Research on the impact of graphene oxide in feed on growth and health parameters in calves
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40809298
PubMed Central
PMC12343503
DOI
10.3389/ftox.2025.1560078
PII: 1560078
Knihovny.cz E-zdroje
- Klíčová slova
- adsorbent, animal, cattle, graphene oxide, toxic,
- Publikační typ
- časopisecké články MeSH
Mycotoxins, as feed contaminants, pose serious health risks and cause significant economic losses on farms. The selection of an appropriate and effective adsorbent remains a key challenge for many researchers. Graphene oxide (GO) and its derivatives have garnered interest due to their exceptional physicochemical properties. However, the increasing use of GO necessitates a thorough investigation into its potential toxic impacts on animal and human health, as well as the environment. This study evaluates the effects of GO as a feed additive on calf health. Ten calves (100 ± 6 kg) participated in a 20-day experiment: five in the control group (C) and five in the experimental group (T). The control group (C) received feed without GO, while the experimental group (T) was fed a diet containing 30 g of GO/kg/day. Key parameters evaluated included growth performance, biochemical markers (ALT, AST, ALP), and mineral levels (Ca, P, Mg, K, Na, Cl, Fe, Cu, Zn). The average weight gain was 16.20 ± 0.32 kg in the control group and 15.40 ± 0.26 kg in the GO group, with no statistically significant difference (p > 0.05). Calves fed GO-enriched feed exhibited significant reductions in Fe (p = 0.041) and Zn (p = 0.0006) levels, while Mg increased significantly in the control group (p = 0.029). Liver parameters in group T showed significant increases in ALT (p = 0.022), AST (p = 0.027), and ALP (p = 0.015) after 20 days. Additionally, GPx activity was significantly decreased in the GO group (p = 0.011). These results suggest that GO at a dose of 30 g/kg/day in feed can negatively affect calf health.
Department of Animal Breeding Faculty of AgriSciences Mendel University in Brno Brno Czechia
Department of Animal Nutrition and Forage Production Mendel University in Brno Brno Czechia
Zobrazit více v PubMed
Abbasi Pirouz A., Selamat J., Sukor R., Noorahya Jambari N. (2021). Effective detoxification of aflatoxin B1 and ochratoxin A using magnetic graphene oxide nanocomposite: isotherm and kinetic study. Coatings 11 (11), 1346. 10.3390/coatings11111346 DOI
Aguado-Henche S., Escudero M. L., García-Alonso M. C., Lozano-Puerto R. M., Clemente de Arriba C. (2022). Biological responses in the blood and organs of rats to intraperitoneal inoculation of graphene and graphene oxide. Materials 15, 2898. 10.3390/ma15082898 PubMed DOI PMC
Ahmadi H., Ramezani M., Yazdian-Robati R., Behnam B., Razavi Azarkhiavi K., Hashem Nia A., et al. (2017). Acute toxicity of functionalized single wall carbon nanotubes: a biochemical, histopathologic and proteomics approach. Chemico-Biological Interact. 275, 196–209. 10.1016/j.cbi.2017.08.004 PubMed DOI
Ajala O. J., Tijani J., Bankole M., Abdulkareem A. (2022). A critical review on graphene oxide nanostructured material: properties, synthesis, characterization and application in water and wastewater treatment. Environ. Nanotechnol. Monit. Manag. 18, 100673. 10.1016/j.enmm.2022.100673 DOI
Amrollahi-Sharifabadi M., Koohi M. K., Zayerzadeh E., Hablolvarid M. H., Hassan J., Seifalian A. M. (2018). PubMed DOI PMC
Anand A., Unnikrishnan B., Wei S. C., Chou C. P., Zhang L. Z., Huang C. C. (2019). Graphene oxide and carbon dots as broad-spectrum antimicrobial agents – a minireview. Nanoscale Horizons 4 (1), 117–137. 10.1039/c8nh00174j PubMed DOI
Anegbe B., Ifijen I. H., Maliki M., Uwidia I. E., Aigbodion A. I. (2024). Graphene oxide synthesis and applications in emerging contaminant removal: a comprehensive review. Environ. Sci. Eur. 36 (1), 15. 10.1186/s12302-023-00814-4 DOI
Bai X., Sun C., Xu J., Liu D., Han Y., Wu S., et al. (2018). Detoxification of zearalenone from corn oil by adsorption of functionalized GO systems. Appl. Surf. Sci. 430, 198–207. 10.1016/j.apsusc.2017.06.055 DOI
Bantun F., Singh R., Alkhanani M. F., Almalki A. H., Alshammary F., Khan S., et al. (2022). Gut microbiome interactions with graphene based nanomaterials: challenges and opportunities. Sci. Total Environ. 830, 154789. 10.1016/j.scitotenv.2022.154789 PubMed DOI
Biru E. I., Necolau M. I., Zainea A., Iovu H. (2022). Graphene oxide–protein-based scaffolds for tissue engineering: recent advances and applications. Polymers 14 (5), 1032. 10.3390/polym14051032 PubMed DOI PMC
Budny-Walczak A., Śpitalniak-Bajerska K., Szołtysik M., Pogoda-Sewerniak K., Kupczyński R. (2023). Effects of iron supplementation on metabolism in calves receiving whole milk. Animals (Basel) 13 (3), 477. 10.3390/ani13030477 PubMed DOI PMC
Bytešníková Z., Koláčková M., Dobešová M., Švec P., Ridošková A., Pekárková J., et al. (2023). New insight into the biocompatibility/toxicity of graphene oxides and their reduced forms on Chlamydomonas reinhardtii. NanoImpact 31, 100468. 10.1016/j.impact.2023.100468 PubMed DOI
Carrillo-Muro O., Rodríguez-Cordero D., Hernández-Briano P., Correa-Aguado P. I., Medina-Flores C. A., Huerta-López L. A., et al. (2024). Enzymic activity, metabolites, and hematological responses in high-risk newly received calves for “Clinical Health” reference intervals. Animals 14 (16), 2342. 10.3390/ani14162342 PubMed DOI PMC
Chang M. N., Wei J. Y., Hao L. Y., Ma F. T., Li H. Y., Zhao S. G., et al. (2020). Effects of different types of zinc supplement on the growth, incidence of diarrhea, immune function, and rectal microbiota of newborn dairy calves. J. Dairy Sci. 103 (7), 6100–6113. 10.3168/jds.2019-17610 PubMed DOI
Chen C., Xi Y., Weng Y. (2022). Progress in the development of graphene-based biomaterials for tissue engineering and regeneration. Materials 15 (6), 2164. 10.3390/ma15062164 PubMed DOI PMC
Chen H., Du W., Liu J., Qu L., Li C. (2019). Efficient room-temperature production of high-quality graphene by introducing removable oxygen functional groups to the precursor. Chem. Sci. 10 (4), 1244–1253. 10.1039/c8sc03695k PubMed DOI PMC
Commission E. (2009). Commission regulation (EC) No. 386/2009 of 12 May 2009 amending regulation (EC) No. 1831/2003 of the European Parliament and of the Council as regards the establishment of a new functional group of feed additives. Off. J. Eur. Union 118, 66.
Creighton M. A., Rangel-Mendez J. R., Huang J., Kane A. B., Hurt R. H. (2013). Graphene-induced adsorptive and optical artifacts during In Vitro toxicology assays. Small 9 (11), 1921–1927. 10.1002/smll.201202625 PubMed DOI PMC
Dasmahapatra A. K., Dasari T. P. S., Tchounwou P. B. (2019). “Graphene-based nanomaterials toxicity in fish,” in Reviews of environmental contamination and toxicology. Editor DeVoogt P. (Cham: Springer: ), 247. 1–58. 10.1007/398_2018_15 PubMed DOI PMC
Dreyer D. R., Park S., Bielawski C. W., Ruoff R. S. (2010). The chemistry of graphene oxide. Chem. Soc. Rev. 39 (1), 228–240. 10.1039/b917103g PubMed DOI
Ema M., Hougaard K. S., Kishimoto A., Honda K. (2016). Reproductive and developmental toxicity of carbon-based nanomaterials: a literature review. Nanotoxicology 10 (4), 391–412. 10.3109/17435390.2015.1073811 PubMed DOI
Fu C., Liu T., Li L., Liu H., Liang Q., Meng X. (2015). Effects of graphene oxide on the development of offspring mice in lactation period. Biomaterials 40, 23–31. 10.1016/j.biomaterials.2014.11.014 PubMed DOI
Gao Y., Li Y., Zhang L., Huang H., Hu J., Shah S. M., et al. (2012). Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J. Colloid Interface Sci. 368 (1), 540–546. 10.1016/j.jcis.2011.11.015 PubMed DOI
Ghazimoradi M. M., Ghorbani M. H., Ebadian E., Hassani A., Mirzababaei S., Hodjat M., et al. (2022). Epigenetic effects of graphene oxide and its derivatives: a mini-review. Mutat. Research/Genetic Toxicol. Environ. Mutagen. 878, 503483. 10.1016/j.mrgentox.2022.503483 PubMed DOI
Ghulam A. N., Dos Santos O. A. L., Hazeem L., Pizzorno Backx B., Bououdina M., Bellucci S. (2022). Graphene oxide (GO) materials-applications and toxicity on living organisms and environment. J. Funct. Biomaterials 13 (2), 77. 10.3390/jfb13020077 PubMed DOI PMC
Giannini E. G., Testa R., Savarino V. (2005). Liver enzyme alteration: a guide for clinicians. Can. Med. Assoc. J. 172 (3), 367–379. 10.1503/cmaj.1040752 PubMed DOI PMC
Gowda S., Desai P. B., Hull V. V., Math A. A. K., Vernekar S. N., Kulkarni S. S. (2009). A review on laboratory liver function tests. Pan Afr. Med. J. 3, 17. PubMed PMC
Guo L., Von Dem Bussche A., Buechner M., Yan A., Kane A. B., Hurt R. H. (2008). Adsorption of essential micronutrients by carbon nanotubes and the implications for nanotoxicity testing. Small 4 (6), 721–727. 10.1002/smll.200700754 PubMed DOI PMC
Hassanpour S., Behnam B., Baradaran B., Hashemzaei M., Oroojalian F., Mokhtarzadeh A., et al. (2021). Carbon based nanomaterials for the detection of narrow therapeutic index pharmaceuticals. Talanta 221, 121610. 10.1016/j.talanta.2020.121610 PubMed DOI
Horký P. (2014). Effect of protein concentrate supplement on the qualitative and quantitative parameters of milk from dairy cows in organic farming. Ann. Anim. Sci. 14 (2), 341–352. 10.2478/aoas-2014-0008 DOI
Horky P., Gruberova H. A., Aulichova T., Malyugina S., Slama P., Pavlik A., et al. (2021). Protective effect of a new generation of activated and purified bentonite in combination with yeast and phytogenic substances on mycotoxin challenge in pigs. Plos One 16 (10), e0259132. 10.1371/journal.pone.0259132 PubMed DOI PMC
Horky P., Skládanka J., Nevrkla P., Falta D., Čáslavová I., Knot P. (2017). Effect of protein concentrate supplementation on the composition of amino acids in milk from dairy cows in an organic farming system. Potravinarstvo 11, 88–95. 10.5219/707 DOI
Horky P., Venusova E., Aulichova T., Ridoskova A., Skladanka J., Skalickova S. (2020). Usability of graphene oxide as a mycotoxin binder: In vitro study. PLoS One 15 (9), e0239479. 10.1371/journal.pone.0239479 PubMed DOI PMC
Itoo A. M., Vemula S. L., Gupta M. T., Giram M. V., Kumar S. A., Ghosh B., et al. (2022). Multifunctional graphene oxide nanoparticles for drug delivery in cancer. J. Control. Release 350, 26–59. 10.1016/j.jconrel.2022.08.011 PubMed DOI
Jasim D. A., Murphy S., Newman L., Mironov A., Prestat E., McCaffrey J., et al. (2016). The effects of extensive glomerular filtration of thin graphene oxide sheets on kidney physiology. ACS Nano 10 (12), 10753–10767. 10.1021/acsnano.6b03358 PubMed DOI PMC
Jaynes W. F., Zartman R. E., Hudnall W. H. (2007). Aflatoxin B1 adsorption by clays from water and corn meal. Appl. Clay Sci. 36 (1), 197–205. 10.1016/j.clay.2006.06.012 DOI
Jia P.-P., Sun T., Junaid M., Yang L., Ma Y. B., Cui Z. S., et al. (2019). Nanotoxicity of different sizes of graphene (G) and graphene oxide (GO) in vitro and in vivo. Environ. Pollut. 247, 595–606. 10.1016/j.envpol.2019.01.072 PubMed DOI
Kanayama I., Miyaji H., Takita H., Nishida E., Tsuji M., Fugetsu B., et al. (2014). Comparative study of bioactivity of collagen scaffolds coated with graphene oxide and reduced graphene oxide. Int. J. Nanomedicine 9, 3363–3373. 10.2147/IJN.S62342 PubMed DOI PMC
Kashif M., Alsaiari N. S., Jaafar E., Low F. W., Oon C. S., Sahari S. K., et al. (2022). Reaction-time-dependent opto-electrical properties of graphene oxide. Crystals 12 (9), 1303. 10.3390/cryst12091303 DOI
Kemboi D. C., Antonissen G., Ochieng P. E., Croubels S., Okoth S., Kangethe E. K., et al. (2020). A review of the impact of mycotoxins on dairy cattle health: challenges for food safety and dairy production in Sub-Saharan Africa. Toxins 12, 222. 10.3390/toxins12040222 PubMed DOI PMC
Khodaei D., Javanmardi F., Khaneghah A. M. (2020). The global overview of the occurrence of mycotoxins in cereals: a three-year survey. Curr. Opin. Food Sci. 39, 36–42. 10.1016/j.cofs.2020.12.012 DOI
Li R., Guiney L. M., Chang C. H., Mansukhani N. D., Ji Z., Wang X., et al. (2018). Surface oxidation of graphene oxide determines membrane damage, lipid peroxidation, and cytotoxicity in macrophages in a pulmonary toxicity model. ACS Nano 12 (2), 1390–1402. 10.1021/acsnano.7b07737 PubMed DOI PMC
Li Y., Wang Y., Tu L., Chen D., Luo Z., Liu D., et al. (2016). Sub-acute toxicity study of graphene oxide in the sprague-dawley rat. Int. J. Environ. Res. Public Health 13 (11), 1149. 10.3390/ijerph13111149 PubMed DOI PMC
Liang S., Xu S., Zhang D., He J., Chu M. (2015). Reproductive toxicity of nanoscale graphene oxide in male mice. Nanotoxicology 9 (1), 92–105. 10.3109/17435390.2014.893380 PubMed DOI
Liao C., Li Y., Tjong S. C. (2018). Graphene nanomaterials: synthesis, biocompatibility, and cytotoxicity. Int. J. Mol. Sci. 19 (11), 3564. 10.3390/ijms19113564 PubMed DOI PMC
Liu J. H., Yang S. T., Wang H., Chang Y., Cao A., Liu Y. (2012). Effect of size and dose on the biodistribution of graphene oxide in mice. Nanomedicine 7 (12), 1801–1812. 10.2217/nnm.12.60 PubMed DOI
Liu L., Ma Q., Cao J., Gao Y., Han S., Liang Y., et al. (2021). Recent progress of graphene oxide-based multifunctional nanomaterials for cancer treatment. Cancer Nanotechnol. 12 (1), 18. 10.1186/s12645-021-00087-7 DOI
Liu X., Sun J., Xu X., Sheng G., Sun Y., Huang Y., et al. (2019). Is the interaction between graphene oxide and minerals reversible? Environ. Pollut. 249, 785–793. 10.1016/j.envpol.2019.03.104 PubMed DOI
Liu Z., Robinson J. T., Sun X., Dai H. (2008). PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 130 (33), 10876–10877. 10.1021/ja803688x PubMed DOI PMC
Long Z., Ji J., Yang K., Lin D., Wu F. (2012). Systematic and quantitative investigation of the mechanism of carbon nanotubes’ toxicity toward algae. Environ. Sci. Technol. 46 (15), 8458–8466. 10.1021/es301802g PubMed DOI
Lu J., Zhu X., Tian S., Lv X., Chen Z., Jiang Y., et al. (2018). Graphene oxide in the marine environment: toxicity to Artemia salina with and without the presence of Phe and Cd2. Chemosphere 211, 390–396. 10.1016/j.chemosphere.2018.07.140 PubMed DOI
Luo L., Peng T., Yuan M., Sun H., Dai S., Wang L. (2018). Preparation of graphite oxide containing different oxygen-containing functional groups and the study of ammonia gas sensitivity. Sensors 18 (11), 3745. 10.3390/s18113745 PubMed DOI PMC
Magne T. M., de Oliveira Vieira T., Alencar L. M. R., Junior F. F. M., Gemini-Piperni S., Carneiro S. V., et al. (2022). Graphene and its derivatives: understanding the main chemical and medicinal chemistry roles for biomedical applications. J. Nanostructure Chem. 12 (5), 693–727. 10.1007/s40097-021-00444-3 PubMed DOI PMC
Mantovani S., Khaliha S., Marforio T. D., Kovtun A., Favaretto L., Tunioli F., et al. (2022). Facile high-yield synthesis and purification of lysine-modified graphene oxide for enhanced drinking water purification. Chem. Commun. 58 (70), 9766–9769. 10.1039/d2cc03256b PubMed DOI
Martin-Folgar R., Esteban-Arranz A., Negri V., Morales M. (2022). Toxicological effects of three different types of highly pure graphene oxide in the midge Chironomus riparius. Sci. Total Environ. 815, 152465. 10.1016/j.scitotenv.2021.152465 PubMed DOI
Mohideen K., Jeddy N., Krithika C., Faizee S. H., Dhungel S., Ghosh S. (2023). Assessment of glutathione peroxidase enzyme response and total antioxidant status in oral cancer - systematic review and meta-analysis. Cancer Rep. Hob. 6 (8), e1842. 10.1002/cnr2.1842 PubMed DOI PMC
Nassef H. M., Hagar M., Malek Z., Othman A. M. (2018). Uptake of tyrosine amino acid on nano-graphene oxide. Materials 11 (1), 68. 10.3390/ma11010068 PubMed DOI PMC
Ng I. M. J., Shamsi S. (2022). Graphene oxide (GO): a promising nanomaterial against infectious diseases caused by multidrug-resistant bacteria. Int. J. Mol. Sci. 23 (16), 9096. 10.3390/ijms23169096 PubMed DOI PMC
Nirmal N. K., Awasthi K. K., John P. J. (2021). Hepatotoxicity of graphene oxide in Wistar rats. Environ. Sci. Pollut. Res. 28 (34), 46367–46376. 10.1007/s11356-020-09953-0 PubMed DOI
Ou L., Lv X., Wu Z., Xia W., Huang Y., Chen L., et al. (2021). Oxygen content-related DNA damage of graphene oxide on human retinal pigment epithelium cells. J. Mater Sci. Mater Med. 32 (2), 20. 10.1007/s10856-021-06491-0 PubMed DOI PMC
Ou L. L., Song B., Liang H., Liu J., Feng X., Deng B., et al. (2016). Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Part. Fibre Toxicol. 13, 57. 10.1186/s12989-016-0168-y PubMed DOI PMC
Özsobaci N. P., Ergün D. D. (2023). Synthesis of graphene oxide and in vitro evaluation of its cytotoxic effect. J. Acad. Res. Medicine-Jarem 13 (2), 58–62. 10.4274/jarem.galenos.2023.78300 DOI
Patlolla A. K., Randolph J., Kumari S. A., Tchounwou P. B. (2016). Toxicity evaluation of graphene oxide in kidneys of sprague-dawley rats. Int. J. Environ. Res. Public Health 13, 380. 10.3390/ijerph13040380 PubMed DOI PMC
Penagos-Tabares F., Khiaosa-Ard R., Faas J., Steininger F., Papst F., Egger-Danner C., et al. (2023). A 2-year study reveals implications of feeding management and exposure to mycotoxins on udder health, performance, and fertility in dairy herds. J. Dairy Sci. 107, 1124–1142. 10.3168/jds.2023-23476 PubMed DOI
Priyadarsini S., Mohanty S., Mukherjee S., Basu S., Mishra M. (2018). Graphene and graphene oxide as nanomaterials for medicine and biology application. J. Nanostructure Chem. 8 (2), 123–137. 10.1007/s40097-018-0265-6 DOI
Rajaei-Sharifabadi H., Shamkhani E., Hafizi M., Mohammadi S., Shokri Z., Ahmadibonakdar Y., et al. (2024). Source-dependent effects of early-life zinc supplementation in milk on growth performance and starter intake of pre-weaned dairy calves. Front. Animal Sci. 5. 10.3389/fanim.2024.1462245 DOI
Rhazouani A., Gamrani H., El Achaby M., Aziz K., Gebrati L., Uddin M. S., et al. (2021). Synthesis and toxicity of graphene oxide nanoparticles: a literature review of In Vitro and In Vivo studies. Biomed. Res. Int. 2021, 5518999. 10.1155/2021/5518999 PubMed DOI PMC
Sanchez V. C., Jachak A., Hurt R. H., Kane A. B. (2012). Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem. Res. Toxicol. 25 (1), 15–34. 10.1021/tx200339h PubMed DOI PMC
Santos A. R., Carreiró F., Freitas A., Barros S., Brites C., Ramos F., et al. (2022). Mycotoxins contamination in rice: analytical methods, occurrence and detoxification strategies. Toxins 14 (9), 647. 10.3390/toxins14090647 PubMed DOI PMC
Sedajová V., Bakandritsos A., Otyepka M. (2023). Covalently functionalized graphene derivatives as active Elec-trode materials for supercapacitors. Chem. Listy 117 (10), 619–627. 10.54779/chl20230619 DOI
Shah I. A., Bilal M., Ihsanullah I., Ali S., Yaqub M. (2023). Revolutionizing water purification: unleashing graphene oxide (GO) membranes. J. Environ. Chem. Eng. 11 (6), 111450. 10.1016/j.jece.2023.111450 DOI
Shareena T. P. D., McShan D., Dasmahapatra A. K., Tchounwou P. B. (2018). A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nano-Micro Lett. 10 (3), 53. 10.1007/s40820-018-0206-4 PubMed DOI PMC
Sharma S., Kundu P., Tyagi D., Shanmugam V. (2025). Graphene-based nanomaterials applications for agricultural and food sector. Adv. Colloid Interface Sci. 336, 103377. 10.1016/j.cis.2024.103377 PubMed DOI
Shen J., Dong J., Zhao J., Ye T., Gong L., Wang H., et al. (2022). The effects of the oral administration of graphene oxide on the gut microbiota and ultrastructure of the colon of mice. Ann. Transl. Med. 10 (6), 278. 10.21037/atm-22-922 PubMed DOI PMC
Simon J., Flahaut E., Golzio M. (2019). Overview of carbon nanotubes for biomedical applications. Materials 12 (4), 624. 10.3390/ma12040624 PubMed DOI PMC
Skaličková S., Aulichová T., Venusová E., Skládanka J., Horký P. (2020). Development of pH-responsive biopolymeric nanocapsule for antibacterial essential oils. Int. J. Mol. Sci. 21 (5). 10.3390/ijms21051799 PubMed DOI PMC
Szacawa E., Dudek K., Bednarek D., Pieszka M., Bederska-Łojewska D. (2021). A pilot study on the effect of a novel feed additive containing exogenous enzymes, acidifiers, sodium butyrate and silicon dioxide nanoparticles on selected cellular immune indices and body weight gains of calves. J. Vet. Res. 65 (4), 497–504. 10.2478/jvetres-2021-000068 PubMed DOI PMC
Szmidt M., Sawosz E., Urbańska K., Jaworski S., Kutwin M., Hotowy A., et al. (2016). Toxicity of different forms of graphene in a chicken embryo model. Environ. Sci. Pollut. Res. 23 (19), 19940–19948. 10.1007/s11356-016-7178-z PubMed DOI
Tanveer Z. I., Huang Q., Liu L., Jiang K., Nie D., Pan H., et al. (2020). Reduced graphene oxide-zinc oxide nanocomposite as dispersive solid-phase extraction sorbent for simultaneous enrichment and purification of multiple mycotoxins in Coptidis rhizoma (Huanglian) and analysis by liquid chromatography tandem mass spectrometry. J. Chromatogr. A, 1630. 10.1016/j.chroma.2020.461515 PubMed DOI
Tariq W., Ali F., Arslan C., Nasir A., Gillani S. H., Rehman A. (2022). Synthesis and applications of graphene and graphene-based nanocomposites: conventional to artificial intelligence approaches. Front. Environ. Chem. 3, 2022. 10.3389/fenvc.2022.890408 DOI
Tolosa J., Rodríguez-Carrasco Y., Ruiz M. J., Vila-Donat P. (2021). Multi-mycotoxin occurrence in feed, metabolism and carry-over to animal-derived food products: a review. Food Chem. Toxicol. 158, 112661. 10.1016/j.fct.2021.112661 PubMed DOI
Vila-Donat P., Marín S., Sanchis V., Ramos A. J. (2018). A review of the mycotoxin adsorbing agents, with an emphasis on their multi-binding capacity, for animal feed decontamination. Food Chem. Toxicol. 114, 246–259. 10.1016/j.fct.2018.02.044 PubMed DOI
Wang J.-y., Wang Y. B., Liu K., Bi X. J., Sun J. (2020). Using arterial blood as a substitute for venous blood in routine biochemistry parameter examinations in rabbits. BMC Vet. Res. 16 (1), 467. 10.1186/s12917-020-02687-8 PubMed DOI PMC
Wang K., Ruan J., Song H., Zhang J., Wo Y., Guo S., et al. (2011). Biocompatibility of graphene oxide. Nanoscale Res. Lett. 6 (1), 8. 10.1007/s11671-010-9751-6 PubMed DOI PMC
Wen K. P., Chen Y. C., Chuang C. H., Chang H. Y., Lee C. Y., Tai N. H. (2015). Accumulation and toxicity of intravenously-injected functionalized graphene oxide in mice. J. Appl. Toxicol. 35 (10), 1211–1218. 10.1002/jat.3187 PubMed DOI
Wo Y., Jin Y., Gao D., Ma F., Ma Z., Liu Z., et al. (2022). Supplementation with zinc proteinate increases the growth performance by reducing the incidence of diarrhea and improving the immune function of dairy calves during the first month of life. Front. Vet. Sci. 9, 911330. 10.3389/fvets.2022.911330 PubMed DOI PMC
Wu J., Lin H., Moss D. J., Loh K. P., Jia B. (2023). Graphene oxide for photonics, electronics and optoelectronics. Nat. Rev. Chem. 7 (3), 162–183. 10.1038/s41570-022-00458-7 PubMed DOI
Yadav S., Sehrawat N., Sharma S., Sharma M. (2025). Recent advances and challenges in graphene-based electrochemical biosensors for food safety. Anal. Biochem. 703, 115866. 10.1016/j.ab.2025.115866 PubMed DOI
Yang K., Chen B., Zhu X., Xing B. (2016). Aggregation, adsorption, and morphological transformation of graphene oxide in aqueous solutions containing different metal cations. Environ. Sci. Technol. 50 (20), 11066–11075. 10.1021/acs.est.6b04235 PubMed DOI
Yang K., Gong H., Shi X., Wan J., Zhang Y., Liu Z. (2013). In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. Biomaterials 34 (11), 2787–2795. 10.1016/j.biomaterials.2013.01.001 PubMed DOI
Yang K., Wan J., Zhang S., Zhang Y., Lee S. T., Liu Z. (2011). In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano 5 (1), 516–522. 10.1021/nn1024303 PubMed DOI
Yang K., Xing B. (2010). Adsorption of organic compounds by carbon nanomaterials in aqueous phase: polanyi theory and its application. Chem. Rev. 110 (10), 5989–6008. 10.1021/cr100059s PubMed DOI
Yang K., Zhang S., Zhang G., Sun X., Lee S. T., Liu Z. (2010). Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 10 (9), 3318–3323. 10.1021/nl100996u PubMed DOI
Yim Y., Shin H., Ahn S. M., Min D. H. (2021). Graphene oxide-based fluorescent biosensors and their biomedical applications in diagnosis and drug discovery. Chem. Commun. 57 (77), 9820–9833. 10.1039/d1cc02157e PubMed DOI
Yu K., Canalias F., Solà-Oriol D., Arroyo L., Pato R., Saco Y., et al. (2019). Age-Related serum biochemical reference intervals established for unweaned calves and piglets in the post-weaning period. Front. Vet. Sci. 6, 123. 10.3389/fvets.2019.00123 PubMed DOI PMC
Zaitsev S. Y., Bogolyubova N. V., Zhang X., Brenig B. (2020). Biochemical parameters, dynamic tensiometry and circulating nucleic acids for cattle blood analysis: a review. PeerJ 8, e8997. 10.7717/peerj.8997 PubMed DOI PMC
Zhang P., Zhang R., Fang X., Song T., Cai X., Liu H., et al. (2016). Toxic effects of graphene on the growth and nutritional levels of wheat (Triticum aestivum L.): short- and long-term exposure studies. J. Hazard. Mater. 317, 543–551. 10.1016/j.jhazmat.2016.06.019 PubMed DOI
Zhang Q., Yang Y., Fan H., Feng L., Wen G., Qin L. C. (2021). Roles of water in the formation and preparation of graphene oxide. RSC Adv. 11 (26), 15808–15816. 10.1039/d0ra10026a PubMed DOI PMC
Zhang W., He Y., Zhu H., Li X., Zou Z., Luo C., et al. (2025). Graphene oxide and its derivatives films for sustained-release trace element zinc based on cation-π interaction. Sci. Rep. 15 (1), 4255. 10.1038/s41598-025-87696-z PubMed DOI PMC
Zhang X., Yin J., Peng C., Hu W., Zhu Z., Li W., et al. (2011). Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon 49 (3), 986–995. 10.1016/j.carbon.2010.11.005 DOI
Zhao H. Y., Mao X. B., Yu B., He J., Zheng P., Yu J., et al. (2017b). Excess of dietary montmorillonite impairs growth performance, liver function, and antioxidant capacity in starter pigs. J. Anim. Sci. 95 (7), 2943–2951. 10.2527/jas.2016.1277 PubMed DOI
Zhao J., Cao X., Wang Z., Dai Y., Xing B. (2017a). Mechanistic understanding toward the toxicity of graphene-family materials to freshwater algae. Water Res. 111, 18–27. 10.1016/j.watres.2016.12.037 PubMed DOI
Zhao S., Wang W., Chen X., Gao Y., Wu X., Ding M., et al. (2023). Graphene oxide affected root growth, anatomy, and nutrient uptake in alfalfa. Ecotoxicol. Environ. Saf. 250, 114483. 10.1016/j.ecoenv.2022.114483 PubMed DOI
Zhao S., Zhu X., Mou M., Wang Z., Duo L. (2022). Assessment of graphene oxide toxicity on the growth and nutrient levels of white clover (Trifolium repens L.). Ecotoxicol. Environ. Saf. 234, 113399. 10.1016/j.ecoenv.2022.113399 PubMed DOI
Zheng M., Liu Y., Zhang G., Yang Z., Xu W., Chen Q. (2023). The applications and mechanisms of superoxide dismutase in medicine, food, and cosmetics. Antioxidants (Basel) 12 (9), 1675. 10.3390/antiox12091675 PubMed DOI PMC
Zubair M., Farooq S., Hussain A., Riaz S., Ullah A. (2024). A review of current developments in graphene oxide–polysulfone derived membranes for water remediation. Environ. Sci. Adv. 3 (7), 983–1003. 10.1039/d4va00058g DOI