Alternative and Unconventional Feeds in Dairy Diets and Their Effect on Fatty Acid Profile and Health Properties of Milk Fat

. 2021 Jun 18 ; 11 (6) : . [epub] 20210618

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34207160

Grantová podpora
MSM 6215712402 Ministry of Education Youth and Sports of the Czech Republic
RO1218 Ministry of Agriculture of the Czech Republic

Milk fat is an important nutritional compound in the human diet. From the health point of view, some fatty acids (FAs), particularly long-chain PUFAs such as EPA and DHA, have been at the forefront of interest due to their antibacterial, antiviral, anti-inflammatory, and anti-tumor properties, which play a positive role in the prevention of cardiovascular diseases (CVD), as well as linoleic and γ-linolenic acids, which play an important role in CVD treatment as essential components of phospholipids in the mitochondria of cell membranes. Thus, the modification of the FA profile-especially an increase in the concentration of polyunsaturated FAs and n-3 FAs in bovine milk fat-is desirable. The most effective way to achieve this goal is via dietary manipulations. The effects of various strategies in dairy nutrition have been thoroughly investigated; however, there are some alternative or unconventional feedstuffs that are often used for purposes other than basic feeding or modifying the fatty acid profiles of milk, such as tanniferous plants, herbs and spices, and algae. The use of these foods in dairy diets and their effects on milk fatty acid profile are reviewed in this article. The contents of selected individual FAs (atherogenic, rumenic, linoleic, α-linolenic, eicosapentaenoic, and docosahexaenoic acids) and their combinations; the contents of n3 and n6 FAs; n6/n3 ratios; and atherogenic, health-promoting and S/P indices were used as criteria for assessing the effect of these feeds on the health properties of milk fat.

Zobrazit více v PubMed

OECD/FAO . OECD-FAO Agricultural Outlook 2020–2029. OECD Publishing; Paris, France: FAO; Rome, Italy: 2020. DOI

EC (2020), Short-Term Outlook for EU Agricultural Markets in 2020. European Commission, DG Agriculture and Rural Development, Brussels. [(accessed on 15 May 2021)]; Available online: https://ec.europa.eu/info/sites/info/files/food-farming-fisheries/farming/documents/short-term-outlook-summer-2020_en.pdf.

Hanuš O., Samková E., Křížová L., Hasoňová L., Kala R. Role of fatty acids in milk fat and the influence of selected factors on their variability—A review. Molecules. 2018;23:1636. doi: 10.3390/molecules23071636. PubMed DOI PMC

Simopoulos A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002;56:365–379. doi: 10.1016/S0753-3322(02)00253-6. PubMed DOI

Moallem U. Invited review: Roles of dietary n-3 fatty acids in performance, milk fat composition, and reproductive and immune systems in dairy cattle. J. Dairy Sci. 2018;101:8641–8661. doi: 10.3168/jds.2018-14772. PubMed DOI

Kumari P., Kumar M., Gupta V., Reddy C.R.K., Jha B. Tropical marine macroalgae as potential sources of nutritionally important PUFAs. Food Chem. 2010;120:740–757. doi: 10.1016/j.foodchem.2009.11.006. DOI

Hadrová S., Veselý A., Křížová L. Assesment of bovine milk fat quality from the view of human health. In: Prague J., Kucera P., Bucek D., Lipovsky X., Bourrigan Burke M., editors. New Traits and Adding Value to the Recording and ID Services in the Animal Production, Proceedings of the 43rd ICAR Conference, Prague, Czech Republic, 17–21 June 2019. Volume 24. ICAR; Rome, Italy: 2019. pp. 217–221.

Póti P., Pajor F., Bodnár Á., Penksza K., Köles P. Effect of micro-alga supplementation on goat and cow milk fatty acid composition. Chil. J. Agric. Res. 2015;75:259–263. doi: 10.4067/S0718-58392015000200017. DOI

Bobe G., Zimmerman S., Hammond E.G., Freeman A.E., Porter P.A., Luhman C.M., Beitz D.C. Butter composition and texture from cows with different milk fatty acid compositions fed fish oil or roasted soybeans. J. Dairy Sci. 2007;90:2596–2603. doi: 10.3168/jds.2006-875. PubMed DOI

EFSA panel on dietetic products, nutrition and allergies (NDA); Scientific opinion related to the tolerable upper intake level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA) [(accessed on 12 March 2021)];EFSA J. 2012 10:2815. Available online: www.efsa.europa.eu/efsajournal.

Nguyen Q.V., Malau-Aduli B.S., Cavalieri J., Malau-Aduli A.E.O., Nichols P.D. Enhancing omega-3 long-chain polyunsaturated fatty acid content of dairy-derived foods for human consumption. Nutrients. 2019;11:743. doi: 10.3390/nu11040743. PubMed DOI PMC

Bárcenas-Pérez D., Lukeš M., Hrouzek P., Kubáč D., Kopecký J., Kaštánek P., Cheel J. A biorefinery approach to obtain docosahexaenoic acid and docosapentaenoic acid n-6 from Schizochytrium using high performance countercurrent chromatography. Algal Res. 2021;55:102241. doi: 10.1016/j.algal.2021.102241. DOI

Rymer C., Givens D.I., Wahle K.W.J. Nutrition Abstracts and Reviews. Series B: Livestock Feeds and Feeding. Volume 73. CAB International; Wallingford, UK: 2003. Dietary strategies for increasing docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) concentrations in bovine milk: A review.

Simopoulos A.P. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients. 2016;8:128. doi: 10.3390/nu8030128. PubMed DOI PMC

Swanson D., Block R., Mousa S.A. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Adv. Nutr. 2012;3:1–7. doi: 10.3945/an.111.000893. PubMed DOI PMC

Neff L.M., Culiner J., Cunningham-Rundles S., Seidman C., Meehan D., Maturi J., Wittkowski K.M., Levine B., Breslow J.L. Algal docosahexaenoic acid affects plasma lipoprotein particle size distribution in overweight and obese adults. J. Nutr. 2011;141:207–213. doi: 10.3945/jn.110.130021. PubMed DOI PMC

Lopes da Silva T., Moniz P., Silva C., Reis A. The dark side of microalgae biotechnology: A heterotrophic biorefinery platform directed to ω-3 rich lipid production. Microorganisms. 2019;7:670. doi: 10.3390/microorganisms7120670. PubMed DOI PMC

Peltomaa E., Johnson M.D., Taipale S.J. Marine cryptophytes are great sources of EPA and DHA. Mar. Drugs. 2017;16:3. doi: 10.3390/md16010003. PubMed DOI PMC

Markiewicz-Kęszycka M., Czyżak-Runowska G., Lipińska P., Wójtowski J. Fatty acid profile of milk—A review. Bull. Vet. Inst. Pulawy. 2013;57:135–139. doi: 10.2478/bvip-2013-0026. DOI

Calder P.C. Very long-chain n-3 fatty acids and human health: Fact, fiction and the future. Proc. Nutr. Soc. 2018;77:52–72. doi: 10.1017/S0029665117003950. PubMed DOI

Shahidi F., Ambigaipalan P. Omega-3 polyunsaturated fatty acids and their health benefits. Annu. Rev. Food Sci. Technol. 2018;9:345–381. doi: 10.1146/annurev-food-111317-095850. PubMed DOI

Calder P.C. Very long chain omega-3 (n-3) fatty acids and human health. Eur. J. Lipid. Sci. Technol. 2014;116:1280–1300. doi: 10.1002/ejlt.201400025. DOI

Lordan S., Ross R.P., Stanton C. Marine bioactives as functional food ingredients: Potential to reduce the incidence of chronic diseases. Mar. Drugs. 2011;9:1056–1100. doi: 10.3390/md9061056. PubMed DOI PMC

Szabó Z., Marosvölgyi T., Szabó É., Bai P., Figler M., Verzár Z. The potential beneficial effect of EPA and DHA supplementation managing cytokine storm in coronavirus disease. Front. Physiol. 2020;11:752. doi: 10.3389/fphys.2020.00752. PubMed DOI PMC

Nguyen D.V., Malau-Aduli B.S., Cavalieri J., Nichols P.D., Malau-Aduli A.E.O. Supplementation with plant-derived oils rich in omega-3 polyunsaturated fatty acids for lamb production. Vet. Anim. Sci. 2018;6:29–40. doi: 10.1016/j.vas.2018.08.001. PubMed DOI PMC

Lee J.M., Lee H., Kang S., Park W.J. Fatty acid desaturases, polyunsaturated fatty acid regulation, and biotechnological advances. Nutrients. 2016;8:23. doi: 10.3390/nu8010023. PubMed DOI PMC

Sergeant S., Rahbar E., Chilton F.H. Gamma-linolenic acid, dihommo-gamma linolenic, eicosanoids and inflammatory processes. Eur. J. Pharmacol. 2016;785:77–86. doi: 10.1016/j.ejphar.2016.04.020. PubMed DOI PMC

Białek M., Czauderna M., Białek A. Conjugated linolenic acid (CLnA) isomers as new bioactive lipid compounds in ruminant-derived food products. A review. J. Anim. Feed. Sci. 2017;26:354–358. doi: 10.22358/jafs/68862/2017. DOI

Belury M.A. Inhibition of carcinogenesis by conjugated linoleic acid: Potential mechanisms of action. J. Nutr. 2002;132:2995–2998. doi: 10.1093/jn/131.10.2995. PubMed DOI

Vargas-Bello-Pérez E., Márquez-Hernández R.I., Hernández-Castellano L.E. Bioactive peptides from milk: Animal determinants and their implications in human health. J. Dairy Res. 2019;86:136–144. doi: 10.1017/S0022029919000384. PubMed DOI

Haug A., Hostmark A.T., Harstad O.M. Bovine milk in human nutrition: A review. Lipids Health Dis. 2007;6:25. doi: 10.1186/1476-511X-6-25. PubMed DOI PMC

Breslow J.L. N-3 fatty acids and cardiovascular disease. Am. J. Clin. Nutr. 2006;83:1477S–1482S. doi: 10.1093/ajcn/83.6.1477S. PubMed DOI

Simopoulos A.P. Omega-6/Omega-3 essential fatty acid ratio and chronic diseases. Food Rev. Int. 2004;20:77–90. doi: 10.1081/FRI-120028831. DOI

Ulbricht T.L., Southgate D.A. Coronary heart disease—7 dietary factors. Lancet. 1991;338:985–992. doi: 10.1016/0140-6736(91)91846-M. PubMed DOI

Chen S., Bobe G., Zimmerman S., Hammond E.G., Luhman C.M., Boylston T.D., Freeman A.E., Beitz D.C. Physical and sensory properties of dairy products from cows with various milk fatty acid compositions. J. Agric. Food Chem. 2004;52:3422–3428. doi: 10.1021/jf035193z. PubMed DOI

Santos-Silva J., Bessa R.J.B., Santos-Silva F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs—2. Fatty acid composition of meat. Livest. Prod. Sci. 2002;77:187–194. doi: 10.1016/S0301-6226(02)00059-3. DOI

Bobe G., Zimmerman S., Hammond E.G., Freeman A.E.G., Lindberg G.L., Beitz D.C. Texture of butters made from milks differing in indices of atherogenicity. [(accessed on 1 March 2021)];Iowa State Univ. Anim. Ind. Rep. 2004 650:1–3. doi: 10.31274/ans_air-180814-691. Available online: http://lib.dr.iastate.edu/ans_air/vol650/iss1/61. DOI

Rafiee-Yarandi H., Ghorbani G.R., Alikhani M., Sadeghi-Sefidmazgi A., Drackley J.K. A comparison of the effect of soybeans roasted at different temperatures versus calcium salts of fatty acids on performance and milk fatty acid composition of mid-lactation HolsteiCn cows. J. Dairy Sci. 2016;99:5422–5435. doi: 10.3168/jds.2015-10546. PubMed DOI

Timmen H. Characterization of milk fat hardness in farm milk via parameters of fatty-acid composition. Kieler Milchw. Forsch. 1990;42:129–138.

Kelsey J.A., Corl B.A., Collier R.J., Bauman D.E. The effect of breed, parity, and stage of lactation on conjugated linoleic acid (CLA) in milk fat from dairy cows. J. Dairy Sci. 2003;86:2588–2597. doi: 10.3168/jds.S0022-0302(03)73854-5. PubMed DOI

Khan M.I., Shin J.H., Kim J.D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 2018;17:36. doi: 10.1186/s12934-018-0879-x. PubMed DOI PMC

Khan M., Karmakar R., Das B., Diba F., Razu M.H. Heterotrophic growth of micro algae. In: Liu J., Zheng S., Henri G., editors. Recent Advances in Microalgal Biotechnology. OMICS Group eBooks; Hyderabad, India: 2016. pp. 1–18.

Makkar H.P.S., Tran G., Heuzé V., Giger-Reverdin S., Lessire M., Lebas F., Ankers P. Seaweeds for livestock diets: A review. Anim. Feed Sci. Technol. 2016;212:1–17. doi: 10.1016/j.anifeedsci.2015.09.018. DOI

Morais T., Inácio A., Coutinho T., Ministro M., Cotas J., Pereira L., Bahcevandziev K. Seaweed potential in the animal feed: A review. J. Mar. Sci. Eng. 2020;8:559. doi: 10.3390/jmse8080559. DOI

Wang S.-H., Huang C.-Y., Chen C.-Y., Chang C.-C., Huang C.-Y., Dong C.-D., Chang J.-S. Structure and biological activity analysis of fucoidan isolated from Sargassum siliquosum. ACS Omega. 2020;5:32447–32455. doi: 10.1021/acsomega.0c04591. PubMed DOI PMC

Devillé C., Gharbi M., Dandrifosse G., Peulen O. Study on the effects of laminarin, a polysaccharide from seaweed, on gut characteristics. J. Sci. Food Agric. 2007;87:1717–1725. doi: 10.1002/jsfa.2901. DOI

Alves A., Sousa R.A., Reis R.L. A practical perspective on ulvan extracted from green algae. J. Appl. Phycol. 2013;25:407–424. doi: 10.1007/s10811-012-9875-4. DOI

Dawczynski C., Schubert R., Jahreis G. Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem. 2007;103:891–899. doi: 10.1016/j.foodchem.2006.09.041. DOI

Neville E.W., Fahey A.G., Gath V.P., Molloy B.P., Taylor S.J., Mulligan F.J. The effect of calcareous marine algae, with or without marine magnesium oxide, and sodium bicarbonate on rumen pH and milk production in mid-lactation dairy cows. J. Dairy Sci. 2019;102:8027–8039. doi: 10.3168/jds.2019-16244. PubMed DOI

Cruywagen C.W., Taylor S., Beya M.M., Calitz T. The effect of buffering dairy cow diets with limestone, calcareous marine algae, or sodium bicarbonate on ruminal pH profiles, production responses, and rumen fermentation. J. Dairy Sci. 2015;98:5506–5514. doi: 10.3168/jds.2014-8875. PubMed DOI

Caroprese M., Ciliberti M.G., Marino R., Santillo A., Sevi A., Albenzio M. Polyunsaturated fatty acid supplementation: Effects of seaweed Ascophyllum nodosum and flaxseed on milk production and fatty acid profile of lactating ewes during summer. J. Dairy Res. 2016;83:289–297. doi: 10.1017/S0022029916000431. PubMed DOI

Quigley A., Walsh S.W., Hayes E., Connolly D., Cummins W. Effect of seaweed supplementation on tocopherol concentrations in bovine milk using dispersive liquid-liquid microextraction. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018;1092:152–157. doi: 10.1016/j.jchromb.2018.06.013. PubMed DOI

Lee J.-S., Kang S., Kim M.-J., Han S.-G., Lee H.-G. Dietary supplementation with combined extracts from garlic (Allium sativum), brown seaweed (Undaria pinnatifida), and pinecone (Pinus koraiensis) improves milk production in Holstein cows under heat stress conditions. Asian-Australas. J. Anim. Sci. 2020;33:111–119. doi: 10.5713/ajas.19.0536. PubMed DOI PMC

De Lima R.N., de Souza J.B.F., Jr., Batista N.V., de Andrade A.K.S., Soares E.C.A., dos Santos Filho C.A.S., Silva L.A., Coelho W.A.C., Costa L.L.M., Lima P.O. Mitigating heat stress in dairy goats with inclusion of seaweed Gracilaria birdiae in diet. Small Rumin. Res. 2019;171:87–91. doi: 10.1016/j.smallrumres.2018.11.008. DOI

Kinley R.D., de Nys R., Vucko M.J., Machado L., Tomkins N.W. The red macroalgae Asparagopsis taxiformis is a potent natural antimethanogenic that reduces methane production during in vitro fermentation with rumen fluid. Anim. Prod. Sci. 2016;56:282. doi: 10.1071/AN15576. DOI

Li X., Norman H.C., Kinley R.D., Laurence M., Wilmot M., Bender H., de Nys R., Tomkins N. Asparagopsis taxiformis decreases enteric methane production from sheep. Anim. Prod. Sci. 2018;58:681. doi: 10.1071/AN15883. DOI

Jacob-Lopez E., Maroneze M.M., Quieroz M.I., Zepka L.Q. Handbook of Microalgae-Based Processes and Products: Fundamentals and Advances in Energy, Food, Feed, Fertilizer, and Bioactive Compounds. Academic Press; Cambridge, MA, USA: 2020.

Altomonte I., Salari F., Licitra R., Martini M. Use of microalgae in ruminant nutrition and implications on milk quality—A review. Livest. Sci. 2018;214:25–35. doi: 10.1016/j.livsci.2018.05.006. DOI

Gouveia L., Batista A.P., Sousa I., Raymundo A., Bandarra N.M. Microalgae in novel food products. In: Papadopoulos K.N., editor. Food Chemistry Research Developments. Nova Science Publishers, Inc.; New York, NY, USA: 2008. pp. 75–111.

Kovač D.J., Simeunović J.B., Babić O.B., Mišan A.Č., Milovanović I.L. Algae in food and feed. Food Feed Res. 2013;40:21–31.

Becker E.W. Microalgae in human and animal nutrition. In: Richmond A., editor. Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell; Oxford, UK: 2004. pp. 312–351. DOI

Kotrbáček V., Doubek J., Doucha J. The chlorococcalean alga Chlorella in animal nutrition: A review. J. Appl. Phycol. 2015;27:2173–2180. doi: 10.1007/s10811-014-0516-y. DOI

Adarme-Vega T.C., Lim D.K.Y., Timmins M., Vernen F., Li Y., Schenk P.M. Microalgal biofactories: A promising approach towards sustainable omega-3 fatty acid production. Microb. Cell Fact. 2012;11:96. doi: 10.1186/1475-2859-11-96. PubMed DOI PMC

Xin Y., Shen C., She Y., Chen H., Wang C., Wei L., Yoon K., Han D., Hu Q., Xu J. Biosynthesis of triacylglycerol molecules with a tailored PUFA profile in industrial microalgae. Mol. Plant. 2019;12:474–488. doi: 10.1016/j.molp.2018.12.007. PubMed DOI

Patelou M., Infante C., Dardelle F., Randewig D., Kouri E.D., Udvardi M.K., Tsiplakou E., Mantecón L., Flemetakis E. Transcriptomic and metabolomic adaptation of Nannochloropsis gaditana grown under different light regimes. Algal Res. 2020;45:101735. doi: 10.1016/j.algal.2019.101735. DOI

Molino A., Mehariya S., Karatza D., Chianese S., Iovine A., Casella P., Marino T., Musmarra D. Bench-scale cultivation of microalgae Scenedesmus almeriensis for CO2 capture and lutein production. Energies. 2019;12:2806. doi: 10.3390/en12142806. DOI

Lamminen M., Halmemies-Beauchet-Filleau A., Kokkonen T., Jaakkola S., Vanhatalo A. Different microalgae species as a substitutive protein feed for soya bean meal in grass silage based dairy cow diets. Anim. Feed Sci. Technol. 2019;247:112–126. doi: 10.1016/j.anifeedsci.2018.11.005. DOI

Kumar B.R., Deviram G., Mathimani T., Duc P.A., Pugazhendhi A. Microalgae as rich source of polyunsaturated fatty acids. Biocatal. Agric. Biotechnol. 2019;17:583–588. doi: 10.1016/j.bcab.2019.01.017. DOI

Lum K.K., Kim J., Lei X.G. Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. J. Anim. Sci. Biotechnol. 2013;4:1–7. doi: 10.1186/2049-1891-4-53. PubMed DOI PMC

Becker E.W. Micro-algae as a source of protein. Biotech. Adv. 2007;25:207–210. doi: 10.1016/j.biotechadv.2006.11.002. PubMed DOI

Spolaore P., Joannis-Cassan C., Duran E., Isambert A. Commercial applications of microalgae-review. J. Biosci. Bioeng. 2006;101:87–96. doi: 10.1263/jbb.101.87. PubMed DOI

Plaza M., Herrero M., Cifuentes A., Ibáñez E. Innovative natural functional ingredients from microalgae. J. Agric. Food Chem. 2009;57:7159–7170. doi: 10.1021/jf901070g. PubMed DOI

Holman B.W.B., Malau-Aduli A.E.O. Spirulina as a livestock supplement and animal feed. J. Anim. Physiol. Anim. Nutr. 2013;97:615–623. doi: 10.1111/j.1439-0396.2012.01328.x. PubMed DOI

Han P., Li J., Zhong H., Xie J., Zhang P., Lu Q., Li J., Xu P., Chen P., Leng L., et al. Anti-oxidation properties and therapeutic potentials of spirulina. Algal Res. 2021;55:102240. doi: 10.1016/j.algal.2021.102240. DOI

Higuera-Ciapara I., Félix-Valenzuela L., Goycoolea F.M. Astaxanthin: A review of its chemistry and applications. Crit. Rev. Food Sci. Nutr. 2006;46:185–196. doi: 10.1080/10408690590957188. PubMed DOI

Sui Y., Muys M., Van de Waal D.B., D’Adamo S., Vermeir P., Fernandes T.V., Vlaeminck S.E. Enhancement of co-production of nutritional protein and carotenoids in Dunaliella salina using a two-phase cultivation assisted by nitrogen level and light intensity. Bioresour. Technol. 2019;287 doi: 10.1016/j.biortech.2019.121398. PubMed DOI

Gagliostro G.A., Antonacci L.E., Pérez C.D., Rossetti L., Carabajal A. Improving the quality of milk fatty acid in dairy cows supplemented with soybean oil and DHA-micro algae in a confined production system. Agric. Sci. 2018;9:1115–1130. doi: 10.4236/as.2018.99078. DOI

Lock A.L., Bauman D.E. Modifying milk fat composition of dairy cows to enhance fatty acids beneficial to human health. Lipids. 2004;39:1197–1206. doi: 10.1007/s11745-004-1348-6. PubMed DOI

Glover K.E., Budge S., Rose M., Rupasinghe H.P.V., MacLaren L., Green-Johnson J., Fredeen A.H. Effect of feeding fresh forage and marine algae on the fatty acid composition and oxidation of milk and butter. J. Dairy Sci. 2012;95:2797–2809. doi: 10.3168/jds.2011-4736. PubMed DOI

Kouřimská L., Vondráčková E., Fantová M., Nový P., Nohejlová L., Michnová K. Effect of feeding with algae on fatty acid profile of goat’s milk. Sci. Agric. Bohem. 2014;45:162–169. doi: 10.2478/sab-2014-0103. DOI

Chilliard Y., Glasser F., Ferlay A., Bernard L., Rouel J., Doreau M. Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur. J. Lipid Sci. Technol. 2007;109:828–855. doi: 10.1002/ejlt.200700080. DOI

Jenkins T.J., Bridges W.C. Protection of fatty acids against ruminal biohydrogenation in cattle. Eur. J. Lipid Sci. 2007;109:778–779. doi: 10.1002/ejlt.200700022. DOI

Kitessa S.M., Gulati S.K., Ashes J.R., Fleck E., Scott T.W., Nichols P.D. Utilisation of fish oil in ruminants. II. Transfer of fish oil fatty acids into goat’s milk. Anim. Feed Sci. Technol. 2001;89:201–208. doi: 10.1016/S0377-8401(00)00232-7. DOI

Marques J.A., Del Valle T.A., Ghizzi L.G., Zilio E.M.C., Gheller L.S., Nunes A.T., Silva T.B.P., Dias M.S.D.S., Grigoletto N.T.S., Koontz A.F., et al. Increasing dietary levels of docosahexaenoic acid-rich microalgae: Ruminal fermentation, animal performance, and milk fatty acid profile of mid-lactating dairy cows. J. Dairy Sci. 2019;102:5054–5065. doi: 10.3168/jds.2018-16017. PubMed DOI

Liu G., Yu X., Li S., Shao W., Zhang N. Effects of dietary microalgae (Schizochytrium spp.) supplement on milk performance, blood parameters, and milk fatty acid composition in dairy cows. Czech J. Anim. Sci. 2020;65:162–171. doi: 10.17221/19/2020-CJAS. DOI

Moate P.J., Williams S.R.O., Hannah M.C., Eckard R.J., Auldist M.J., Ribaux B.E., Jacobs J.L., Wales W.J. Effects of feeding algal meal high in docosahexaenoic acid on feed intake, milk production, and methane emissions in dairy cows. J. Dairy Sci. 2013;96:3177–3188. doi: 10.3168/jds.2012-6168. PubMed DOI

Reynolds C.K., Cannon V.L., Loerch S.C. Effects of forage source and supplementation with soybean and marine algal oil on milk fatty acid composition of ewes. Anim. Feed Sci. Technol. 2006;131:333–357. doi: 10.1016/j.anifeedsci.2006.06.015. DOI

Toral P.G., Hervás G., Gómez-Cortés P., Frutos P., Juárez M., de la Fuente M.A. Milk fatty acid profile and dairy sheep performance in response to diet supplementation with sunflower oil plus incremental levels of marine algae. J. Dairy Sci. 2010;93:1655–1667. doi: 10.3168/jds.2009-2769. PubMed DOI

Bichi E., Hervás G., Toral P.G., Loor J.J., Frutos P. Milk fat depression induced by dietary marine algae in dairy ewes: Persistency of milk fatty acid composition and animal performance responses. J. Dairy Sci. 2013;96:524–532. doi: 10.3168/jds.2012-5875. PubMed DOI

Noike T., Ko I.B., Yokoyama S., Kohno Y., Li Y.Y. Continuous hydrogen production from organic waste. Water Sci. Technol. 2005;52:145–151. doi: 10.2166/wst.2005.0510. PubMed DOI

Li S., Zhu D., Li K., Yang Y., Lei Z., Zhang Z. Soybean curd residue: Utilization, and related limiting factors. IRSN Ind. Eng. 2013;64:968–973. doi: 10.1155/2013/423590. DOI

Redondo-Cuenca A., Villanueva-Suarez M.J., Mateos-Aparicio I. Soybean seeds and its by-product okara as sources of dietary fibre. Measurement by AOAC and Englyst methods. Food Chem. 2008;108:1099–1105. doi: 10.1016/j.foodchem.2007.11.061. PubMed DOI

Rinaldi V.E.A., Ng P.K.W., Bennink M.R. Effects of extrusion on dietary fiber and isoflavone contents of wheat extrudets enriched with wet okara. Cereal Chem. 2000;77:237–240. doi: 10.1094/CCHEM.2000.77.2.237. DOI

Motawe H.F.A.P., El Shinnawy A.M., El Afifi T.M., Hashem N.A., Abu Zaid A.A.M. Utilization of okara meal as a source of plant protein in broiler diets. J. Anim. Poult. Prod. Mansoura Univ. 2012;3:127–136. doi: 10.21608/jappmu.2012.82782. DOI

Almaraz J.J., Zhou X.M., Mabood F., Mandramootoo C., Rochette P., Mao B.-L., Smith D.L. Greenhouse gas fluxes associated with soybean production under two tillage systems in Southwestern Quebec. Soil Till. Res. 2009;104:134–139. doi: 10.1016/j.still.2009.02.003. DOI

Cuadros F., López-Rodríguez F., Ruiz-Celma A., Rubiales F., González-González A. Recycling, reuse and energetic valuation of meat industry wastes in Extremadura (Spain) Resour. Conserv. Recy. 2011;55:393–399. doi: 10.1016/j.resconrec.2010.08.005. DOI

Song C., Kitamura Y., Li S., Ogasawara K. Design of a cryogenic CO2 capture system based on Stirling coolers. Int. J. Greenh. Gas Contr. 2012;7:107–114. doi: 10.1016/j.ijggc.2012.01.004. DOI

Cheng Y., Shimizu N., Kimura T. The viscoelastic properties of soybean curd (tofu) as affected by soymilk concentration and type of coagulant. Inter. J. Food Sci. Technol. 2005;40:385–390. doi: 10.1111/j.1365-2621.2004.00935.x. DOI

Zang Y., Santana R.A.V., Moura D.C., Galväo J.G.B., Jr., Brito A.F. Replacing soybean meal with okara meal: Effects on production, milk fatty acid and plasma amino acid profile, and nutrient utilization in dairy cows. J. Dairy Sci. 2020;104 doi: 10.3168/jds.2020-19182. PubMed DOI

Quitain A.T., Oro K., Katoh S., Moriyoshi T. Recovery of oil components of okara by ethanol-modified supercritical carbon dioxide extraction. Bioresour. Technol. 2006;97:1509–1514. doi: 10.1016/j.biortech.2005.06.010. PubMed DOI

Vahvaselkä M., Laakso S. Production of cis-9, trans11-conjugated linoleic acid in camelina meal and okara by an oat-assisted microbial process. J. Agric. Food Chem. 2010;58:2479–2482. doi: 10.1021/jf903383x. PubMed DOI

Brossillon V., Reis S.F., Moura D.C., Galvão J.G.B., Jr., Oliveira A.S., Côrtes C., Brito A.F. Production, milk and plasma fatty acid profile, and nutrient utilization in Jersey cows fed flaxseed oil and corn grain with different particle size. J. Dairy Sci. 2018;101:2127–2143. doi: 10.3168/jds.2017-13478. PubMed DOI

Kim K.H., Kim S.J., Jeon B.T., Kim D.H., Oh M.R., Park P.J., Kweon H.J., Oh B.Y., Hur S.J., Moon S.H. Effects of dietary soybean curd residue on the growth performance and carcass characteristics in Hanwoo (Bos taurus coreanae) steer. Afr. J. Agric. Res. 2012;7:4331–4336. doi: 10.5897/AJAR12.1127. DOI

Rahman M.M., Nakagawa T., Abdullah R.B., Embong W.K.W., Akashi R. Feed intake and growth performance of goats supplemented with soy waste. Pesqui. Agropecu. Bras. 2014;49:554–558. doi: 10.1590/S0100-204X2014000700008. DOI

Rahman M.M., Rahman M.R., Nakagawa T., Abdullah R.B., Khadijah W.E.W., Akashi R. Effects of wet soya waste supplementation on the intake, growth and reproduction of goats fed Napier grass. Anim. Feed Sci. Technol. 2015;199:104–112. doi: 10.1016/j.anifeedsci.2014.11.007. DOI

Harthan L.B., Cherney D.J.R. Okara as a protein supplement affects feed intake and milk composition of ewes and growth performance of lambs. Anim. Nutr. 2017;3:171–174. doi: 10.1016/j.aninu.2017.04.001. PubMed DOI PMC

Eliyahu D., Yosef E., Weinberg Z.G., Hen Y., Nikbachat M., Solomon R., Mabjeesh S.J., Miron J. Composition, preservation and digestibility by sheep of wet by-products from the food industry. Anim. Feed Sci. Technol. 2015;207:1–9. doi: 10.1016/j.anifeedsci.2015.05.005. DOI

Woods V.B., Fearon A.N. Dietary sources of unsaturated fatty acids for animals and their transfer into meat, milk and eggs: A review. Livest. Sci. 2009;126:1–20. doi: 10.1016/j.livsci.2009.07.002. DOI

Hurtaud C., Peyraud J.L. Effects of feeding camelina (seeds or meal) on milk fatty acids composition and butter spreadability. J. Dairy Sci. 2007;90:5134–5145. doi: 10.3168/jds.2007-0031. PubMed DOI

Bernard L., Bonnet M., Delavaud C., Delosiere M., Ferlay A., Fougere H., Graulet B. Milk fat globule in ruminant: Major and minor compounds, nutritional regulation and differences among species. Eur. J. Lipid Sci. Technol. 2018;120:1700039. doi: 10.1002/ejlt.201700039. DOI

Rodríguez-Rodríguez M.F., Sánchez-García A., Salas J.J., Garcés R., Martínez-Force E. Characterization of the morphological changes and fatty acid profile of developing Camelina sativa seeds. Ind. Crop. Prod. 2013;20:673–679. doi: 10.1016/j.indcrop.2013.07.042. DOI

Moser B. Camelina (Camelina sativa L.) oil as a biofuels feedstock: Golden opportunity or false hope? Lipid Technol. 2010;22:270–273. doi: 10.1002/lite.201000068. DOI

Fröhlich A., Rice B. Evaluation of Camelina sativa oil as a feedstock for biodiesel production. Ind. Crop. Prod. 2005;21:25–31. doi: 10.1016/j.indcrop.2003.12.004. DOI

Zubr J. Qualitative variation of Camelina sativa seed from different locations. Ind. Crop. Prod. 2003;17:161–169. doi: 10.1016/S0926-6690(02)00091-2. DOI

Vollmann J., Moritz T., Kargl C., Baumgartner S., Wagentristl H. Agronomic evaluation of Camelina genotypes selected for seed quality characteristics. Ind. Crop. Prod. 2007;26:270–277. doi: 10.1016/j.indcrop.2007.03.017. DOI

Bansal S., Durrett T.P. Camelina sativa: An ideal platform for the metabolic engineering and field production of industrial lipids. Biochimie. 2016;120:9–16. doi: 10.1016/j.biochi.2015.06.009. PubMed DOI

Sarramonne J.P., Gervais R., Benchaar C., Chouinard P.Y. Lactation performance and milk fatty acid composition of lactating dairy cows fed Camelina sativa seeds or expeller. Anim. Feed Sci. Technol. 2020;270:114697. doi: 10.1016/j.anifeedsci.2020.114697. DOI

Russo R., Reggiani R. Glucosinolates and sinapine in camelina meal. Food Nutr. Sci. 2017;8:1063–1073. doi: 10.4236/fns.2017.812078. DOI

Halmemies-Beauchet-Filleau A., Kokkonen T., Lampi A.M., Toivonen V., Shingfield K.J., Vanhatalo A. Effect of plant oils and camelina expeller on milk fatty acid composition in lactating cows fed diets based on red clover silage. J. Dairy Sci. 2011;94:4413–4430. doi: 10.3168/jds.2010-3885. PubMed DOI

Mihhejev K., Henno M., Ots M., Rihma E., Elias P., Kuusik S., Kärt O. Effects of fat-rich oil cakes on cheese fatty acid composition, and on cheese quality. Vet. Zootec. 2007;40:55–61.

Pikul J., Wojtowski J., Dankow R., Teichert J., Czyzak-Runowska G., Cais-Sokolinska D., Cieslak A., Szumacher-Strabel M., Bagnicka E. The effect of false flax (Camelina sativa) cake dietary supplementation in dairy goats on fatty acid profile of kefir. Small Rumin. Res. 2014;122:44–49. doi: 10.1016/j.smallrumres.2014.07.015. DOI

Szumacher-Strabel M., Cieślak A., Zmora P., Pers-Kamczyc E., Bielinska S., Stanisz M., Wojtowski J. Camelina sativa cake improved unsaturated fatty acids in ewe’s milk. J. Sci. Food Agric. 2011;91:2031–2037. doi: 10.1002/jsfa.4415. PubMed DOI

Halmemies-Beauchet-Filleau A., Shingfield K.J., Simpura I., Kokkonen T., Jaakkola S., Toivonen V., Vanhatalo A. Effect of incremental amounts of camelina oil on milk fatty acid composition in lactating cows fed diets based on a mixture of grass and red clover silage and concentrates containing camelina expeller. J. Dairy Sci. 2017;100:305–324. doi: 10.3168/jds.2016-11438. PubMed DOI

Willcox J.K., Ash S.L., Catignani G.L. Antioxidants and prevention of chronic disease. Crit. Rev. Food Sci. Nutr. 2004;44:275–295. doi: 10.1080/10408690490468489. PubMed DOI

Alenisan M.A., Alqattan H.H., Tolbah L.S., Shori A.B. Antioxidant properties of dairy products fortified with natural additives: A review. J. Assn. Arab. Univ. Basic Appl. Sci. 2017;24:101–106. doi: 10.1016/j.jaubas.2017.05.001. DOI

Vuazour D., Rodriguez-Mateous A., Corona G., Oruna-Concha M.J., Spencer J.P.E. Polyphenols and human health: Prevention of disease and mechanisms of action. Nutrients. 2010;2:1106–1131. doi: 10.3390/nu2111106. PubMed DOI PMC

Chedea V.S., Pelmus R.S., Cismileanu A.E., Pistol G.C., Palade L.M., Taranu I. Total polyphenols content, antioxidant activity and stability of a grape pomace incorporated in animal feed. Anim. Sci. Biotech. 2016;49:1–5.

Khiaosa-ard R., Metzler-Zebeli B.U., Ahmed S., Muro-Reyes A., Deckardt K., Chizzola R., Böhm J., Zebeli Q. Fortification of dried distillers grains plus solubles with grape seed meal in the diet modulates methane mitigation and rumen microbiota in Rusitec. J. Dairy Sci. 2015;98:2611–2626. doi: 10.3168/jds.2014-8751. PubMed DOI

Ragni M., Vicenti A., Melodia L., Marsico G. Use of grape seed flour in feed for lambs and effects on performance and meat quality. APCBEE Procedia. 2014;8:59–64. doi: 10.1016/j.apcbee.2014.03.001. DOI

Nudda A., Correddu F., Marzano A., Battacone G., Nicolussi P., Bonelli P., Pulina G. Effects of diets containing grape seed, linseed, or both on milk production traits, liver and kidney activities, and immunity of lactating dairy ewes. J. Dairy Sci. 2015;98:1157–1166. doi: 10.3168/jds.2014-8659. PubMed DOI

Correddu F., Gaspa G., Pulina G., Nudda A. Grape seed and linseed, alone and in combination, enhance unsaturated fatty acids in the milk of Sarda dairy sheep. J. Dairy Sci. 2016;9:1725–1735. doi: 10.3168/jds.2015-10108. PubMed DOI

Correddu F., Nudda A., Manca M.G., Pulina G., Dalsgaard T.K. Light-induced lipid oxidation in sheep milk: Effects of dietary grape seed and linseed, alone or in combination, on milk oxidative stability. J. Agric. Food Chem. 2015;63:3980–3986. doi: 10.1021/acs.jafc.5b01614. PubMed DOI

Palmquist D.R., Jenkins T.C. A 100-year review: Fat feeding of dairy cows. J. Dairy Sci. 2017;100:10061–10077. doi: 10.3168/jds.2017-12924. PubMed DOI

Majewska P., Kowalik B. Growth performance, carcass characteristics, fatty acid composition, and blood biochemical parameters of lamb fed diet with the addition of lingonberry leaves and oak bark. Eur. J. Lipid Sci. Technol. 2020;122:1900273. doi: 10.1002/ejlt.201900273. DOI

Vasta V., Daghio M., Cappucci A., Buccioni A., Serra A., Vitti C., Mele M. Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. J. Dairy Sci. 2019;102:3781–3804. doi: 10.3168/jds.2018-14985. PubMed DOI

Morales R., Ungerfeld E.M. Use of tannins to improve fatty acids profile of meat and milk quality in ruminants: A review. Chil. J. Agric. Res. 2015;75:239–248. doi: 10.4067/S0718-58392015000200014. DOI

Frutos P., Hervás G., Giráldez F.J., Mantecón A.R. Tannins and ruminant nutrition. Span. J. Agric. Res. 2004;2:191–202. doi: 10.5424/sjar/2004022-73. DOI

Vasta V., Mele M., Serra A., Scerra M., Luciano G., Lanza M., Priolo A. Metabolic fate of fatty acids involved in ruminal biohydrogenation in sheep fed concentrate or herbage with or without tannins. J. Anim. Sci. 2009;87:2674–2684. doi: 10.2527/jas.2008-1761. PubMed DOI

Focant M., Froidmont E., Archambeau Q., Dang Van Q.C., Larondelle Y. The effect of oak tannin (Quercus robur) and hops (Humulus lupulus) on dietary nitrogen efficiency, methane emission, and milk fatty acid composition of dairy cows fed a low-protein diet including linseed. J. Dairy Sci. 2019;102:1–16. doi: 10.3168/jds.2018-15479. PubMed DOI

Bhatta R., Uyeno Y., Tajima K., Takenaka A., Yabumoto Y., Nonaka I., Enishi O., Kurihara M. Difference in the nature of tannins on in vitroC ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. J. Dairy Sci. 2009;92:5512–5522. doi: 10.3168/jds.2008-1441. PubMed DOI

Patra A.K., Saxena J. Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Sci. Food Agric. 2011;91:24–37. doi: 10.1002/jsfa.4152. PubMed DOI

Jayanegara A., Leiber F., Kreuzer M. Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. J. Anim. Physiol. Anim. Nutr. 2012;96:365–375. doi: 10.1111/j.1439-0396.2011.01172.x. PubMed DOI

Benchaar C., Greathead H. Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Anim. Feed Sci. Technol. 2011;166:338–355. doi: 10.1016/j.anifeedsci.2011.04.024. DOI

Bosabalidis A.M. Structural features of Origanum sp. In: Kintzios S.E., editor. Medicinal and Aromatic Plants—Industrial Profiles, Oregano. The Genera Origanum and Lippia. Taylor & Francis; London, UK: New York, NY, USA: 2002. pp. 11–64.

Horky P., Skalickova S., Smerkova K., Skladanka J. Essential oils as a feed additives: Pharmacokinetics and potential toxicity in monogastric animals. Animals. 2019;9:352. doi: 10.3390/ani9060352. PubMed DOI PMC

Veres K., Varga E., Dobos Á., Hajdú Z., Máthé I., Németh É., Szabó K. Investigation of the composition and stability of the essential oils of Origanum vulgare ssp. vulgare L. and O. vulgare ssp. hirtum (Link) Ietswaart. Chromatographia. 2011;57:95–98. doi: 10.1007/BF02497483. DOI

Lukas B., Schmiderer C., Novak J. Essential oil diversity of European Origanum vulgare L. (Lamiaceae) Phytochemistry. 2015;119:32–40. doi: 10.1016/j.phytochem.2015.09.008. PubMed DOI

Olijhoek D.W., Hellwing A.L.F., Grevsen K., Haveman L.S., Chowdhury M.R., Løvendahl P., Weisbjerg M.R., Noel S.L., Højberg O., Wiking L., et al. Effect of dried oregano (Origanum vulgare L.) plant material in feed on methane production, rumen fermentation, nutrient digestibility, and milk fatty acid composition in dairy cows. J. Dairy Sci. 2019;102:9902–9918. doi: 10.3168/jds.2019-16329. PubMed DOI

Tekippe J.A., Hristov A.N., Heyler K.S., Cassidy T.W., Zheljazkov V.D., Ferreira J.F.S., Karnati S.K., Varga G.A. Rumen fermentation and production effects of Origanum vulgare L. leaves in lactating dairy cows. J. Dairy Sci. 2011;94:5065–5079. doi: 10.3168/jds.2010-4095. PubMed DOI

Lejonklev J., Kidmose U., Jensen S., Petersen M.A., Hellwing A.L.F., Mortensen G., Weisbjerg M.R., Larsen M.K. Effect of oregano and caraway essential oils on the production and flavor of cow milk. J. Dairy Sci. 2016;99:7898–7903. doi: 10.3168/jds.2016-10910. PubMed DOI

Hristov A.N., Lee C., Cassidy T.T., Heyler K., Tekippe J.A., Varga G.A., Corl B., Brandt R.C. Effect of Origanum vulgare L. leaves on rumen fermentation, production, and milk fatty acid composition in lactating dairy cows. J. Dairy Sci. 2013;96:1189–1202. doi: 10.3168/jds.2012-5975. PubMed DOI

Kolling G.J., Stivanin S.C.B., Gabbi A.M., Machado F.S., Ferreira A.L., Campos M.M., Tomich T.R., Cunha C.S., Dill S.W., Pereira L.G.R., et al. Performance and methane emissions in dairy cows fed oregano and green tea extracts as feed additives. J. Dairy Sci. 2018;101:4221–4234. doi: 10.3168/jds.2017-13841. PubMed DOI

Calsamiglia S., Busquet M., Cardozo P.W., Castillejos L., Ferret A. Invited review: Essential oils as modifiers of rumen microbial fermentation. J. Dairy Sci. 2007;90:2580–2595. doi: 10.3168/jds.2006-644. PubMed DOI

Lavrenčič A., Levart A., Košir I.J., Čerenak A. Influence of two hop (Humulus lupulus L.) varieties on in vitro dry matter and crude protein degradability and digestibility in ruminants. J. Sci. Food Agric. 2014;94:1248–1252. doi: 10.1002/jsfa.6407. PubMed DOI

Narvaez N., Wang Y., Xu Z., Alexander T., Garden S., McAllister T. Effects of hop varieties on ruminal fermentation and bacterial community in an artificial rumen (rusitec) J. Sci. Food Agric. 2013;93:45–52. doi: 10.1002/jsfa.5725. PubMed DOI

Dang Van Q.C., Bejarano L., Mignolet E., Coulmier D., Froidmont E., Larondelle Y., Focant M. Effectiveness of extruded rapeseed associated with an alfalfa protein concentrate in enhancing the bovine milk fatty acid composition. J. Dairy Sci. 2011;94:4005–4015. doi: 10.3168/jds.2011-4204. PubMed DOI

Nefzaoui A., Ben Salem H. Forage, fodder, and animal nutrition. In: Nobel P.S., editor. Cacti: Biology and Uses. University of California Press Ltd.; Oakland, CA, USA: 2002. pp. 199–210.

Sá W.C.C.S., Santos E.M., Oliveira J.S., Perazzo A.F. Production of spineless cactus in brazilian semiarid. In: Edvan R.L., Bezerra L.R., editors. New Perspectives in Forage Crops. IntechOpen; London, UK: 2018. pp. 25–50. DOI

Ferreira M.A., Bispo S.V., Filho R.R.R., Urbano S.A., Costa C.T.F. The use of cactus as forage for dairy cows in semi-arid regions of Brazil. In: Konvalina P., editor. Organic Farming and Food Production. IntechOpen; London, UK: 2012. pp. 169–189. DOI

Gama M.A.S., de Paula T.A., Véras A.S.C., Guido S.I., Borges C.A.V., Antoniassi R., Lopes F.C.F., Neves M.L.M.W., Ferreira M.D.A. Partially replacing sorghum silage with cactus (Opuntia stricta) cladodes in a soybean oil-supplemented diet markedly increases trans-11 18:1, cis-9, trans-11 CLA and 18:2 n-6 contents in cow milk. J. Anim. Physiol. Anim. Nutr. 2021;105:232–246. doi: 10.1111/jpn.13466. PubMed DOI

Freitas W.R., Gama M.A.S., Silva J.L., Véras A.S.C., Chagas J.C.C., Conceição M.G., Almeida G.A.P., Calsavara A.F., Alves A.M.S.V., Ferreira M.A.F. Milk fatty acid profile of dairy cows fed diets based on sugarcane bagasse in the Brazilian region. Chil. J. Agric. Res. 2019;79:464–472. doi: 10.4067/S0718-58392019000300464. DOI

Souza S.M., Lopes F.C.F., Valadares Filho S.C., Gama M.A.S., Rennó L.N., Rodrigues J.P.P. Milk fatty acid composition of Holstein x Gyr dairy cows fed sugarcane-based diets containing citrus pulp supplemented with sunflower oil. Semina: Ciências Agrárias. 2019;40:1663–1680. doi: 10.5433/1679-0359.2019v40n4p1663. DOI

Qiu X., Eastridge M.L., Firkins J.L. Effects of dry matter intake, addition of buffer, and source of fat on duodenal flow and concentration of conjugated linoleic acid and trans-11 C18:1 in milk. J. Dairy Sci. 2004;87:4278–4286. doi: 10.3168/jds.S0022-0302(04)73572-9. PubMed DOI

Astello-García M.G., Cervantes I., Nair V., Santos-Díaz M., ReyesAgüero A., Guéraud F., Negre-Salvayre A., Rossignol M., Cisneros Zevallos L., Barba de La Rosa A.P. Chemical composition and phenolic compounds profile of cladodes from Opuntia spp. cultivars with different domestication gradient. J. Food Compos. Anal. 2015;43:119–130. doi: 10.1016/j.jfca.2015.04.016. DOI

Bakari S., Daoud A., Felhi S., Smaoui S., Gharsallah N., Kadri A. Proximate analysis, mineral composition, phytochemical contents, antioxidant and antimicrobial activities and GC-MS investigation of various solvent extracts of cactus cladode. Food Sci. Technol. 2017;37:286–293. doi: 10.1590/1678-457x.20116. DOI

Alves F.A.L., Andrade A.P., Bruno R.L.A., Silva M.G.V., Souza M.F.V., Santos D.C. Seasonal variability of phenolic compounds and antioxidant activity in prickly pear cladodes of Opuntia and Nopalea genres. Food Sci. Technol. 2018;37:536–543. doi: 10.1590/1678-457x.19316. DOI

Izuegbuna O., Otunola G., Bradley G. Chemical composition, antioxidant, antiinflammatory, and cytotoxic activities of opuntia stricta cladodes. PLoS ONE. 2019;14:e0209682. doi: 10.1371/journal.pone.0209682. PubMed DOI PMC

Bryszak M., Szumacher-Strabel M., Huang H., Pawlak P., Lechniak D., Kołodziejski P., Yanza Y.R., Patra A.K., Váradyová Z., Cieslak A. Lupinus angustifolius seed meal supplemented to dairy cow diet improves fatty acid composition in milk and mitigates methane production. Anim. Feed Sci. Technol. 2020;267:114590. doi: 10.1016/j.anifeedsci.2020.114590. DOI

Monteiro M.R.P., Costa A.B.P., Campos S.F., Silva M.R., Silva C.O., Martino H.S.D., Silvestre M.P.C. Evaluation of the chemical composition, protein quality and digestibility of lupin (Lupinus albus and Lupinus angustifolius) O Mundo Saúde. 2014;38:251. doi: 10.15343/0104-7809.20143803251259. DOI

Bähr M., Fechner A., Hasenkopf K., Mittermaier S., Jahreis G. Chemical composition of dehulled seeds of selected lupine cultivars in comparison to pea and soya bean. LWT Food Sci. Technol. Res. 2014;59:587. doi: 10.1016/j.lwt.2014.05.026. DOI

Księżak J., Staniak M., Bojarszczuk J. Nutrient contents in yellow lupine (Lupinus luteus L.) and blue lupine (Lupinus angustifolius L.) cultivars depending on habitat conditions. J. Environ. Stud. 2018;27:1145–1153. doi: 10.15244/pjoes/76677. DOI

Masucci F., Di Francia A., Romano R., di Serracapriola M.M., Lambiase G., Varricchio M.L., Proto V. Effect of Lupinus albus as protein supplement on yield, constituents, clotting properties and fatty acid composition in ewes’ milk. Small Rumin. Res. 2006;65:251–259. doi: 10.1016/j.smallrumres.2005.06.023. DOI

Staerfl S.M., Amelchanka S.L., Kälber T., Soliva C.R., Kreuzer M., Zeitz J.O. Effect of feeding dried high-sugar ryegrass (‘AberMagic’) on methane and urinary nitrogen emissions of primiparous cows. Livest. Sci. 2012;150:293–301. doi: 10.1016/j.livsci.2012.09.019. DOI

Innosa D., Ianni A., Faccia M., Martino C., Grotta L., Saletti M.A., Pomilio F., Martino G. Physical, nutritional, and sensory properties of cheese obtained from goats fed a dietary supplementation with olive leaves. Animals. 2020;10:2238. doi: 10.3390/ani10122238. PubMed DOI PMC

Özcan M.M., Matthäus B. A review: Benefit and bioactive properties of olive (Olea europaea L.) leaves. Eur. Food Res. Technol. 2017;243:89–99. doi: 10.1007/s00217-016-2726-9. DOI

Taamalli A., Arráez-Román D., Barrajón-Catalán E., Ruiz-Torres V., Pérez-Sánchez A., Herrero M., Ibañez E., Micol V., Zarrouk M., Segura-Carretero A., et al. Use of advanced techniques for the extraction of phenolic compounds from Tunisian olive leaves: Phenolic composition and cytotoxicity against human breast cancer cells. Food Chem. Toxicol. 2012;50:1817–1825. doi: 10.1016/j.fct.2012.02.090. PubMed DOI

Lama-Muñoz A., del Mar Contreras M., Espínola F., Moya M., Romero I., Castro E. Content of phenolic compounds and mannitol in olive leaves extracts from six Spanish cultivars: Extraction with the Soxhlet method and pressurized liquids. Food Chem. 2020;320:1–9. doi: 10.1016/j.foodchem.2020.126626. PubMed DOI

Aboamer A.A., Hend A.A., Azzaz H.H., Alzahar H., Murad H.A. Impact of urea-treated olive trees by-products on Barki Ewe’s nutrients digestibility and milk productivity. Egypt. J. Nutr. Feeds. 2018;21:613–623. doi: 10.21608/EJNF.2018.64467. DOI

Talhaoui N., Vezza T., Gómez-Caravaca A.M., Fernández-Gutiérrez A., Gálvez J., Segura-Carretero A. Phenolic compounds and in vitro immunomodulatory properties of three Andalusian olive leaf extracts. J. Funct. Foods. 2016;22:270–277. doi: 10.1016/j.jff.2016.01.037. DOI

Şahin S., Bilgin M. A review: Olive tree (Olea europaea L.) leaf as a waste by-product of table olive and olive oil industry. J. Sci. Food Agric. 2017;98:1271–1279. doi: 10.1002/jsfa.8619. PubMed DOI

Rahmanian N., Jafari S.M., Wani T.A. Bioactive profile, dehydration, extraction and application of the bioactive components of olive leaves. Trends Food Sci. Technol. 2015;42:150–172. doi: 10.1016/j.tifs.2014.12.009. DOI

Souilem S., Fki I., Kobayashi I., Khalid N., Neves M.A., Isoda H., Sayadi S., Nakajima M. Emerging technologies for recovery of value-added components from olive leaves and their applications in food/feed industries. Food Bioprocess. Technol. 2017;10:229–248. doi: 10.1007/s11947-016-1834-7. DOI

Birkinshaw A., Schwarm A., Marquardt S., Kreuzer M., Terranova M. Rapid responses in bovine milk fatty acid composition and phenol content to various tanniferous forages. J. Anim. Feed Sci. 2020;29:297–305. doi: 10.22358/jafs/131171/2020. DOI

Johnson K.A., Johnson D.E. Methane emissions from cattle. J. Anim. Sci. 1995;73:2483–2492. doi: 10.2527/1995.7382483x. PubMed DOI

Vahmani P., Fredeen A.H., Glover K.E. Effect of supplementation with fish oil or microalgae on fatty acid composition of milk from cows managed in confinement or pasture systems. J. Dairy Sci. 2013;96:6660–6670. doi: 10.3168/jds.2013-6914. PubMed DOI

Moran C.A., Morlacchini M., Keegan J.D., Fusconi G. The effect of dietary supplementation with Aurantiochytrium limacinum on lactating dairy cows in terms of animal health, productivity and milk composition. J. Anim. Physiol. Anim. Nutr. 2018;102:576–590. doi: 10.1111/jpn.12827. PubMed DOI

Boeckaert C., Vlaeminck B., Dijkstra J., Issa-Zacharia A., Van Nespen T., Van Straalen W., Fievez V. Effect of dietary starch or micro algae supplementation on rumen fermentation and milk fatty acid composition of dairy cows. J. Dairy Sci. 2008;91:4714–4727. doi: 10.3168/jds.2008-1178. PubMed DOI

Antaya N.T., Soder K.J., Kraft J., Whitehouse N.L., Guindon N.E., Erickson P.S., Conroy A.B., Brito A.F. Incremental amounts of Ascophyllum nodosum meal do not improve animal performance but do increase milk iodine output in early lactation dairy cows fed high-forage diets. J. Dairy Sci. 2015;98:1991–2004. doi: 10.3168/jds.2014-8851. PubMed DOI

Pajor F., Egerszegi I., Szűcs Á., Póti P., Bodnár Á. Effect of marine algae supplementation on somatic cell count, prevalence of udder pathogens, and fatty acid profile of dairy goats’ milk. Animals. 2021;11:1097. doi: 10.3390/ani11041097. PubMed DOI PMC

Mavrommatis A., Sotirakoglou K., Skliros D., Flemetakis E., Tsiplakou E. Dose and time response of dietary supplementation with Schizochytrium sp. on the abundances of several microorganisms in the rumen liquid of dairy goats. Livest. Sci. 2021;247:104489. doi: 10.1016/j.livsci.2021.104489. DOI

Soyeurt H., Dehareng F., Mayeres P., Bertozzi C., Gengler N. Variation of delta (9)-desaturase activity in dairy cattle. J. Dairy Sci. 2008;91:3211–3224. doi: 10.3168/jds.2007-0518. PubMed DOI

Lock A.L., Garnsworthy P.C. Seasonal variation in milk conjugated linoleic acid and Delta(9)-desaturase activity in dairy cows. Livest. Prod. Sci. 2003;79:47–59. doi: 10.1016/S0301-6226(02)00118-5. DOI

Moran C., Morlacchini M., Fusconi G. Enhancing the DHA content in milk from dairy cows by feeding ALL-G-RICH™. J. Appl. Anim. Nutr. 2017;5:1–9. doi: 10.1017/jan.2017.9. DOI

Fougère H., Delavaud C., Bernard L. Diets supplemented with starch and corn oil, marine algae, or hydrogenated palm oil differentially modulate milk fat secretion and composition in cows and goats: A comparative study. J. Dairy Sci. 2018;101:8429–8445. doi: 10.3168/jds.2018-14483. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...