.35%, LOD 18 µM). The calculation between the detected and applied concentrations showed a high correlation coefficient (r = 0.99). NPs were tested for toxicity and no significant growth inhibition was observed in any model system (S. cerevisiae, S. aureus, E. coli). The hemolytic activity of the prepared NPs was similar to that of the phosphate buffered saline (PBS) control. The reaction system was further tested on real urine specimens. Conclusion: The proposed detection system allows the analysis of sarcosine at micromolar concentrations and to monitor changes in its levels as a potential prostate cancer marker. The whole system is suitable for low-cost miniaturization and point-of-care testing technology and diagnostic systems. This system is simple, inexpensive, and convenient for screening tests and telemedicine applications.

Zobrazit více v PubMed

Bar-Joseph I., Pras E., Reznik-Wolf H., Marek-Yagel D., Abu-Horvitz A., Dushnitzky M., Goldstein N., Rienstein S., Dekel M., Pode-Shakked B. Mutations in the sarcosine dehydrogenase gene in patients with sarcosinemia. Hum. Genet. 2012;131:1805–1810. doi: 10.1007/s00439-012-1207-x. PubMed DOI

Scriver C.R. The metabolic & molecular bases of inherited disease. Volume 4 McGraw-Hill; New York, NY, USA: 2001.

Sreekumar A., Poisson L.M., Rajendiran T.M., Khan A.P., Cao Q., Yu J., Laxman B., Mehra R., Lonigro R.J., Li Y. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009;457:910–914. doi: 10.1038/nature07762. PubMed DOI PMC

Allen R.H., Stabler S.P., Lindenbaum J. Serum betaine, N, N-dimethylglycine and N-methylglycine levels in patients with cobalamin and folate deficiency and related inborn errors of metabolism. Metabolism. 1993;42:1448–1460. doi: 10.1016/0026-0495(93)90198-W. PubMed DOI

Steenkamp D.J., Husain M. The effect of tetrahydrofolate on the reduction of electron transfer flavoprotein by sarcosine and dimethylglycine dehydrogenases. Biochem. J. 1982;203:707. doi: 10.1042/bj2030707. PubMed DOI PMC

Wang L., Liu S., Yang W., Yu H., Zhang L., Ma P., Wu P., Li X., Cho K., Xue S. Plasma amino acid profile in patients with aortic dissection. Sci. Rep. 2017;7:40146. doi: 10.1038/srep40146. PubMed DOI PMC

Munshi S.U., Rewari B.B., Bhavesh N.S., Jameel S. Nuclear magnetic resonance based profiling of biofluids reveals metabolic dysregulation in HIV-infected persons and those on anti-retroviral therapy. PLoS ONE. 2013;8:e64298. doi: 10.1371/journal.pone.0064298. PubMed DOI PMC

Lane H.-Y., Lin C.-H., Huang Y.-J., Liao C.-H., Chang Y.-C., Tsai G.E. A randomized, double-blind, placebo-controlled comparison study of sarcosine (N-methylglycine) and D-serine add-on treatment for schizophrenia. Int. J. Neuropsychopharmacol. 2010;13:451–460. doi: 10.1017/S1461145709990939. PubMed DOI

Tsai G., Lane H.-Y., Yang P., Chong M.-Y., Lange N. Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to antipsychotics for the treatment of schizophrenia. Biol. Psychiatry. 2004;55:452–456. doi: 10.1016/j.biopsych.2003.09.012. PubMed DOI

McKeever M., Weir D., Molloy A., Scott J. Betaine-homocysteine methyltransferase: Organ distribution in man, pig and rat and subcellular distribution in the rat. Clin. Sci. 1991;81:551–556. doi: 10.1042/cs0810551. PubMed DOI

Schwahn B.C., Hafner D., Hohlfeld T., Balkenhol N., Laryea M.D., Wendel U. Pharmacokinetics of oral betaine in healthy subjects and patients with homocystinuria. Br. J. Clin. Pharmcol. 2003;55:6–13. doi: 10.1046/j.1365-2125.2003.01717.x. PubMed DOI PMC

Benevenga N.J. Consideration of betaine and one-carbon sources of N5-methyltetrahydrofolate for use in homocystinuria and neural tube defects. Am. J. Clin. Nutr. 2007;85:946–949. doi: 10.1093/ajcn/85.4.946. PubMed DOI

Singh R.H., Kruger W.D., Wang L., Pasquali M., Elsas II L.J. Cystathionine β-synthase deficiency: Effects of betaine supplementation after methionine restriction in B6-nonresponsive homocystinuria. Genet. Med. 2004;6:90. doi: 10.1097/01.GIM.0000117334.84388.F4. PubMed DOI

Ferlay J., Soerjomataram I., Dikshit R., Eser S., Mathers C., Rebelo M., Parkin D.M., Forman D., Bray F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer. 2015;136 doi: 10.1002/ijc.29210. PubMed DOI

Edwards D.R., Moroz K., Zhang H., Mulholland D., Abdel-Mageed A.B., Mondal D. PRL-3 increases the aggressive phenotype of prostate cancer cells in vitro and its expression correlates with high-grade prostate tumors in patients. Int. J. Oncol. 2018;52:402–412. doi: 10.3892/ijo.2017.4208. PubMed DOI PMC

Pihikova D., Pakanova Z., Nemcovic M., Barath P., Belicky S., Bertok T., Kasak P., Mucha J., Tkac J. Sweet characterisation of prostate specific antigen using electrochemical lectin-based immunosensor assay and MALDI TOF/TOF analysis: Focus on sialic acid. Proteomics. 2016;16:3085–3095. doi: 10.1002/pmic.201500463. PubMed DOI PMC

Hayes J.H., Barry M.J. Screening for prostate cancer with the prostate-specific antigen test: A review of current evidence. JAMA. 2014;311:1143–1149. doi: 10.1001/jama.2014.2085. PubMed DOI

De Kok J.B., Verhaegh G.W., Roelofs R.W., Hessels D., Kiemeney L.A., Aalders T.W., Swinkels D.W., Schalken J.A. DD3PCA3, a very sensitive and specific marker to detect prostate tumors. Cancer Res. 2002;62:2695–2698. PubMed

Font-Tello A., Juanpere N., de Muga S., Lorenzo M., Lorente J.A., Fumado L., Serrano L., Serrano S., Lloreta J., Hernández S. Association of ERG and TMPRSS2-ERG with grade, stage, and prognosis of prostate cancer is dependent on their expression levels. Prostate. 2015;75:1216–1226. doi: 10.1002/pros.23004. PubMed DOI

Hagiwara K., Tobisawa Y., Kaya T., Kaneko T., Hatakeyama S., Mori K., Hashimoto Y., Koie T., Suda Y., Ohyama C. Wisteria Floribunda Agglutinin and its Reactive-Glycan-Carrying Prostate-Specific Antigen as a novel diagnostic and prognostic marker of prostate cancer. Int. J. Mol. Sci. 2017;18:261. doi: 10.3390/ijms18020261. PubMed DOI PMC

Hessels D., Gunnewiek J.M.K., van Oort I., Karthaus H.F., van Leenders G.J., van Balken B., Kiemeney L.A., Witjes J.A., Schalken J.A. DD3PCA3-based molecular urine analysis for the diagnosis of prostate cancer. Eur. Urol. 2003;44:8–16. doi: 10.1016/S0302-2838(03)00201-X. PubMed DOI

Kulkarni P., Uversky V.N. Cancer/Testis Antigens:“Smart” biomarkers for diagnosis and prognosis of prostate and other cancers. Int. J. Mol. Sci. 2017;18:740. doi: 10.3390/ijms18040740. PubMed DOI PMC

Nakanishi H., Groskopf J., Fritsche H.A., Bhadkamkar V., Blase A., Kumar S.V., Davis J.W., Troncoso P., Rittenhouse H., Babaian R.J. PCA3 molecular urine assay correlates with prostate cancer tumor volume: Implication in selecting candidates for active surveillance. J. Urol. 2008;179:1804–1810. doi: 10.1016/j.juro.2008.01.013. PubMed DOI

Tomlins S.A., Laxman B., Varambally S., Cao X., Yu J., Helgeson B.E., Cao Q., Prensner J.R., Rubin M.A., Shah R.B. Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia. 2008;10:177–179. doi: 10.1593/neo.07822. PubMed DOI PMC

Tseng T.-L., Shih Y.-P., Huang Y.-C., Wang C.-K., Chen P.-H., Chang J.-G., Yeh K.-T., Chen Y.-M.A., Buetow K.H. Genotypic and phenotypic characterization of a putative tumor susceptibility gene, GNMT, in liver cancer. Cancer Res. 2003;63:647–654. PubMed

Huang Y.-C., Lee C.-M., Chen M., Chung M.-Y., Chang Y.-H., Huang W.J.-S., Ho D.M.-T., Pan C.-C., Wu T.T., Yang S. Haplotypes, loss of heterozygosity, and expression levels of glycine N-methyltransferase in prostate cancer. Clin. Cancer Res. 2007;13:1412–1420. doi: 10.1158/1078-0432.CCR-06-1551. PubMed DOI

Hatziapostolou M., Iliopoulos D. Epigenetic aberrations during oncogenesis. Cell. Mol. Life Sci. 2011;68:1681–1702. doi: 10.1007/s00018-010-0624-z. PubMed DOI PMC

Kelavkar U., Harya N., Hutzley J., Bacich D., Monzon F., Chandran U., Dhir R., O’Keefe D. DNA methylation paradigm shift: 15-lipoxygenase-1 upregulation in prostatic intraepithelial neoplasia and prostate cancer by atypical promoter hypermethylation. Prostagl. Lipid Med. 2007;82:185–197. doi: 10.1016/j.prostaglandins.2006.05.015. PubMed DOI

Pierconti F., Martini M., Pinto F., Cenci T., Capodimonti S., Calarco A., Bassi P.F., Larocca L.M. Epigenetic silencing of SOCS3 identifies a subset of prostate cancer with an aggressive behavior. Prostate. 2011;71:318–325. doi: 10.1002/pros.21245. PubMed DOI

Ianni M., Porcellini E., Carbone I., Potenzoni M., Pieri A., Pastizzaro C., Benecchi L., Licastro F. Genetic factors regulating inflammation and DNA methylation associated with prostate cancer. Prost. Cancer Prost. Dis. 2013;16:56. doi: 10.1038/pcan.2012.30. PubMed DOI

Luka Z., Mudd S.H., Wagner C. Glycine N-methyltransferase and regulation of S-adenosylmethionine levels. J. Biol. Chem. 2009;284:22507–22511. doi: 10.1074/jbc.R109.019273. PubMed DOI PMC

Khan A.P., Rajendiran T.M., Bushra A., Asangani I.A., Athanikar J.N., Yocum A.K., Mehra R., Siddiqui J., Palapattu G., Wei J.T. The role of sarcosine metabolism in prostate cancer progression. Neoplasia. 2013;15:491–501. doi: 10.1593/neo.13314. PubMed DOI PMC

Baronia R., Singh M., Gupta R.B., Karuppiah S., Kumar R., Belz J., Shanker R., Sridhar S., Singh S.P. Synthesis and characterization of multifunctional gold nanoclusters for application in radiation therapy. Int. J. Nanomed. 2018;13:113. doi: 10.2147/IJN.S125006. PubMed DOI PMC

De Boer B., Kahlman J., Jansen T., Duric H., Veen J. An integrated and sensitive detection platform for magneto-resistive biosensors. Biosens. Bioelectron. 2007;22:2366–2370. doi: 10.1016/j.bios.2006.09.020. PubMed DOI

Cai S., Qi C., Li Y., Han Q., Yang R., Wang C. PtCo bimetallic nanoparticles with high oxidase-like catalytic activity and their applications for magnetic-enhanced colorimetric biosensing. J. Mater. Chem. B. 2016;4:1869–1877. doi: 10.1039/C5TB02052B. PubMed DOI

Patel P., Kansara K., Singh R., Shukla R.K., Singh S., Dhawan A., Kumar A. Cellular internalization and antioxidant activity of cerium oxide nanoparticles in human monocytic leukemia cells. Int. J. Nanomed. 2018;13:39. doi: 10.2147/IJN.S124996. PubMed DOI PMC

Purohit R., Singh S. Fluorescent gold nanoclusters for efficient cancer cell targeting. Int. J. Nanomed. 2018;13:15. doi: 10.2147/IJN.S125003. PubMed DOI PMC

Siow W.X., Chang Y.-T., Babič M., Lu Y.-C., Horák D., Ma Y.-H. Interaction of poly-L-lysine coating and heparan sulfate proteoglycan on magnetic nanoparticle uptake by tumor cells. Int. J. Nanomed. 2018;13:1693. doi: 10.2147/IJN.S156029. PubMed DOI PMC

Unterweger H., Dézsi L., Matuszak J., Janko C., Poettler M., Jordan J., Bäuerle T., Szebeni J., Fey T., Boccaccini A.R. Dextran-coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging: Evaluation of size-dependent imaging properties, storage stability and safety. Int. J. Nanomed. 2018;13:1899–1915. doi: 10.2147/IJN.S156528. PubMed DOI PMC

Yang Z., Duan J., Wang J., Liu Q., Shang R., Yang X., Lu P., Xia C., Wang L., Dou K. superparamagnetic iron oxide nanoparticles modified with polyethylenimine and galactose for siRNA targeted delivery in hepatocellular carcinoma therapy. Int. J. Nanomed. 2018;13:1851. doi: 10.2147/IJN.S155537. PubMed DOI PMC

Zhang Q., Li L., Qiao Z., Lei C., Fu Y., Xie Q., Yao S., Li Y., Ying Y. Electrochemical Conversion of Fe3O4 Magnetic Nanoparticles to Electroactive Prussian Blue Analogues for Self-Sacrificial Label Biosensing of Avian Influenza Virus H5N1. Anal. Chem. 2017;89:12145–12151. doi: 10.1021/acs.analchem.7b02784. PubMed DOI

Haun J.B., Yoon T.J., Lee H., Weissleder R. Magnetic nanoparticle biosensors. Wiley Interdiscip. Rev. 2010;2:291–304. doi: 10.1002/wnan.84. PubMed DOI

Jia Y., Peng Y., Bai J., Zhang X., Cui Y., Ning B., Cui J., Gao Z. Magnetic nanoparticle enhanced surface plasmon resonance sensor for estradiol analysis. Sens. Actuators B Chem. 2018;254:629–635. doi: 10.1016/j.snb.2017.07.061. DOI

Pakapongpan S., Poo-Arporn R.P. Self-assembly of glucose oxidase on reduced graphene oxide-magnetic nanoparticles nanocomposite-based direct electrochemistry for reagentless glucose biosensor. Mater. Sci. Eng. 2017;76:398–405. doi: 10.1016/j.msec.2017.03.031. PubMed DOI

Ye W., Ding Y., Sun Y., Tian F., Yang M. A Nanoporous Alumina Membrane Based Impedance Biosensor for Histamine Detection with Magnetic Nanoparticles Separation and Amplification. Proc. Technol. 2017;27:116–117. doi: 10.1016/j.protcy.2017.04.051. DOI

Zhao J., Dong W., Zhang X., Chai H., Huang Y. FeNPs@ Co3O4 hollow nanocages hybrids as effective peroxidase mimics for glucose biosensing. Sens. Actuators B Chem. 2018;263:575–584. doi: 10.1016/j.snb.2018.02.151. DOI

Yuan L.-F., He Y.-J., Zhao H., Zhou Y., Gu P. Colorimetric detection of D-amino acids based on anti-aggregation of gold nanoparticles. Chin. Chem. Lett. 2014;25:995–1000. doi: 10.1016/j.cclet.2014.06.002. DOI

Zhang F.X., Han L., Israel L.B., Daras J.G., Maye M.M., Ly N.K., Zhong C.-J. Colorimetric detection of thiol-containing amino acids using gold nanoparticles. Analyst. 2002;127:462–465. doi: 10.1039/b200007e. PubMed DOI

Zhang Q., Zhang D., Lu Y., Xu G., Yao Y., Li S., Liu Q. Label-free amino acid detection based on nanocomposites of graphene oxide hybridized with gold nanoparticles. Biosens. Bioelectron. 2016;77:963–970. doi: 10.1016/j.bios.2015.10.065. PubMed DOI

Nikitin M., Orlov A., Znoyko S., Bragina V., Gorshkov B., Ksenevich T., Cherkasov V., Nikitin P. Multiplex biosensing with highly sensitive magnetic nanoparticle quantification method. J. Magn. Magn. Mater. 2017 doi: 10.1016/j.jmmm.2017.10.078. DOI

Tamanaha C., Mulvaney S., Rife J., Whitman L. Magnetic labeling, detection, and system integration. Biosens. Bioelectron. 2008;24:1–13. doi: 10.1016/j.bios.2008.02.009. PubMed DOI

Xu T., Chi B., Wu F., Ma S., Zhan S., Yi M., Xu H., Mao C. A sensitive label-free immunosensor for detection α-Fetoprotein in whole blood based on anticoagulating magnetic nanoparticles. Biosens. Bioelectron. 2017;95:87–93. doi: 10.1016/j.bios.2017.04.015. PubMed DOI

Heger Z., Cernei N., Krizkova S., Masarik M., Kopel P., Hodek P., Zitka O., Adam V., Kizek R. Paramagnetic nanoparticles as a platform for FRET-based sarcosine picomolar detection. Sci. Rep. 2015;5:8868. doi: 10.1038/srep08868. PubMed DOI PMC

Pamme N. On-chip bioanalysis with magnetic particles. Curr. Opin. Chem. Biol. 2012;16:436–443. doi: 10.1016/j.cbpa.2012.05.181. PubMed DOI

Adam V., Huska D., Hubalek J., Kizek R. Easy to use and rapid isolation and detection of a viral nucleic acid by using paramagnetic microparticles and carbon nanotubes-based screen-printed electrodes. Microfluid. Nanofluid. 2010;8:329–339. doi: 10.1007/s10404-009-0464-z. DOI

Ng A.H., Choi K., Luoma R.P., Robinson J.M., Wheeler A.R. Digital microfluidic magnetic separation for particle-based immunoassays. Anal. Chem. 2012;84:8805–8812. doi: 10.1021/ac3020627. PubMed DOI

Kim S., Kim D., Kim S. A rapid real-time quantification in hybrid paper-polymer centrifugal optical devices. Biosens. Bioelectron. 2018 doi: 10.1016/j.bios.2018.10.064. PubMed DOI

Trinder P. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann. Clin. Biochem. 1969;6:24–27. doi: 10.1177/000456326900600108. DOI

Wiewiorka O., Dastych M., Cermakova Z. Trinder Reaction in Clinical Biochemistry-Benefits and Limits. Chem. Listy. 2017;111:186–191.

Yamkamon V., Phakdee B., Yainoy S., Suksrichawalit T., Tatanandana T., Sangkum P., Eiamphungporn W. Development of sarcosine quantification in urine based on enzyme-coupled colorimetric method for prostate cancer diagnosis. EXCLI J. 2018;17:467. PubMed PMC

Cernei N., Zitka O., Skalickova S., Gumulec J., Masarik M., Hrabec R., Adam V., Kizek R. Sarcosine in urine of patients with prostate carcinome. Prakt. Lek. 2012;92:444–448.

El-Boubbou K., Gruden C., Huang X. Magnetic glyco-nanoparticles: A unique tool for rapid pathogen detection, decontamination, and strain differentiation. J. Am. Chem. Soc. 2007;129:13392–13393. doi: 10.1021/ja076086e. PubMed DOI

Guo Q., Teng X., Rahman S., Yang H. Patterned Langmuir—Blodgett films of monodisperse nanoparticles of iron oxide using soft lithography. J. Am. Chem. Soc. 2003;125:630–631. doi: 10.1021/ja0275764. PubMed DOI

Haviv A.H., Grenèche J.-M., Lellouche J.-P. Aggregation control of hydrophilic maghemite (γ-Fe2O3) nanoparticles by surface doping using cerium atoms. J. Am. Chem. Soc. 2010;132:12519–12521. doi: 10.1021/ja103283e. PubMed DOI

Scialabba C., Licciardi M., Mauro N., Rocco F., Ceruti M., Giammona G. Inulin-based polymer coated SPIONs as potential drug delivery systems for targeted cancer therapy. Eur. J. Pharm. Biopharm. 2014;88:695–705. doi: 10.1016/j.ejpb.2014.09.008. PubMed DOI

Inamdar N.N., Mourya V. Chitosan and Low Molecular Weight Chitosan: Biological and Biomedical Applications. Adv. Biomater. Biodev. 2014:183–242.

Kumar P., Jaiwal R., Pundir C. An improved amperometric creatinine biosensor based on nanoparticles of creatininase, creatinase and sarcosine oxidase. Anal. Biochem. 2017;537:41–49. doi: 10.1016/j.ab.2017.08.022. PubMed DOI

Narwal V., Kumar P., Joon P., Pundir C. Fabrication of an amperometric sarcosine biosensor based on sarcosine oxidase/chitosan/CuNPs/c-MWCNT/Au electrode for detection of prostate cancer. Enzyme Microbiol. Technol. 2018;113:44–51. doi: 10.1016/j.enzmictec.2018.02.010. PubMed DOI

Lad U., Kale G.M., Bryaskova R. Sarcosine oxidase encapsulated polyvinyl alcohol-silica-AuNP hybrid films for sarcosine sensing electrochemical bioelectrode. J. Electrochem. Soc. 2014;161:B98–B101. doi: 10.1149/2.018405jes. DOI

Nguy T.P., van Phi T., Tram D.T., Eersels K., Wagner P., Lien T.T. Development of an impedimetric sensor for the label-free detection of the amino acid sarcosine with molecularly imprinted polymer receptors. Sens. Actuators B Chem. 2017;246:461–470. doi: 10.1016/j.snb.2017.02.101. DOI

Hirsch V., Kinnear C., Moniatte M., Rothen-Rutishauser B., Clift M.J., Fink A. Surface charge of polymer coated SPIONs influences the serum protein adsorption, colloidal stability and subsequent cell interaction in vitro. Nanoscale. 2013;5:3723–3732. doi: 10.1039/c2nr33134a. PubMed DOI

Park J., Yu M.K., Jeong Y.Y., Kim J.W., Lee K., Phan V.N., Jon S. Antibiofouling amphiphilic polymer-coated superparamagnetic iron oxide nanoparticles: Synthesis, characterization, and use in cancer imaging in vivo. J. Mater. Chem. 2009;19:6412–6417. doi: 10.1039/b902445j. DOI

Mardinoglu A., Cregg P. Modelling the effect of SPION size in a stent assisted magnetic drug targeting system with interparticle interactions. Sci. World J. 2015;2015 doi: 10.1155/2015/618658. PubMed DOI PMC

Kapri A., Zaidi M., Satlewal A., Goel R. SPION-accelerated biodegradation of low-density polyethylene by indigenous microbial consortium. Int. Biodeter. Biodegrad. 2010;64:238–244. doi: 10.1016/j.ibiod.2010.02.002. DOI

Herve K., Douziech-Eyrolles L., Munnier E., Cohen-Jonathan S., Souce M., Marchais H., Limelette P., Warmont F., Saboungi M., Dubois P. The development of stable aqueous suspensions of PEGylated SPIONs for biomedical applications. Nanotechnology. 2008;19:465608. doi: 10.1088/0957-4484/19/46/465608. PubMed DOI

Xie J., Xu C., Kohler N., Hou Y., Sun S. Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells. Adv. Mater. 2007;19:3163–3166. doi: 10.1002/adma.200701975. DOI

HUANG Z.r. Development and evaluation of lipid nanoparticles for camptothecin delivery: A comparison of solid lipid nanoparticles, nanostructured lipid carriers, and lipid emulsion. Acta Pharmacolog. Sinica. 2008;29:1094–1102. doi: 10.1111/j.1745-7254.2008.00829.x. PubMed DOI

Müller R.H., MaÈder K., Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery—A review of the state of the art. Eur. J. Pharm. Biopharm. 2000;50:161–177. doi: 10.1016/S0939-6411(00)00087-4. PubMed DOI

Mahmoudi M., Sant S., Wang B., Laurent S., Sen T. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv. Drug Dev. Rev. 2011;63:24–46. doi: 10.1016/j.addr.2010.05.006. PubMed DOI

Dubey S.P., Lahtinen M., Sillanpää M. Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids Surf. A. 2010;364:34–41. doi: 10.1016/j.colsurfa.2010.04.023. DOI

Dubey S.P., Lahtinen M., Sillanpää M. Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem. 2010;45:1065–1071. doi: 10.1016/j.procbio.2010.03.024. DOI

Sonavane G., Tomoda K., Makino K. Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size. Colloids Surf. B. 2008;66:274–280. doi: 10.1016/j.colsurfb.2008.07.004. PubMed DOI

De Palma R., Peeters S., van Bael M.J., van den Rul H., Bonroy K., Laureyn W., Mullens J., Borghs G., Maes G. Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible. Chem. Mater. 2007;19:1821–1831. doi: 10.1021/cm0628000. DOI

Shukla A., Mishra V., Bhoop B.S., Katare O.P. Alginate coated chitosan microparticles mediated oral delivery of diphtheria toxoid.(Part A). Systematic optimization, development and characterization. Int. J. Pharm. 2015;495:220–233. doi: 10.1016/j.ijpharm.2015.08.028. PubMed DOI

Burda C., Chen X., Narayanan R., El-Sayed M.A. Chemistry and properties of nanocrystals of different shapes. Chemical Rev. 2005;105:1025–1102. doi: 10.1021/cr030063a. PubMed DOI

He W., Wamer W., Xia Q., Yin J.-j., Fu P.P. Enzyme-like activity of nanomaterials. J. Environ. Sci. Health. 2014;32:186–211. doi: 10.1080/10590501.2014.907462. PubMed DOI

Dai Z., Liu S., Bao J., Ju H. Nanostructured FeS as a mimic peroxidase for biocatalysis and biosensing. Chem. A Eur. J. 2009;15:4321–4326. doi: 10.1002/chem.200802158. PubMed DOI

Gao L., Zhuang J., Nie L., Zhang J., Zhang Y., Gu N., Wang T., Feng J., Yang D., Perrett S. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007;2:577. doi: 10.1038/nnano.2007.260. PubMed DOI

He W., Wu X., Liu J., Hu X., Zhang K., Hou S., Zhou W., Xie S. Design of AgM bimetallic alloy nanostructures (M = Au, Pd, Pt) with tunable morphology and peroxidase-like activity. Chem. Mater. 2010;22:2988–2994. doi: 10.1021/cm100393v. DOI

Jv Y., Li B., Cao R. Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection. Chem. Commun. 2010;46:8017–8019. doi: 10.1039/c0cc02698k. PubMed DOI

Luo W., Li Y.-S., Yuan J., Zhu L., Liu Z., Tang H., Liu S. Ultrasensitive fluorometric determination of hydrogen peroxide and glucose by using multiferroic BiFeO3 nanoparticles as a catalyst. Talanta. 2010;81:901–907. doi: 10.1016/j.talanta.2010.01.035. PubMed DOI

Song Y., Wang X., Zhao C., Qu K., Ren J., Qu X. Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chem. A Eur. J. 2010;16:3617–3621. doi: 10.1002/chem.200902643. PubMed DOI

Wei H., Wang E. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem. 2008;80:2250–2254. doi: 10.1021/ac702203f. PubMed DOI

Wu L.-L., Wang L.-Y., Xie Z.-J., Xue F., Peng C.-F. Colorimetric detection of Hg2+ based on inhibiting the peroxidase-like activity of DNA–Ag/Pt nanoclusters. RSC Adv. 2016;6:75384–75389. doi: 10.1039/C6RA12597B. DOI

Zhang Z., Wang Z., Wang X., Yang X. Magnetic nanoparticle-linked colorimetric aptasensor for the detection of thrombin. Sens. Actuators B Chem. 2010;147:428–433. doi: 10.1016/j.snb.2010.02.013. DOI

Asati A., Santra S., Kaittanis C., Nath S., Perez J.M. Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew. Chem. Int. Ed. 2009;121:2344–2348. doi: 10.1002/ange.200805279. PubMed DOI PMC

Jiang C., Zhu J., Li Z., Luo J., Wang J., Sun Y. Chitosan–gold nanoparticles as peroxidase mimic and their application in glucose detection in serum. RSC Advances. 2017;7:44463–44469. doi: 10.1039/C7RA08967H. DOI

Wang X., Hu Y., Wei H. Nanozymes in bionanotechnology: From sensing to therapeutics and beyond. Inorg. Chem. Front. 2016;3:41–60. doi: 10.1039/C5QI00240K. DOI

Shah J., Purohit R., Singh R., Karakoti A.S., Singh S. ATP-enhanced peroxidase-like activity of gold nanoparticles. J. Colloid Interface Sci. 2015;456:100–107. doi: 10.1016/j.jcis.2015.06.015. PubMed DOI

Xu J., Zeng F., Wu S., Liu X., Hou C., Tong Z. Gold nanoparticles bound on microgel particles and their application as an enzyme support. Nanotechnology. 2007;18:265704. doi: 10.1088/0957-4484/18/26/265704. PubMed DOI

Lan D., Li B., Zhang Z. Chemiluminescence flow biosensor for glucose based on gold nanoparticle-enhanced activities of glucose oxidase and horseradish peroxidase. Bios. Bioelectron. 2008;24:934–938. doi: 10.1016/j.bios.2008.07.064. PubMed DOI

Duan D., Fan K., Zhang D., Tan S., Liang M., Liu Y., Zhang J., Zhang P., Liu W., Qiu X. Nanozyme-strip for rapid local diagnosis of Ebola. Biosens. Bioelectron. 2015;74:134–141. doi: 10.1016/j.bios.2015.05.025. PubMed DOI

Fang H., Pan Y., Shan W., Guo M., Nie Z., Huang Y., Yao S. Enhanced nonenzymatic sensing of hydrogen peroxide released from living cells based on Fe3 O4/self-reduced graphene nanocomposites. Anal. Methods. 2014;6:6073–6081. doi: 10.1039/C4AY00549J. DOI

Wong A.C., Wright D.W., Conrad J.A. General Methods in Biomarker Research and their Applications. Springer; Berlin, Germany: 2015. Functionalized gold nanoparticles for detection of cancer biomarkers; pp. 1143–1175.

Zurek M., Kremplova M., Nejdl L., Hynek D., Kopel P., Adam V., Kizek R. Characterization of gold nanoparticles-modified CdTe quantum dots by scanning electrochemical microscopy. NANOCON. 2014;5:773–778.

Chudobova D., Cihalova K., Skalickova S., Zitka J., Rodrigo M.A.M., Milosavljevic V., Hynek D., Kopel P., Vesely R., Adam V. 3D-printed chip for detection of methicillin-resistant Staphylococcus aureus labeled with gold nanoparticles. Electrophoresis. 2015;36:457–466. doi: 10.1002/elps.201400321. PubMed DOI

Marquez L.A., Dunford H.B. Mechanism of the oxidation of 3,5,3′,5′-tetramethylbenzidine by myeloperoxidase determined by transient-and steady-state kinetics. Biochemistry. 1997;36:9349–9355. doi: 10.1021/bi970595j. PubMed DOI

Lv X., Weng J. Ternary composite of hemin, gold nanoparticles and graphene for highly efficient decomposition of hydrogen peroxide. Sci. Rep. 2013;3:3285. doi: 10.1038/srep03285. PubMed DOI PMC

Skalickova S., Loffelmann M., Gargulak M., Kepinska M., Docekalova M., Uhlirova D., Stankova M., Fernandez C., Milnerowicz H., Ruttkay-Nedecky B. Zinc-Modified nanotransporter of doxorubicin for targeted prostate cancer delivery. Nanomaterials. 2017;7:435. doi: 10.3390/nano7120435. PubMed DOI PMC

Prochazkova S., Vårum K.M., Ostgaard K. Quantitative determination of chitosans by ninhydrin. Carbohydr. Polym. 1999;38:115–122. doi: 10.1016/S0144-8617(98)00108-8. DOI

Leane M., Nankervis R., Smith A., Illum L. Use of the ninhydrin assay to measure the release of chitosan from oral solid dosage forms. Int. J. Pharm. 2004;271:241–249. doi: 10.1016/j.ijpharm.2003.11.023. PubMed DOI

Lucarelli G., Fanelli M., Larocca A.M.V., Germinario C.A., Rutigliano M., Vavallo A., Selvaggi F.P., Bettocchi C., Battaglia M., Ditonno P. Serum sarcosine increases the accuracy of prostate cancer detection in patients with total serum PSA less than 4.0 ng/mL. Prostate. 2012;72:1611–1621. doi: 10.1002/pros.22514. PubMed DOI

Hurst R., Hooper L., Norat T., Lau R., Aune D., Greenwood D.C., Vieira R., Collings R., Harvey L.J., Sterne J.A. Selenium and prostate cancer: Systematic review and meta-analysis. Am. J. Clin. Nutr. 2012;96:111–122. doi: 10.3945/ajcn.111.033373. PubMed DOI

Nishiya Y., Toda A., Imanaka T. Gene cluster for creatinine degradation in Arthrobacter sp. TE1826. Mol. Gen. Genet. 1998;257:581–586. doi: 10.1007/s004380050685. PubMed DOI

Nishiya Y., Yamamoto M., Takemoto J.-i., Kano S., Nakano S. Monomeric sarcosine oxidase exhibiting high substrate affinity and thermostability. Int. J. Anal. Bio Sci. 2016;4:55–62.

Gao C., Zhu H., Chen J., Qiu H. Facile synthesis of enzyme functional metal-organic framework for colorimetric detecting H2O2 and ascorbic acid. Chin. Chem. Lett. 2017;28:1006–1012. doi: 10.1016/j.cclet.2017.02.011. DOI

Mateo D., Morales P., Ávalos A., Haza A.I. Oxidative stress contributes to gold nanoparticle-induced cytotoxicity in human tumor cells. Toxicol. Mech. Methods. 2014;24:161–172. doi: 10.3109/15376516.2013.869783. PubMed DOI

Smith M.R., Boenzli M.G., Hindagolla V., Ding J., Miller J.M., Hutchison J.E., Greenwood J.A., Abeliovich H., Bakalinsky A.T. Identification of gold nanoparticle-resistant mutants of Saccharomyces cerevisiae suggests a role for respiratory metabolism in mediating toxicity. Appl. Environ. Microbiol. 2013;79:728–733. doi: 10.1128/AEM.01737-12. PubMed DOI PMC

Pokharkar V., Dhar S., Bhumkar D., Mali V., Bodhankar S., Prasad B. Acute and subacute toxicity studies of chitosan reduced gold nanoparticles: A novel carrier for therapeutic agents. J. Biomed. Nanotech. 2009;5:233–239. doi: 10.1166/jbn.2009.1027. PubMed DOI

Thanou M., Verhoef J., Junginger H. Oral drug absorption enhancement by chitosan and its derivatives. Adv. Drug Dev. Rev. 2001;52:117–126. doi: 10.1016/S0169-409X(01)00231-9. PubMed DOI

Richardson S.W., Kolbe H.J., Duncan R. Potential of low molecular mass chitosan as a DNA delivery system: Biocompatibility, body distribution and ability to complex and protect DNA. Int. J. Pharm. 1999;178:231–243. doi: 10.1016/S0378-5173(98)00378-0. PubMed DOI

Santhosh S., Sini T.K., Anandan R., Mathew P.T. Hepatoprotective activity of chitosan against isoniazid and rifampicin-induced toxicity in experimental rats. Eur. J. Pharmacol. 2007;572:69–73. doi: 10.1016/j.ejphar.2007.05.059. PubMed DOI

Kong M., Chen X.G., Xing K., Park H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol. 2010;144:51–63. doi: 10.1016/j.ijfoodmicro.2010.09.012. PubMed DOI

Dutta P., Tripathi S., Mehrotra G., Dutta J. Perspectives for chitosan based antimicrobial films in food applications. Food Chem. 2009;114:1173–1182. doi: 10.1016/j.foodchem.2008.11.047. DOI

Gupta D., Haile A. Multifunctional properties of cotton fabric treated with chitosan and carboxymethyl chitosan. Carbohydr. Polym. 2007;69:164–171. doi: 10.1016/j.carbpol.2006.09.023. DOI

Helander I., Nurmiaho-Lassila E.-L., Ahvenainen R., Rhoades J., Roller S. Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int. J. Food. Microbiol. 2001;71:235–244. doi: 10.1016/S0168-1605(01)00609-2. PubMed DOI

Yang T.-C., Chou C.-C., Li C.-F. Antibacterial activity of N-alkylated disaccharide chitosan derivatives. Int. J. Food Microbiol. 2005;97:237–245. doi: 10.1016/S0168-1605(03)00083-7. PubMed DOI

Neun B.W., Dobrovolskaia M.A. Characterization of Nanoparticles Intended for Drug Delivery. Springer; Berlin, Germany: 2011. Method for analysis of nanoparticle hemolytic properties in vitro; pp. 215–224. PubMed

Dobrovolskaia M.A., Clogston J.D., Neun B.W., Hall J.B., Patri A.K., McNeil S.E. Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett. 2008;8:2180–2187. doi: 10.1021/nl0805615. PubMed DOI PMC

Shen M., Cai H., Wang X., Cao X., Li K., Wang S.H., Guo R., Zheng L., Zhang G., Shi X. Facile one-pot preparation, surface functionalization, and toxicity assay of APTS-coated iron oxide nanoparticles. Nanotechnology. 2012;23:105601. doi: 10.1088/0957-4484/23/10/105601. PubMed DOI

Jentzmik F., Stephan C., Lein M., Miller K., Kamlage B., Bethan B., Kristiansen G., Jung K. Sarcosine in prostate cancer tissue is not a differential metabolite for prostate cancer aggressiveness and biochemical progression. J. Urol. 2011;185:706–711. doi: 10.1016/j.juro.2010.09.077. PubMed DOI

Cernei N., Zitka O., Ryvolova M., Adam V., Masarik M., Hubalek J., Kizek R. Spectrometric and electrochemical analysis of sarcosine as a potential prostate carcinoma marker. Int. J. Electrochem. Sci. 2012;7:4286–4301.

Jiang Y., Cheng X., Wang C., Ma Y. Quantitative determination of sarcosine and related compounds in urinary samples by liquid chromatography with tandem mass spectrometry. Anal. Chem. 2010;82:9022–9027. doi: 10.1021/ac1019914. PubMed DOI

Meyer T.E., Fox S.D., Issaq H.J., Xu X., Chu L.W., Veenstra T.D., Hsing A.W. A reproducible and high-throughput HPLC/MS method to separate sarcosine from α-and β-alanine and to quantify sarcosine in human serum and urine. Anal. Chem. 2011;83:5735–5740. doi: 10.1021/ac201003r. PubMed DOI

Wu H., Liu T., Ma C., Xue R., Deng C., Zeng H., Shen X. GC/MS-based metabolomic approach to validate the role of urinary sarcosine and target biomarkers for human prostate cancer by microwave-assisted derivatization. Anal. Bional. Chem. 2011;401:635–646. doi: 10.1007/s00216-011-5098-9. PubMed DOI

Biavardi E., Tudisco C., Maffei F., Motta A., Massera C., Condorelli G.G., Dalcanale E. Exclusive recognition of sarcosine in water and urine by a cavitand-functionalized silicon surface. Proc. Nat. Acad. Sci. USA. 2012;109:2263–2268. doi: 10.1073/pnas.1112264109. PubMed DOI PMC

Bianchi F., Dugheri S., Musci M., Bonacchi A., Salvadori E., Arcangeli G., Cupelli V., Lanciotti M., Masieri L., Serni S. Fully automated solid-phase microextraction–fast gas chromatography–mass spectrometry method using a new ionic liquid column for high-throughput analysis of sarcosine and N-ethylglycine in human urine and urinary sediments. Anal. Chim. Acta. 2011;707:197–203. doi: 10.1016/j.aca.2011.09.015. PubMed DOI

Lan J., Xu W., Wan Q., Zhang X., Lin J., Chen J., Chen J. Colorimetric determination of sarcosine in urine samples of prostatic carcinoma by mimic enzyme palladium nanoparticles. Anal. Chim. Acta. 2014;825:63–68. doi: 10.1016/j.aca.2014.03.040. PubMed DOI

Sabnis S., Block L.H. Chitosan as an enabling excipient for drug delivery systems: I. Molecular modifications. Int. J. Biol. Macromol. 2000;27:181–186. doi: 10.1016/S0141-8130(00)00118-5. PubMed DOI

Owen J., Iggo B., Scandrett F., Stewart C. The determination of creatinine in plasma or serum, and in urine; a critical examination. Biochem. J. 1954;58:426. doi: 10.1042/bj0580426. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...