Role of Fatty Acids in Milk Fat and the Influence of Selected Factors on Their Variability-A Review
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
29973572
PubMed Central
PMC6100482
DOI
10.3390/molecules23071636
PII: molecules23071636
Knihovny.cz E-zdroje
- Klíčová slova
- breed, dairy cow, energy status, feeding, genetic polymorphism, lactation, milk fatty acid profile, nutrition, organic system, season,
- MeSH
- fyziologie výživy zvířat MeSH
- krmivo pro zvířata analýza MeSH
- laktace MeSH
- lidé MeSH
- mastné kyseliny chemie MeSH
- mléko chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- mastné kyseliny MeSH
Fatty acids (FAs) of milk fat are considered to be important nutritional components of the diets of a significant portion of the human population and substantially affect human health. With regard to dairy farming, the FA profile is also seen as an important factor in the technological quality of raw milk. In this sense, making targeted modifications to the FA profile has the potential to significantly contribute to the production of dairy products with higher added value. Thus, FAs also have economic importance. Current developments in analytical methods and their increasing efficiency enable the study of FA profiles not only for scientific purposes but also in terms of practical technological applications. It is important to study the sources of variability of FAs in milk, which include population genetics, type of farming, and targeted animal nutrition. It is equally important to study the health and technological impacts of FAs. This review summarizes current knowledge in the field regarding sources of FA variability, including the impact of factors such as: animal nutrition, seasonal feed changes, type of animal farming (conventional and organic), genetic parameters (influence of breed), animal individuality, lactation, and milk yield. Potential practical applications (to improve food technology and consumer health) of FA profile information are also reviewed.
Zobrazit více v PubMed
Nicolosi R.J., Rogers E.J., Kritchevsky D., Scimeca J.A., Huth P.J. Dietary conjugated linoleic acid reduces plasma lipoproteins and early aortic atherosclerosis in hypercholesterolemic hamsters. Artery. 1997;22:266–277. PubMed
Parodi P.W. Cows’ milk fat components as potential anticarcinogenic agents. J. Nutr. 1997;127:1055–1060. doi: 10.1093/jn/127.6.1055. PubMed DOI
Parodi P.W. Conjugated linoleic acid and other anticarcinogenic agents of bovine milk fat. J. Dairy Sci. 1999;82:1339–1349. doi: 10.3168/jds.S0022-0302(99)75358-0. PubMed DOI
Dhiman T.R., Nam S.H., Ure A.L. Factors affecting conjugated linoleic acid content in milk and meat. Crit. Rev. Food Sci. Nutr. 2005;45:463–482. doi: 10.1080/10408390591034463. PubMed DOI
German J.B., Gibson R.A., Krauss R.M., Nestel P., Lamarche B., van Staveren W.A., Steijns J.M., de Groot L., Lock A.L., Destaillats F. A reappraisal of the impact of dairy foods and milk fat on cardiovascular disease risk. Eur. J. Nutr. 2009;48:191–203. doi: 10.1007/s00394-009-0002-5. PubMed DOI PMC
Parodi P.W. Has the association between saturated fatty acids, serum cholesterol and coronary heart disease been over emphasized? Int. Dairy J. 2009;19:345–361. doi: 10.1016/j.idairyj.2009.01.001. DOI
Chung I.-M., Kim J.-K., Lee K.-J., Son N.-Y., An M.-J., Lee J.-H., An Y.-J., Kim S.-H. Discrimination of organic milk by stable isotope ratio, vitamin E, and fatty acid profiling combined with multivariate analysis: A case study of monthly and seasonal variation in Korea for 2016–2017. Food Chem. 2018;261:112–123. doi: 10.1016/j.foodchem.2018.04.017. PubMed DOI
Palmquist D.L., Beaulieu A.D., Barbano D.M. Feed and animal factors influencing milk-fat composition. J. Dairy Sci. 1993;76:1753–1771. doi: 10.3168/jds.S0022-0302(93)77508-6. PubMed DOI
Jensen R.G. The composition of bovine milk lipids: January 1995 to December 2000. J. Dairy Sci. 2002;85:295–350. doi: 10.3168/jds.S0022-0302(02)74079-4. PubMed DOI
Kelsey J.A., Corl B.A., Collier R.J., Bauman D.E. The effect of breed, parity, and stage of lactation on conjugated linoleic acid (CLA) in milk fat from dairy cows. J. Dairy Sci. 2003;86:2588–2597. doi: 10.3168/jds.S0022-0302(03)73854-5. PubMed DOI
Pešek M., Samková E., Špička J. Fatty acids and composition of their important groups in milk fat of Czech Pied cattle. Czech J. Anim. Sci. 2006;51:181–188. doi: 10.17221/3927-CJAS. DOI
Coppa M., Ferlay A., Chassaing C., Agabriel C., Glasser F., Chilliard Y., Borreani G., Barcarolo R., Baars T., Kusche D., et al. Prediction of bulk milk fatty acid composition based on farming practices collected through on-farm surveys. J. Dairy Sci. 2013;96:4197–4211. doi: 10.3168/jds.2012-6379. PubMed DOI
Foltys V., Kirchnerová K. Impact of lactation stage and milk production on milk fat fatty acids ratio. Slovak J. Anim. Sci. 2017;45:30–35.
Soyeurt H., Dehareng F., Mayeres P., Bertozzi C., Gengler N. Variation of delta (9)-desaturase activity in dairy cattle. J. Dairy Sci. 2008;91:3211–3224. doi: 10.3168/jds.2007-0518. PubMed DOI
Bittante G., Cecchinato A., Schiavon S. Dairy system, parity, and lactation stage affect enteric methane production, yield, and intensity per kilogram of milk and cheese predicted from gas chromatography fatty acids. J. Dairy Sci. 2018;101:1752–1766. doi: 10.3168/jds.2017-13472. PubMed DOI
Kala R., Samková E., Koubová J., Hasoňová L., Kváč M., Pelikánová T., Špička J., Hanuš O. Nutritionally desirable fatty acids including CLA of cow´s milk fat explained by animal and feed factors. Acta Univ. Agric. Silvic. Mendel. Brun. 2018;66:69–76. doi: 10.11118/actaun201866010069. DOI
Samková E., Koubová J., Hasoňová L., Hanuš O., Kala R., Kváč M., Pelikánová T., Špička J. Joint effects of breed, parity, month of lactation, and cow individuality on the milk fatty acids composition. Mljekarstvo. 2018;68:98–107.
Samková E., Špička J., Pešek M., Pelikánová T., Hanuš O. Animal factors affecting fatty acid composition of cow milk fat: A review. S. Afr. J. Anim. Sci. 2012;42:83–100.
Kalač P., Samková E. The effects of feeding various forages on fatty acid composition of bovine milk fat: A review. Czech J. Anim. Sci. 2010;55:521–537. doi: 10.17221/2485-CJAS. DOI
Shingfield K.J., Reynolds C.K., Lupoli B., Toivonen V., Yurawecz M.P., Delmonte P., Griinari J.M., Grandison A.S., Beever D.E. Effect of forage type and proportion of concentrate in the diet on milk fatty acid composition in cows given sunflower oil and fish oil. Anim. Sci. 2005;80:225–238. doi: 10.1079/ASC41820225. DOI
Couvreur S., Hurtaud C., Lopez C., Delaby L., Peyraud J.L. The linear relationship between the proportion of fresh grass in the cow diet, milk fatty acid composition, and butter properties. J. Dairy Sci. 2006;89:1956–1969. doi: 10.3168/jds.S0022-0302(06)72263-9. PubMed DOI
Kudrna V., Marounek M. The influence of feeding rapeseed cake and extruded soyabean on the performance of lactating cows and the fatty acid pattern of milk. J. Anim. Feed Sci. 2006;15:361–369. doi: 10.22358/jafs/66907/2006. DOI
Bobe G., Zimmerman S., Hammond E.G., Freeman A.E., Porter P.A., Luhman C.M., Beitz D.C. Butter composition and texture from cows with different milk fatty acid compositions fed fish oil or roasted soybeans. J. Dairy Sci. 2007;90:2596–2603. doi: 10.3168/jds.2006-875. PubMed DOI
Cabrita A.R.J., Bessa R.J.B., Alves S.P., Dewhurst R.J., Fonseca A.J.M. Effects of dietary protein and starch on intake, milk production, and milk fatty acid profiles of dairy cows fed corn silage-based diets. J. Dairy Sci. 2007;90:1429–1439. doi: 10.3168/jds.S0022-0302(07)71628-4. PubMed DOI
Frelich J., Šlachta M., Hanuš O., Špička J., Samková E. Fatty acid composition of cow milk fat produced on low-input mountain farms. Czech J. Anim. Sci. 2009;54:532–539. doi: 10.17221/226/2009-CJAS. DOI
Frelich J., Šlachta M., Hanuš O., Špička J., Samková E., Weglarz A., Zapletal P. Seasonal variation in fatty acid composition of cow milk in relation to the feeding system. Anim. Sci. Pap. Rep. 2012;30:219–229.
Veselý A., Křížová L., Třináctý J., Hadrová S., Navrátilová M., Herzig I., Fišera M. Changes in fatty acid profile and iodine content in milk as influenced by the inclusion of extruded rapeseed cake in the diet of dairy cows. Czech J. Anim. Sci. 2009;54:201–209. doi: 10.17221/1721-CJAS. DOI
Adler S.A., Jensen S.K., Govasmark E., Steinshamn H. Effect of short-term versus long-term grassland management and seasonal variation in organic and conventional dairy farming on the composition of bulk tank milk. J. Dairy Sci. 2013;96:5793–5810. doi: 10.3168/jds.2012-5765. PubMed DOI
Samková E., Čertíková J., Špička J., Hanuš O., Pelikánová T., Kváč M. Eighteen-carbon fatty acids in milk fat of Czech Fleckvieh and Holstein cows following feeding with fresh lucerne (Medicago sativa L.) Anim. Sci. Pap. Rep. 2014;32:209–218.
Hanuš O., Křížová L., Samková E., Špička J., Kučera J., Klimešová M., Roubal P., Jedelská R. The effect of cattle breed, season and type of diet on the fatty acid profile of raw milk. Arch. Anim. Breed. 2016;59:373–380. doi: 10.5194/aab-59-373-2016. DOI
Rafiee-Yarandi H., Ghorbani G.R., Alikhani M., Sadeghi-Sefidmazgi A., Drackley J.K. A comparison of the effect of soybeans roasted at different temperatures versus calcium salts of fatty acids on performance and milk fatty acid composition of mid-lactation Holstein cows. J. Dairy Sci. 2016;99:5422–5435. doi: 10.3168/jds.2015-10546. PubMed DOI
Křížová L., Hanuš O., Špička J., Samková E., Frelich J., Richter M., Veselý A., Roubal P. Alternative supplemental mixture for organic dairy herds to maintain desirable milk fatty acid profile throughout the indoor feeding period. Anim. Sci. Pap. Rep. 2016;34:25–39.
Křížová L., Ryšavý J., Richter M., Veselý A., Hanuš O., Janštová B., Vorlová L., Samková E. Milk yield, milk composition, fatty acid profile and indices of milk fat quality as affected by feeding with extruded full-fat soybean. Mljekarstvo. 2017;67:49–57.
Soyeurt H., Dardenne P., Dehareng F., Lognay G., Veselko D., Marlier M., Bertozzi C., Mayeres P., Gengler N. Estimating fatty acid content in cow milk using mid-infrared spectrometry. J. Dairy Sci. 2006;89:3690–3695. doi: 10.3168/jds.S0022-0302(06)72409-2. PubMed DOI
Soyeurt H., Dehareng F., Gengler N., McParland S., Wall E., Berry D.P., Coffey M., Dardenne P. Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems, and countries. J. Dairy Sci. 2011;94:1657–1667. doi: 10.3168/jds.2010-3408. PubMed DOI
Coppa M., Ferlay A., Leroux C., Jestin M., Chilliard Y., Martin B., Andueza D. Prediction of milk fatty acid composition by near infrared reflectance spectroscopy. Int. Dairy J. 2010;20:182–189. doi: 10.1016/j.idairyj.2009.11.003. DOI
Ferrand-Calmels M., Palhiere I., Brochard M., Leray O., Astruc J.M., Aurel M.R., Barbey S., Bouvier F., Brunschwig P., Caillatt H., et al. Prediction of fatty acid profiles in cow, ewe, and goat milk by mid-infrared spectrometry. J. Dairy Sci. 2014;97:17–35. doi: 10.3168/jds.2013-6648. PubMed DOI
Hanuš O., Samková E., Špička J., Hasoňová L., Kala R., Klímová Z., Kopunecz P., Kopecký J. Comparison of methods used for the determination of the healthy important fatty acids of milk fat in bulk milk samples of dairy cows. Mlék. Listy Zprav. 2015;26:12–15. (In Czech)
Bernard L., Bonnet M., Delavaud C., Delosiere M., Ferlay A., Fougere H., Graulet B. Milk fat globule in ruminant: Major and minor compounds, nutritional regulation and differences among species. Eur. J. Lipid Sci. Technol. 2018;120 doi: 10.1002/ejlt.201700039. DOI
Tajima K., Aminov R.I., Nagamine T., Matsui H., Nakamura M., Benno Y. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl. Environ. Microb. 2001;67:2766–2774. doi: 10.1128/AEM.67.6.2766-2774.2001. PubMed DOI PMC
Conte G., Dimauro C., Serra A., Macciotta N.P.P., Mele M. A canonical discriminant analysis to study the association between milk fatty acids of ruminal origin and milk fat depression in dairy cows. J. Dairy Sci. 2018;101:6497–6510. doi: 10.3168/jds.2017-13941. PubMed DOI
Shingfield K.J., Chilliard Y., Toivonen V., Kairenius P., Givens D.I. Trans fatty acids and bioactive lipids in ruminant milk. Adv. Exp. Med. Biol. 2008;606:3–65. PubMed
Patra A.K., Yu Z.T. Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Appl. Environ. Microb. 2012;78:4271–4280. doi: 10.1128/AEM.00309-12. PubMed DOI PMC
Vlaeminck B., Fievez V., Demeyer D., Dewhurst R.J. Effect of forage:concentrate ratio on fatty acid composition of rumen bacteria isolated from ruminal and duodenal digesta. J. Dairy Sci. 2006;89:2668–2678. doi: 10.3168/jds.S0022-0302(06)72343-8. PubMed DOI
De Menezes A.B., Lewis E., O’Donovan M., O’Neill B.F., Clipson N., Doyle E.M. Microbiome analysis of dairy cows fed pasture or total mixed ration diets. FEMS Microbiol. Ecol. 2011;78:256–265. doi: 10.1111/j.1574-6941.2011.01151.x. PubMed DOI
Samková E. Doctoral Thesis. University of South Bohemia in České Budějovice; Faculty of Agriculture, České Budějovice, Czech Republic: 2011. Factors Affecting Fatty Acid Composition of Cow’s Milk Fat; p. 60. (In Czech)
Dewhurst R.J., Scollan N.D., Lee M.R.F., Ougham H.J., Humphreys M.O. Forage breeding and management to increase the beneficial fatty acid content of ruminant products. Proc. Nutr. Soc. 2003;62:329–336. doi: 10.1079/PNS2003241. PubMed DOI
Vanhatalo A., Kuoppala K., Toivonen V., Shingfield K.J. Effects of forage species and stage of maturity on bovine milk fatty acid composition. Eur. J. Lipid Sci. Technol. 2007;109:856–867. doi: 10.1002/ejlt.200700023. DOI
Leiber F., Kreuzer M., Nigg D., Wettstein H.R., Scheeder M.R.L. A study on the causes for the elevated n-3 fatty acids in cows’ milk of alpine origin. Lipids. 2005;40:191–202. doi: 10.1007/s11745-005-1375-3. PubMed DOI
Rego O.A., Rosa H.J.D., Regalo S.M., Alves S.P., Alfaia C.M.M., Prates J.A.M., Vouzela C.M., Bessa R.J.B. Seasonal changes of CLA isomers and other fatty acids of milk fat from grazing dairy herds in the Azores. J. Sci. Food Agric. 2008;88:1855–1859. doi: 10.1002/jsfa.3289. DOI
Hurtaud C., Faucon F., Couvreur S., Peyraud J.L. Linear relationship between increasing amounts of extruded linseed in dairy cow diet and milk fatty acid composition and butter properties. J. Dairy Sci. 2010;93:1429–1443. doi: 10.3168/jds.2009-2839. PubMed DOI
Glasser F., Ferlay A., Chilliard Y. Oilseed lipid supplements and fatty acid composition of cow milk: A meta-analysis. J. Dairy Sci. 2008;91:4687–4703. doi: 10.3168/jds.2008-0987. PubMed DOI
Shingfield K.J., Bonnet M., Scollan N.D. Recent developments in altering the fatty acid composition of ruminant-derived foods. Animal. 2013;7:132–162. doi: 10.1017/S1751731112001681. PubMed DOI
Siurana A., Calsamiglia S. A metaanalysis of feeding strategies to increase the content of conjugated linoleic acid (CLA) in dairy cattle milk and the impact on daily human consumption. Anim. Feed Sci. Technol. 2016;217:13–26. doi: 10.1016/j.anifeedsci.2016.04.013. DOI
Rutkowska J., Bialek M., Bagnicka E., Jarczak J., Tambor K., Strzalkowska N., Jozwik A., Krzyzewski J., Adamska A., Rutkowska E. Effects of replacing extracted soybean meal with rapeseed cake in corn grass silage-based diet for dairy cows. J. Dairy Res. 2015;82:161–168. doi: 10.1017/S0022029915000060. PubMed DOI
Lopes J.C., Harper M.T., Giallongo F., Oh J., Smith L., Ortega-Perez A.M., Harper S.A., Melgar A., Kniffen D.M., Fabin R.A., et al. Effect of high-oleic-acid soybeans on production performance, milk fatty acid composition, and enteric methane emission in dairy cows. J. Dairy Sci. 2017;100:1122–1135. doi: 10.3168/jds.2016-11911. PubMed DOI
Stergiadis S., Leifert C., Seal C.J., Eyre M.D., Steinshamn H., Butler G. Improving the fatty acid profile of winter milk from housed cows with contrasting feeding regimes by oilseed supplementation. Food Chem. 2014;164:293–300. doi: 10.1016/j.foodchem.2014.05.021. PubMed DOI
Hristov A.N., Domitrovich C., Wachter A., Cassidy T., Lee C., Shingfield K.J., Kairenius P., Davis J., Brown J. Effect of replacing solvent-extracted canola meal with high-oil traditional canola, high-oleic acid canola, or high-erucic acid rapeseed meals on rumen fermentation, digestibility, milk production, and milk fatty acid composition in lactating dairy cows. J. Dairy Sci. 2011;94:4057–4074. doi: 10.3168/jds.2011-4283. PubMed DOI
Komprda T. Comparison of quality and safety of organic and conventional foods. Chem. Listy. 2009;103:729–732.
Srednicka-Tober D., Baranski M., Seal C.J., Sanderson R., Benbrook C., Steinshamn H., Gromadzka-Ostrowska J., Rembialkowska E., Skwarlo-Sonta K., Eyre M., et al. Higher PUFA and n-3 PUFA, conjugated linoleic acid, alpha-tocopherol and iron, but lower iodine and selenium concentrations in organic milk: A systematic literature review and meta- and redundancy analyses. Br. J. Nutr. 2016;115:1043–1060. doi: 10.1017/S0007114516000349. PubMed DOI PMC
Dangour A.D., Dodhia S.K., Hayter A., Allen E., Lock K., Uauy R. Nutritional quality of organic foods: A systematic review. Am. J. Clin. Nutr. 2009;90:680–685. doi: 10.3945/ajcn.2009.28041. PubMed DOI
Ellis K.A., Innocent G., Grove-White D., Cripps P., McLean W.G., Howard C.V., Mihm M. Comparing the fatty acid composition of organic and conventional milk. J. Dairy Sci. 2006;89:1938–1950. doi: 10.3168/jds.S0022-0302(06)72261-5. PubMed DOI
Lavrenčić A., Levart A., Salobir J. Fatty acid composition of milk produced in organic and conventional dairy herds in Italy and Slovenia. Ital. J. Anim. Sci. 2007;6:437–439.
O’Donnell A.M., Spatny K.P., Vicini J.L., Bauman D.E. Survey of the fatty acid composition of retail milk differing in label claims based on production management practices. J. Dairy Sci. 2010;93:1918–1925. doi: 10.3168/jds.2009-2799. PubMed DOI
Butler G., Nielsen J.H., Slots T., Seal C., Eyre M.D., Sanderson R., Leifert C. Fatty acid and fat-soluble antioxidant concentrations in milk from high- and low-input conventional and organic systems: Seasonal variation. J. Sci. Food Agric. 2008;88:1431–1441. doi: 10.1002/jsfa.3235. DOI
Slots T., Butler G., Leifert C., Kristensen T., Skibsted L.H., Nielsen J.H. Potentials to differentiate milk composition by different feeding strategies. J. Dairy Sci. 2009;92:2057–2066. doi: 10.3168/jds.2008-1392. PubMed DOI
Larsen M.K., Nielsen J.H., Butler G., Leifert C., Slots T., Kristiansen G.H., Gustafsson A.H. Milk quality as affected by feeding regimens in a country with climatic variation. J. Dairy Sci. 2010;93:2863–2873. doi: 10.3168/jds.2009-2953. PubMed DOI
Palladino R.A., O’Donovan M., Murphy J.J., McEvoy M., Callan J., Boland T.M., Kenny D.A. Fatty acid intake and milk fatty acid composition of Holstein dairy cows under different grazing strategies: Herbage mass and daily herbage allowance. J. Dairy Sci. 2009;92:5212–5223. doi: 10.3168/jds.2009-2404. PubMed DOI
Ferlay A., Martin B., Pradel P., Coulon J.B., Chilliard Y. Influence of grass-based diets on milk fatty acid composition and milk lipolytic system in Tarentaise and Montbeliarde cow breeds. J. Dairy Sci. 2006;89:4026–4041. doi: 10.3168/jds.S0022-0302(06)72446-8. PubMed DOI
Schwendel B.H., Wester T.J., Morel P.C.H., Tavendale M.H., Deadman C., Shadbolt N.M., Otter D.E. Invited review: Organic and conventionally produced milk—An evaluation of influence factors on milk composition. J. Dairy Sci. 2015;98:2831. doi: 10.3168/jds.2015-98-4-2831. PubMed DOI
Palupi E., Jayanegara A., Ploeger A., Kahl J. Comparison of nutritional quality between conventional and organic dairy products: A meta-analysis. J. Sci. Food Agric. 2012;92:2774–2781. doi: 10.1002/jsfa.5639. PubMed DOI
Schroeder G.F., Delahoy J.E., Vidaurreta I., Bargo F., Gagliostro G.A., Muller L.D. Milk fatty acid composition of cows fed a total mixed ration or pasture plus concentrates replacing corn with fat. J. Dairy Sci. 2003;86:3237–3248. doi: 10.3168/jds.S0022-0302(03)73927-7. PubMed DOI
Dewhurst R.J., Shingfield K.J., Lee M.R.F., Scollan N.D. Increasing the concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy cows in high-forage systems. Anim. Feed Sci. Technol. 2006;131:168–206. doi: 10.1016/j.anifeedsci.2006.04.016. DOI
Barca J., Carriquiry M., Olazabal L., Fajardo M., Chilibroste P., Meikle A. Milk fatty acid profile from cows fed with mixed rations and different access time to pastureland during early lactation. J. Anim. Physiol. Anim. Nutr. 2018;102:620–629. doi: 10.1111/jpn.12826. PubMed DOI
Chilliard Y., Ferlay A., Mansbridge R.M., Doreau M. Ruminant milk fat plasticity: Nutritional control of saturated, polyunsaturated, trans and conjugated fatty acids. Ann. Zootech. 2000;49:181–205. doi: 10.1051/animres:2000117. DOI
Butler G., Stergiadis S., Seal C., Eyre M., Leifert C. Fat composition of organic and conventional retail milk in northeast England. J. Dairy Sci. 2011;94:24–36. doi: 10.3168/jds.2010-3331. PubMed DOI
Collomb M., Bisig W., Butikofer U., Sieber R., Bregy M., Etter L. Fatty acid composition of mountain milk from Switzerland: Comparison of organic and integrated farming systems. Int. Dairy J. 2008;18:976–982. doi: 10.1016/j.idairyj.2008.05.010. DOI
Kay J.K., Weber W.J., Moore C.E., Bauman D.E., Hansen L.B., Chester-Jones H., Crooker B.A., Baumgard L.H. Effects of week of lactation and genetic selection for milk yield on milk fatty acid composition in Holstein cows. J. Dairy Sci. 2005;88:3886–3893. doi: 10.3168/jds.S0022-0302(05)73074-5. PubMed DOI
Mulligan F.T., O’Grady L., Rice D.A., Doherty M.L. A herd health approach to dairy cow nutrition and production diseases of the transition cow. Anim. Reprod. Sci. 2006;96:331–353. doi: 10.1016/j.anireprosci.2006.08.011. PubMed DOI
Stoop W.M., Bovenhuis H., Heck J.M.L., van Arendonk J.A.M. Effect of lactation stage and energy status on milk fat composition of Holstein-Friesian cows. J. Dairy Sci. 2009;92:1469–1478. doi: 10.3168/jds.2008-1468. PubMed DOI
Gross J., van Dorland H.A., Bruckmaier R.M., Schwarz F.J. Milk fatty acid profile related to energy balance in dairy cows. J. Dairy Res. 2011;78:479–488. doi: 10.1017/S0022029911000550. PubMed DOI
Arfuso F., Fazio F., Levanti M., Rizzo M., Di Pietro S., Giudice E., Piccione G. Lipid and lipoprotein profile changes in dairy cows in response to late pregnancy and the early postpartum period. Arch. Anim. Breed. 2016;59:429–434. doi: 10.5194/aab-59-429-2016. DOI
Walsh S.W., Williams E.J., Evans A.C.O. A review of the causes of poor fertility in high milk producing dairy cows. Anim. Reprod. Sci. 2011;123:127–138. doi: 10.1016/j.anireprosci.2010.12.001. PubMed DOI PMC
Lake S.L., Weston T.R., Scholljegerdes E.J., Murrieta C.M., Alexander B.M., Rule D.C., Moss G.E., Hess B.W. Effects of postpartum dietary fat and body condition score at parturition on plasma, adipose tissue, and milk fatty acid composition of lactating beef cows. J. Anim. Sci. 2007;85:717–730. doi: 10.2527/jas.2006-353. PubMed DOI
Roche J.R., Friggens N.C., Kay J.K., Fisher M.W., Stafford K.J., Berry D.P. Invited review: Body condition score and its association with dairy cow productivity, health, and welfare. J. Dairy Sci. 2009;92:5769–5801. doi: 10.3168/jds.2009-2431. PubMed DOI
Useni B.A., Muller C.J.C., Cruywagen C.W. Pre- and postpartum effects of starch and fat in dairy cows: A review. S. Afr. J. Anim. Sci. 2018;48:413–426. doi: 10.4314/sajas.v48i3.2. DOI
Van Knegsel A.T.M., van den Branda H., Dijkstra J., Tamminga S., Kemp B. Effect of dietary energy source on energy balance, production, metabolic disorders and reproduction in lactating dairy cattle. Reprod. Nutr. Dev. 2005;45:665–688. doi: 10.1051/rnd:2005059. PubMed DOI
Thatcher W., Santos J.E.P., Staples C.R. Dietary manipulations to improve embryonic survival in cattle. Theriogenology. 2011;76:1619–1631. doi: 10.1016/j.theriogenology.2011.06.005. PubMed DOI
Jorritsma R., Wensing T., Kruip T.A.M., Vos P.L.A.M., Noordhuizen J.P.T.M. Metabolic changes in early lactation and impaired reproductive performance in dairy cows. Vet. Res. 2003;34:11–26. doi: 10.1051/vetres:2002054. PubMed DOI
Grummer R.R., Mashek D.G., Hayirli A. Dry matter intake and energy balance in the transition period. Vet. Clin. N. Am.-Food Anim. Pract. 2004;20:447–470. doi: 10.1016/j.cvfa.2004.06.013. PubMed DOI
Van Straten M., Shpigel N.Y., Friger M. Analysis of daily body weight of high-producing dairy cows in the first one hundred twenty days of lactation and associations with ovarian inactivity. J. Dairy Sci. 2008;91:3353–3362. doi: 10.3168/jds.2008-1020. PubMed DOI
Wathes D.C., Abayasekara D.R.E., Aitken R.J. Polyunsaturated fatty acids in male and female reproduction. Biol. Reprod. 2007;77:190–201. doi: 10.1095/biolreprod.107.060558. PubMed DOI
Drackley J.K. Biology of dairy cows during the transition period: The final frontier? J. Dairy Sci. 1999;82:2259–2273. doi: 10.3168/jds.S0022-0302(99)75474-3. PubMed DOI
Vernon R.G. Lipid metabolism during lactation: A review of adipose tissue-liver interactions and the development of fatty liver. J. Dairy Res. 2005;72:460–469. doi: 10.1017/S0022029905001299. PubMed DOI
Schulz K., Frahm J., Meyer U., Kersten S., Reiche D., Rehage J., Danicke S. Effects of prepartal body condition score and peripartal energy supply of dairy cows on postpartal lipolysis, energy balance and ketogenesis: An animal model to investigate subclinical ketosis. J. Dairy Res. 2014;81:257–266. doi: 10.1017/S0022029914000107. PubMed DOI
Fiore E., Piccione G., Gianesella M., Pratico V., Vazzana I., Dara S., Morgante M. Serum thyroid hormone evaluation during transition periods in dairy cows. Arch. Anim. Breed. 2015;58:403–406. doi: 10.5194/aab-58-403-2015. DOI
Vranković L., Aladrović J., Octenjak D., Bijelić D., Cvetnić L., Stojević Z. Milk fatty acid composition as an indicator of energy status in Holstein dairy cows. Arch. Anim. Breed. 2017;60:205–212. doi: 10.5194/aab-60-205-2017. DOI
Bauman D.E., Mather I.H., Wall R.J., Lock A.L. Major advances associated with the biosynthesis of milk. J. Dairy Sci. 2006;89:1235–1243. doi: 10.3168/jds.S0022-0302(06)72192-0. PubMed DOI
Stádník L., Ducháček J., Okrouhlá M., Ptáček M., Beran J., Stupka R., Zita L. The effect of parity on the proportion of important healthy fatty acids in raw milk of Holstein cows. Mljekarstvo. 2013;63:195–202.
Garnsworthy P.C., Masson L.L., Lock A.L., Mottram T.T. Variation of milk citrate with stage of lactation and de novo fatty acid synthesis in dairy cows. J. Dairy Sci. 2006;89:1604–1612. doi: 10.3168/jds.S0022-0302(06)72227-5. PubMed DOI
Mele M., Dal Zotto R., Cassandro M., Conte G., Serra A., Buccioni A., Bittante G., Secchiari P. Genetic parameters for conjugated linoleic acid, selected milk fatty acids, and milk fatty acid unsaturation of Italian Holstein-Friesian cows. J. Dairy Sci. 2009;92:392–400. doi: 10.3168/jds.2008-1445. PubMed DOI
Wang T., Oh J.J., Lim J.N., Hong J.E., Kim J.H., Kim J.H., Kang H.S., Choi Y.J., Lee H.G. Effects of lactation stage and individual performance on milk cis-9, trans-11 conjugated linoleic acids content in dairy cows. Asian Australas. J. Anim. 2013;26:189–194. doi: 10.5713/ajas.2012.12466. PubMed DOI PMC
Gottardo P., Penasa M., Righi F., Lopez-Villalobos N., Cassandro M., De Marchi M. Fatty acid composition of milk from Holstein-Friesian, Brown Swiss, Simmental and Alpine Grey cows predicted by mid-infrared spectroscopy. Ital. J. Anim. Sci. 2017;16:380–389. doi: 10.1080/1828051X.2017.1298411. DOI
Rukkwamsuk T., Geelen M.J.H., Kruip T.A.M., Wensing T. Interrelation of fatty acid composition in adipose tissue, serum, and liver of dairy cows during the development of fatty liver postpartum. J. Dairy Sci. 2000;83:52–59. doi: 10.3168/jds.S0022-0302(00)74854-5. PubMed DOI
Tyburczy C., Lock A.L., Dwyer D.A., Destaillats F., Mouloungui Z., Candy L., Bauman D.E. Uptake and utilization of trans octadecenoic acids in lactating dairy cows. J. Dairy Sci. 2008;91:3850–3861. doi: 10.3168/jds.2007-0893. PubMed DOI
Smith T.R., McNamara J.P. Regulation of bovine adipose-tissue metabolism during lactation. 6. Cellularity and hormone-sensitive lipase activity as affected by genetic merit and energy-intake. J. Dairy Sci. 1990;73:772–783. doi: 10.3168/jds.S0022-0302(90)78730-9. PubMed DOI
Van Haelst Y.N.T., Beeckman A., Van Knegsel A.T.M., Fievez V. Short communication: Elevated concentrations of oleic acid and long-chain fatty acids in milk fat of multiparous subclinical ketotic cows. J. Dairy Sci. 2008;91:4683–4686. doi: 10.3168/jds.2008-1375. PubMed DOI
Pedron O., Cheli F., Senatore E., Baroli D., Rizzi R. Effect of body condition score at calving on performance, some blood parameters, and milk fatty acid composition in dairy cows. J. Dairy Sci. 1993;76:2528–2535. doi: 10.3168/jds.S0022-0302(93)77588-8. PubMed DOI
Pires J.A.A., Delavaud C., Faulconnier Y., Pomies D., Chilliard Y. Effects of body condition score at calving on indicators of fat and protein mobilization of periparturient Holstein-Friesian cows. J. Dairy Sci. 2013;96:6423–6439. doi: 10.3168/jds.2013-6801. PubMed DOI
Pineyrua J.T.M., Farina S.R., Mendoza A. Effects of parity on productive, reproductive, metabolic and hormonal responses of Holstein cows. Anim. Reprod. Sci. 2018;191:9–21. doi: 10.1016/j.anireprosci.2018.01.017. PubMed DOI
Cavestany D., Blanc J.E., Kulcsar M., Uriarte G., Chilibroste P., Meikle A., Febel H., Ferraris A., Krall E. Studies of the transition cow under a pasture-based milk production system: Metabolic profiles. J. Vet. Med. A Physiol. Pathol. Clin. Med. 2005;52:1–7. doi: 10.1111/j.1439-0442.2004.00679.x. PubMed DOI
Meikle A., Kulcsar M., Chilliard Y., Febel H., Delavaud C., Cavestany D., Chilibroste P. Effects of parity and body condition at parturition on endocrine and reproductive parameters of the cow. Reproduction. 2004;127:727–737. doi: 10.1530/rep.1.00080. PubMed DOI
Wathes D.C., Cheng Z., Bourne N., Taylor V.J., Coffey M.P., Brotherstone S. Differences between primiparous and multiparous dairy cows in the inter-relationships between metabolic traits, milk yield and body condition score in the periparturient period. Domest. Anim. Endocrinol. 2007;33:203–225. doi: 10.1016/j.domaniend.2006.05.004. PubMed DOI
Williams C.M. Dietary fatty acids and human health. Ann. Zootech. 2000;49:165–180. doi: 10.1051/animres:2000116. DOI
Belury M.A. Dietary conjugated linoleic acid in health: Physiological effects and mechanisms of action. Annu. Rev. Nutr. 2002;22:505–531. doi: 10.1146/annurev.nutr.22.021302.121842. PubMed DOI
Auldist M.J., Walsh B.J., Thomson N.A. Seasonal and lactational influences on bovine milk composition in New Zealand. J. Dairy Res. 1998;65:401–411. doi: 10.1017/S0022029998002970. PubMed DOI
Artegoitia V., Meikle A., Olazabal L., Damian J.P., Adrien M.L., Mattiauda D.A., Bermudez J., Torre A., Carriquiry M. Milk casein and fatty acid fractions in early lactation are affected by nutritional regulation of body condition score at the beginning of the transition period in primiparous and multiparous cows under grazing conditions. J. Anim. Physiol. Anim. Nutr. 2013;97:919–932. doi: 10.1111/j.1439-0396.2012.01338.x. PubMed DOI
Stádník L., Ducháček J., Toušová R., Beran J., Ptáček M., Kouřimská L. Relations between basic milk components and free fatty acid content in Holstein cow milk as lipolysis parameter. Mljekarstvo. 2015;65:18–25. doi: 10.15567/mljekarstvo.2015.0103. DOI
Bastin C., Soyeurt H., Gengler N. Genetic parameters of milk production traits and fatty acid contents in milk for Holstein cows in parity 1–3. J. Anim. Breed. Genet. 2013;130:118–127. doi: 10.1111/jbg.12010. PubMed DOI
Penasa M., Tiezzi F., Gottardo P., Cassandro M., De Marchi M. Genetics of milk fatty acid groups predicted during routine data recording in Holstein dairy cattle. Livest. Sci. 2015;173:9–13. doi: 10.1016/j.livsci.2014.12.014. DOI
Schennink A., Stoop W.M., Visker M.H.P.W., Heck J.M.L., Bovenhuis H., van der Poel J.J., van Valenberg H.J.F., van Arendonk J.A.M. DGAT1 underlies large genetic variation in milk-fat composition of dairy cows. Anim. Genet. 2007;38:467–473. doi: 10.1111/j.1365-2052.2007.01635.x. PubMed DOI
Garnsworthy P.C., Feng S., Lock A.L., Royal M.D. Short communication: Heritability of milk fatty acid composition and stearoyl-CoA desaturase indices in dairy cows. J. Dairy Sci. 2010;93:1743–1748. doi: 10.3168/jds.2009-2695. PubMed DOI
Hein L., Sorensen L.P., Kargo M., Buitenhuis A.J. Genetic analysis of predicted fatty acid profiles of milk from Danish Holstein and Danish Jersey cattle populations. J. Dairy Sci. 2018;101:2148–2157. doi: 10.3168/jds.2017-13225. PubMed DOI
Bastin C., Gengler N., Soyeurt H. Phenotypic and genetic variability of production traits and milk fatty acid contents across days in milk for Walloon Holstein first-parity cows. J. Dairy Sci. 2011;94:4152–4163. doi: 10.3168/jds.2010-4108. PubMed DOI
Petrini J., Iung L.H.S., Rodriguez M.A.P., Salvian M., Pertille F., Rovadoscki G.A., Cassoli L.D., Coutinho L.L., Machado P.F., Wiggans G.R., et al. Genetic parameters for milk fatty acids, milk yield and quality traits of a Holstein cattle population reared under tropical conditions. J. Anim. Breed. Genet. 2016;133:384–395. doi: 10.1111/jbg.12205. PubMed DOI
Krag K., Poulsen N.A., Larsen M.K., Larsen L.B., Janss L.L., Buitenhuis B. Genetic parameters for milk fatty acids in Danish Holstein cattle based on SNP markers using a Bayesian approach. BMC Genet. 2013;14:79. doi: 10.1186/1471-2156-14-79. PubMed DOI PMC
Edwards R.A., King J.W.B., Yousef I.M. Genetic variation in fatty acid composition of cow milk. Anim. Prod. 1973;16:307–310. doi: 10.1017/S0003356100030166. DOI
Renner E., Kosmack U. Genetische Aspekte zur Fettsäurenzusammensetzung des Milchfettes. 2. Fettsäurenmuster der Milch von Nachtkommenpopulationen. Züchtungskunde. 1974;46:217–226.
Vanrobays M.L., Bastin C., Vandenplas J., Hammami H., Soyeurt H., Vanlierde A., Dehareng F., Froidmont E., Gengler N. Changes throughout lactation in phenotypic and genetic correlations between methane emissions and milk fatty acid contents predicted from milk mid-infrared spectra. J. Dairy Sci. 2016;99:7247–7260. doi: 10.3168/jds.2015-10646. PubMed DOI
Narayana S.G., Schenkel F.S., Fleming A., Koeck A., Malchiodi F., Jamrozik J., Johnston J., Sargolzaei M., Miglior F. Genetic analysis of groups of mid-infrared predicted fatty acids in milk. J. Dairy Sci. 2017;100:4731–4744. doi: 10.3168/jds.2016-12244. PubMed DOI
Mosley E.E., Shafii B., Moate P.J., McGuire M.A. cis-9, trans-11 conjugated linoleic acid is synthesized directly from vaccenic acid in lactating dairy cattle. J. Nutr. 2006;136:570–575. doi: 10.1093/jn/136.3.570. PubMed DOI
Bobe G., Bormann J.A.M., Lindberg G.L., Freeman A.E., Beitz D.C. Short communication: Estimates of genetic variation of milk fatty acids in US Holstein cows. J. Dairy Sci. 2008;91:1209–1213. doi: 10.3168/jds.2007-0252. PubMed DOI
Poulsen N.A., Eskildsen C.E.A., Skov T., Larsen L.B., Buitenhuis A.J. Comparison of genetic parameters estimation of fatty acids from gas chromatography and FT-IR in Holsteins; Proceedings of the 10th World Congress of Genetics Applied to Livestock Production; Vancouver, BC, Canada. 17–22 August 2014.
Soyeurt H., Dardenne P., Dehareng F., Bastin C., Gengler N. Genetic parameters of saturated and monounsaturated fatty acid content and the ratio of saturated to unsaturated fatty acids in bovine milk. J. Dairy Sci. 2008;91:3611–3626. doi: 10.3168/jds.2007-0971. PubMed DOI
Stoop W.M., van Arendonk J.A.M., Heck J.M.L., van Valenberg H.J.F., Bovenhuis H. Genetic parameters for major milk fatty acids and milk production traits of Dutch Holstein-Friesians. J. Dairy Sci. 2008;91:385–394. doi: 10.3168/jds.2007-0181. PubMed DOI
Bastin C., Soyeurt H., Vanderick S., Gengler N. Genetic relationships between milk fatty acids and fertility of dairy cows. Interbull Bull. 2011;44:1–5.
Lassen J., Poulsen N.A., Larsen M.K., Buitenhuis A.J. Genetic and genomic relationship between methane production measured in breath and fatty acid content in milk samples from Danish Holsteins. Anim. Prod. Sci. 2016;56:298–303. doi: 10.1071/AN15489. DOI
Qanbari S., Pimentel E.C.G., Tetens J., Thaller G., Lichtner P., Sharifi A.R., Simianer H. A genome-wide scan for signatures of recent selection in Holstein cattle. Anim. Genet. 2010;41:377–389. doi: 10.1111/j.1365-2052.2009.02016.x. PubMed DOI
Bouwman A.C., Bovenhuis H., Visker M.H.P.W., van Arendonk J.A.M. Genome-wide association of milk fatty acids in Dutch dairy cattle. BMC Genet. 2011;12:43. doi: 10.1186/1471-2156-12-43. PubMed DOI PMC
Bouwman A.C., Visker M.H.P.W., van Arendonk J.A.M., Bovenhuis H. Genomic regions associated with bovine milk fatty acids in both summer and winter milk samples. BMC Genet. 2012;13:93. doi: 10.1186/1471-2156-13-93. PubMed DOI PMC
Buitenhuis B., Janss L.L.G., Poulsen N.A., Larsen L.B., Larsen M.K., Sorensen P. Genome-wide association and biological pathway analysis for milk-fat composition in Danish Holstein and Danish Jersey cattle. BMC Genom. 2014;15 doi: 10.1186/1471-2164-15-1112. PubMed DOI PMC
Li C., Sun D.X., Zhang S.L., Yang S.H., Alim M.A., Zhang Q., Li Y.H., Liu L. Genetic effects of FASN, PPARGC1A, ABCG2 and IGF1 revealing the association with milk fatty acids in a Chinese Holstein cattle population based on a post genome-wide association study. BMC Genet. 2016;17 doi: 10.1186/s12863-016-0418-x. PubMed DOI PMC
Lopdell T.J., Tiplady K., Struchalin M., Johnson T.J.J., Keehan M., Sherlock R., Couldrey C., Davis S.R., Snell R.G., Spelman R.J., et al. DNA and RNA-sequence based GWAS highlights membrane-transport genes as key modulators of milk lactose content. BMC Genom. 2017;18 doi: 10.1186/s12864-017-4320-3. PubMed DOI PMC
Bionaz M., Loor J.J. Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genom. 2008;9 doi: 10.1186/1471-2164-9-366. PubMed DOI PMC
Conte G., Mele M., Chessa S., Castiglioni B., Serra A., Pagnacco G., Secchiari P. Diacylglycerol acyltransferase 1, stearoyl-CoA desaturase 1, and sterol regulatory element binding protein 1 gene polymorphisms and milk fatty acid composition in Italian Brown cattle. J. Dairy Sci. 2010;93:753–763. doi: 10.3168/jds.2009-2581. PubMed DOI
Bovenhuis H., Visker M.H.P.W., Poulsen N.A., Sehested J., van Valenberg H.J.F., van Arendonk J.A.M., Larsen L.B., Buitenhuis A.J. Effects of the diacylglycerol o-acyltransferase 1 (DGAT1) K232A polymorphism on fatty acid, protein, and mineral composition of dairy cattle milk. J. Dairy Sci. 2016;99:3113–3123. doi: 10.3168/jds.2015-10462. PubMed DOI
Schennink A., Heck J.M.L., Bovenhuis H., Visker M.H.P.W., van Valenberg H.J.F., van Arendonk J.A.M. Milk fatty acid unsaturation: Genetic parameters and effects of stearoyl-CoA desaturase (SCD1) and acyl CoA: Diacylglycerol acyltransferase 1 (DGAT1) J. Dairy Sci. 2008;91:2135–2143. doi: 10.3168/jds.2007-0825. PubMed DOI
Pešek M., Špička J., Samková E. Comparison of fatty acid composition in milk fat of Czech Pied cattle and Holstein cattle. Czech J. Anim. Sci. 2005;50:122–128. doi: 10.17221/4005-CJAS. DOI
Soyeurt H., Dardenne P., Gillon A., Croquet C., Vanderick S., Mayeres P., Bertozzi C., Gengler N. Variation in fatty acid contents of milk and milk fat within and across breeds. J. Dairy Sci. 2006;89:4858–4865. doi: 10.3168/jds.S0022-0302(06)72534-6. PubMed DOI
Soyeurt H., Gillon A., Vanderick S., Mayeres P., Bertozzi C., Gengler N. Estimation of heritability and genetic correlations for the major fatty acids in bovine milk. J. Dairy Sci. 2007;90:4435–4442. doi: 10.3168/jds.2007-0054. PubMed DOI
Pilarczyk R., Wójcik J., Sablik P., Czerniak P. Fatty acid profile and health lipid indices in the raw milk of Simmental and Holstein-Friesian cows from an organic farm. S. Afr. J. Anim. Sci. 2015;45:30–38. doi: 10.4314/sajas.v45i1.4. DOI
Morales M.S., Palmquist D.L., Weiss W.P. Milk fat composition of Holstein and Jersey cows with control or depleted copper status and fed whole soybeans or tallow. J. Dairy Sci. 2000;83:2112–2119. doi: 10.3168/jds.S0022-0302(00)75093-4. PubMed DOI
White S.L., Bertrand J.A., Wade M.R., Washburn S.P., Green J.T., Jenkins T.C. Comparison of fatty acid content of milk from Jersey and Holstein cows consuming pasture or a total mixed ration. J. Dairy Sci. 2001;84:2295–2301. doi: 10.3168/jds.S0022-0302(01)74676-0. PubMed DOI
Bargo F., Delahoy J.E., Schroeder G.F., Baumgard L.H., Muller L.D. Supplementing total mixed rations with pasture increase the content of conjugated linoleic acid in milk. Anim. Feed Sci. Technol. 2006;131:226–240. doi: 10.1016/j.anifeedsci.2006.04.017. DOI
Croissant A.E., Washburn S.P., Dean L.L., Drake M.A. Chemical properties and consumer perception of fluid milk from conventional and pasture-based production systems. J. Dairy Sci. 2007;90:4942–4953. doi: 10.3168/jds.2007-0456. PubMed DOI
Mäntysaari P., Khalili H., Sariola J., Rantanen A. Use of barley fibre and wet distillers’ solubles as feedstuffs for Ayrshire dairy cows. Anim. Feed Sci. Technol. 2007;135:52–65. doi: 10.1016/j.anifeedsci.2006.05.020. DOI
Moioli B., Contarini G., Avalli A., Catillo G., Orru L., De Matteis G., Masoero G., Napolitano F. Short communication: Effect of stearoyl-coenzyme A desaturase polymorphism on fatty acid composition of milk. J. Dairy Sci. 2007;90:3553–3558. doi: 10.3168/jds.2006-855. PubMed DOI
Barłowska J., Grodzicki T., Topyła B., Litwińczuk Z. Physicochemical properties of milk fat from three breeds of cows during summer and winter feeding. Arch. Tierzucht. 2009;52:356–363. doi: 10.5194/aab-52-356-2009. DOI
Adamska A., Rutkowska J., Tabaszewska M. Milk of Polish Red and White cows as a source of nutritionally valuable fatty acids. Arch. Tierzucht. 2014;57 doi: 10.7482/0003-9438-57-010. DOI
Kulig H., Kowalewska-Luczak I., Kmiec M., Wojdak-Maksymiec K. ANXA9, SLC27A3, FABP3 and FABP4 single nucleotide polymorphisms in relation to milk production traits in Jersey cows. Czech J. Anim. Sci. 2010;55:463–467. doi: 10.17221/1712-CJAS. DOI
Tomka J., Vasickova K., Oravcova M., Bauer M., Huba J., Vasicek D., Peskovicova D. Effects of polymorphisms in DGAT1 and LEP genes on milk traits in Holstein primiparous cows. Mljekarstvo. 2016;66:122–128.
Cohen-Zinder M., Seroussi E., Larkin D.M., Loor J.J., Everts-van der Wind A., Lee J.H., Drackley J.K., Band M.R., Hernandez A.G., Shani M., et al. Identification of a missense mutation in the bovine ABCG2 gene with a major effect on the QTL on chromosome 6 affecting milk yield and composition in Holstein cattle. Genome Res. 2005;15:936–944. doi: 10.1101/gr.3806705. PubMed DOI PMC
Weikard R., Kuhn C., Goldammer T., Freyer G., Schwerin M. The bovine PPARGC1A gene: Molecular characterization and association of an SNP with variation of milk fat synthesis. Physiol. Genom. 2005;21:1–13. doi: 10.1152/physiolgenomics.00103.2004. PubMed DOI
Khatib H., Zaitoun I., Wiebelhaus-Finger J., Chang Y.M., Rosa G.J.M. The association of bovine PPARGC1A and OPN genes with milk composition in two independent holstein cattle populations. J. Dairy Sci. 2007;90:2966–2970. doi: 10.3168/jds.2006-812. PubMed DOI
Grisart B., Coppieters W., Farnir F., Karim L., Ford C., Berzi P., Cambisano N., Mni M., Reid S., Simon P., et al. Positional candidate cloning of a QTL in dairy cattle: Identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Res. 2002;12:222–231. doi: 10.1101/gr.224202. PubMed DOI
Matsumoto H., Inada S., Kobayashi E., Abe T., Hasebe H., Sasazaki S., Oyama K., Mannen H. Identification of SNPs in the FASN gene and their effect on fatty acid milk composition in Holstein cattle. Livest. Sci. 2012;144:281–284. doi: 10.1016/j.livsci.2011.12.003. DOI
Yao J.B., Aggrey S.E., Zadworny D., Hayes J.F., Kühnlein U. Sequence variations in the bovine growth hormone gene characterized by single-strand conformation polymorphism (SSCP) analysis and their association with milk production traits in Holsteins. Genetics. 1996;144:1809–1816. PubMed PMC
He X., Chu M.X., Qiao L., He J.N., Wang P.Q., Feng T., Di R., Cao G.L., Fang L., An Y.F. Polymorphisms of STAT5A gene and their association with milk production traits in Holstein cows. Mol. Biol. Rep. 2012;39:2901–2907. doi: 10.1007/s11033-011-1051-4. PubMed DOI
Nafikov R.A., Schoonmaker J.R., Korn K.T., Noack K., Garrick D.J., Koehler K.J., Minick-Bormann J., Reecy J.M., Spurlock D.E., Beitz D.C. Sterol regulatory element binding transcription factor 1 (SREBF1) polymorphism and milk fatty acid composition. J. Dairy Sci. 2013;96:2605–2616. doi: 10.3168/jds.2012-6075. PubMed DOI
Waters S.M., McCabe M.S., Howard D.J., Giblin L., Magee D.A., MacHugh D.E., Berry D.P. Associations between newly discovered polymorphisms in the Bos taurus growth hormone receptor gene and performance traits in Holstein-Friesian dairy cattle. Anim. Genet. 2011;42:39–49. doi: 10.1111/j.1365-2052.2010.02087.x. PubMed DOI
Littlejohn M.D., Tiplady K., Lopdell T., Law T.A., Scott A., Harland C., Sherlock R., Henty K., Obolonkin V., Lehnert K., et al. Expression Variants of the lipogenic AGPAT6 gene affect diverse milk composition phenotypes in Bos taurus. PLoS ONE. 2014;9 doi: 10.1371/journal.pone.0085757. PubMed DOI PMC
Soyeurt H., Gengler N. Genetic variability of fatty acids in bovine milk. Biotechnol. Agron. Soc. 2008;12:203–210.
Ulbricht T.L.V., Southgate D.A.T. Coronary heart disease—7 dietary factors. Lancet. 1991;338:985–992. doi: 10.1016/0140-6736(91)91846-M. PubMed DOI
Santos-Silva J., Mendes I.A., Bessa R.J.B. The effect of genotype, feeding system and slaughter weight on the quality of light lambs—1. Growth, carcass composition and meat quality. Livest. Prod. Sci. 2002;76:17–25. doi: 10.1016/S0301-6226(01)00334-7. DOI
Chen S., Bobe G., Zimmerman S., Hammond E.G., Luhman C.M., Boylston T.D., Freeman A.E., Beitz D.C. Physical and sensory properties of dairy products from cows with various milk fatty acid compositions. J. Agric. Food Chem. 2004;52:3422–3428. doi: 10.1021/jf035193z. PubMed DOI
Ntambi J.M., Miyazaki M. Regulation of stearoyl-CoA desaturases and role in metabolism. Prog. Lipid Res. 2004;43:91–104. doi: 10.1016/S0163-7827(03)00039-0. PubMed DOI
Lock A.L., Garnsworthy P.C. Seasonal variation in milk conjugated linoleic acid and Delta(9)-desaturase activity in dairy cows. Livest. Prod. Sci. 2003;79:47–59. doi: 10.1016/S0301-6226(02)00118-5. DOI
Chouinard P.Y., Corneau L., Barbano D.M., Metzger L.E., Bauman D.E. Conjugated linoleic acids alter milk fatty acid composition and inhibit milk fat secretion in dairy cows. J. Nutr. 1999;129:1579–1584. doi: 10.1093/jn/129.8.1579. PubMed DOI
Mele M., Conte G., Castiglioni B., Chessa S., Macciotta N.P.P., Serra A., Buccioni A., Pagnacco G., Secchiari P. Stearoyl-coenzyme A desaturase gene polymorphism and milk fatty acid composition in Italian Holsteins. J. Dairy Sci. 2007;90:4458–4465. doi: 10.3168/jds.2006-617. PubMed DOI
Erickson M.C. Variation of lipid and tocopherol composition in 3 strains of channel catfish (Ictalurus punctatus) J. Sci. Food Agric. 1992;59:529–536. doi: 10.1002/jsfa.2740590416. DOI
Saito M., Kubo K. Relationship between tissue lipid peroxidation and peroxidizability index after alpha-linolenic, eicosapentaenoic, or docosahexaenoic acid intake in rats. Br. J. Nutr. 2003;89:19–28. doi: 10.1079/BJN2002731. PubMed DOI
Nagyová A., Krajčovičová-Kudláčková M., Klvanová J. LDL and HDL oxidation and fatty acid composition in vegetarians. Ann. Nutr. Metab. 2001;45:148–151. doi: 10.1159/000046722. PubMed DOI
Timmen H. Characterization of milk fat hardness in farm milk via parameters of fatty-acid composition. Kieler Milchw. Forsch. 1990;42:129–138.
Hurtaud C., Buchin S., Martin B., Verdier-Metz I., Peyraud J.L., Noel Y. Milk quality and consequences on quality of dairy products: Several some measuring techniques of measure in dairy cows trials. Recontres autour des Recherches sur Ruminant. 2001;8:35–42. (In French)
Hanuš O., Samková E., Špička J., Sojková K., Hanušová K., Kopec T., Vyletělová M., Jedelská R. Relationship between concentration of health important groups of fatty acids and components and technological properties in cow milk. Acta Univ. Agric. Silvic. Mendel. Brun. 2010;58:137–154. doi: 10.11118/actaun201058050137. DOI
Brzozowska A.M., Lukaszewicz M., Oprazadek J.M. Energy-protein supplementation and lactation affect fatty acid profile of liver and adipose tissue of dairy cows. Molecules. 2018;23 doi: 10.3390/molecules23030618. PubMed DOI PMC
Drewnowski A. The contribution of milk and milk products to micronutrient density and affordability of the US diet. J. Am. Coll. Nutr. 2011;30:422–428. doi: 10.1080/07315724.2011.10719986. PubMed DOI
Haug A., Hostmark A.T., Harstad O.M. Bovine milk in human nutrition—A review. Lipids Health Dis. 2007;6 doi: 10.1186/1476-511X-6-25. PubMed DOI PMC
Mills S., Ross R.P., Hill C., Fitzgerald G.F., Stanton C. Milk intelligence: Mining milk for bioactive substances associated with human health. Int. Dairy J. 2011;21:377–401. doi: 10.1016/j.idairyj.2010.12.011. DOI
Jenkins T.C., McGuire M.A. Major advances in nutrition: Impact on milk composition. J. Dairy Sci. 2006;89:1302–1310. doi: 10.3168/jds.S0022-0302(06)72198-1. PubMed DOI
Givens D.I. Symposium 1: Food chain and health milk in the diet: Good or bad for vascular disease? Proc. Nutr. Soc. 2012;71:98–104. doi: 10.1017/S0029665111003223. PubMed DOI
Kromhout D., Bloemberg B., Feskens E., Menotti A., Nissinen A., Grp S.C.S. Saturated fat, vitamin C and smoking predict long-term population all-cause mortality rates in the Seven Countries Study. Int. J. Epidemiol. 2000;29:260–265. doi: 10.1093/ije/29.2.260. PubMed DOI
Simopoulos A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002;56:365–379. doi: 10.1016/S0753-3322(02)00253-6. PubMed DOI
Calder P.C. Functional roles of fatty acids and their effects on human health. J. Parenter. Enter. Nutr. 2015;39:18–32. doi: 10.1177/0148607115595980. PubMed DOI
Wong J.M.W., de Souza R., Kendall C.W.C., Emam A., Jenkins D.J.A. Colonic health: Fermentation and short chain fatty acids. J. Clin. Gastroenterol. 2006;40:235–243. doi: 10.1097/00004836-200603000-00015. PubMed DOI
Van der Beek C.M., Dejong C.H.C., Troost F.J., Masclee A.M., Lenaerts K. Role of short-chain fatty acids in colonic inflammation, carcinogenesis, and mucosal protection and healing. Nutr. Rev. 2017;75:286–305. doi: 10.1093/nutrit/nuw067. PubMed DOI
Meijer K., de Vos P., Priebe M.G. Butyrate and other short-chain fatty acids as modulators of immunity: What relevance for health? Curr. Opin. Clin. Nutr. 2010;13:715–721. doi: 10.1097/MCO.0b013e32833eebe5. PubMed DOI
Arnould V.M.R., Soyeurt H. Genetic variability of milk fatty acids. J. Appl. Genet. 2009;50:29–39. doi: 10.1007/BF03195649. PubMed DOI
Yang Z.H., Liu S.P., Chen X.D., Chen H., Huang M., Zheng J.P. Induction of apoptotic cell death and in vivo growth inhibition of human cancer cells by a saturated branched-chain fatty acid, 13-methyltetradecanoic acid. Cancer Res. 2000;60:505–509. PubMed
Cai Q.Q., Huang H.Q., Qian D., Chen K.L., Luo J.H., Tian Y., Lin T.X., Lin T.Y. 13-Methyltetradecanoic acid exhibits anti-tumor activity on T-cell lymphomas in vitro and in vivo by down-regulating p-AKT and activating caspase-3. PLoS ONE. 2013;8 doi: 10.1371/journal.pone.0065308. PubMed DOI PMC
Wongtangtintharn S., Oku H., Iwasaki H., Toda T. Effect of branched-chain fatty acids on fatty acid biosynthesis of human breast cancer cells. J. Nutr. Sci. Vitaminol. 2004;50:137–143. doi: 10.3177/jnsv.50.137. PubMed DOI
Ran-Ressler R.R., Khailova L., Arganbright K.M., Adkins-Rieck C.K., Jouni Z.E., Koren O., Ley R.E., Brenna J.T., Dvorak B. Branched chain fatty acids reduce the incidence of necrotizing Enterocolitis and alter gastrointestinal microbial ecology in a neonatal rat model. PLoS ONE. 2011;6 doi: 10.1371/journal.pone.0029032. PubMed DOI PMC
Kraft J., Jetton T., Satish B., Gupta D. Dairy-derived bioactive fatty acids improve pancreatic beta-cell function. FASEB J. 2015;29:608–625.
Khaw K.T., Friesen M.D., Riboli E., Luben R., Wareham N. Plasma phospholipid fatty Acid concentration and incident coronary heart disease in men and women: The EPIC-Norfolk prospective study. PLoS Med. 2012;9 doi: 10.1371/journal.pmed.1001255. PubMed DOI PMC
Forouhi N.G., Koulman A., Sharp S.J., Imamura F., Kroger J., Schulze M.B., Crowe F.L., Huerta J.M., Guevara M., Beulens J.W.J., et al. Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: The EPIC-InterAct case-cohort study. Lancet Diabetes Endocrinol. 2014;2:810–818. doi: 10.1016/S2213-8587(14)70146-9. PubMed DOI PMC
Weggemans R.M., Rudrum M., Trautwein E.A. Intake of ruminant versus industrial trans fatty acids and risk of coronary heart disease—What is the evidence? Eur. J. Lipid Sci. Technol. 2004;106:390–397. doi: 10.1002/ejlt.200300932. DOI
Lock A.L., Parodi P.W., Bauman D.E. The biology of trans fatty acids: Implications for human health and the dairy industry. Aust. J. Dairy Technol. 2005;60:134–142.
Bendsen N.T., Christensen R., Bartels E.M., Astrup A. Consumption of industrial and ruminant trans fatty acids and risk of coronary heart disease: A systematic review and meta-analysis of cohort studies. Eur. J. Clin. Nutr. 2011;65:773–783. doi: 10.1038/ejcn.2011.34. PubMed DOI
Anadon A., Martinez-Larranaga M.R., Martinez M.A., Ares I., Ramos E., Gomez-Cortes P., Juarez M., De la Fuente M.A. Acute oral safety study of dairy fat rich in trans-10 C18:1 versus vaccenic plus conjugated linoleic acid in rats. Food Chem. Toxicol. 2010;48:591–598. doi: 10.1016/j.fct.2009.11.037. PubMed DOI
Anadon A., Martinez-Larranaga M.R., Martinez M.A., Ares I., Ramos E., Gomez-Cortes P., Juarez M., de la Fuente M.A. A 4-week repeated oral dose toxicity study of dairy fat naturally enriched in vaccenic, rumenic and alpha-linolenic acids in rats. J. Agric. Food Chem. 2011;59:8036–8046. doi: 10.1021/jf201251g. PubMed DOI
De Souza R.J., Mente A., Maroleanu A., Cozma A.I., Ha V., Kishibe T., Uleryk E., Budylowski P., Schunemann H., Beyene J., et al. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: Systematic review and meta-analysis of observational studies. BMJ. 2015;351 doi: 10.1136/bmj.h3978. PubMed DOI PMC
Ferlay A., Bernard L., Meynadier A., Malpuech-Brugere C. Production of trans and conjugated fatty acids in dairy ruminants and their putative effects on human health: A review. Biochimie. 2017;141:107–120. doi: 10.1016/j.biochi.2017.08.006. PubMed DOI
Kennedy A., Martinez K., Chuang C.C., LaPoint K., McIntosh M. Saturated fatty acid-mediated inflammation and insulin resistance in adipose tissue: Mechanisms of action and implications. J. Nutr. 2009;139:1–4. doi: 10.3945/jn.108.098269. PubMed DOI
Kennedy A., Martinez K., Chung S., LaPoint K., Hopkins R., Schmidt S.F., Andersen K., Mandrup S., McIntosh M. Inflammation and insulin resistance induced by trans-10, cis-12 conjugated linoleic acid depend on intracellular calcium levels in primary cultures of human adipocytes. J. Lipid Res. 2010;51:1906–1917. doi: 10.1194/jlr.M005447. PubMed DOI PMC
Moon H.S. Biological effects of conjugated linoleic acid on obesity-related cancers. Chem.-Biol. Interact. 2014;224:189–195. doi: 10.1016/j.cbi.2014.11.006. PubMed DOI
Field C.J., Blewett H.H., Proctor S., Vine D. Human health benefits of vaccenic acid. Appl. Physiol. Nutr. Metab. 2009;34:979–991. doi: 10.1139/H09-079. PubMed DOI
Frigolet M.E., Gutierrez-Aguilar R. The role of the novel lipokine palmitoleic acid in health and disease. Adv. Nutr. 2017;8:173–181. doi: 10.3945/an.115.011130. PubMed DOI PMC
Muchenje V., Dzama K., Chimonyo M., Strydom P.E., Hugo A., Raats J.G. Some biochemical aspects pertaining to beef eating quality and consumer health: A review. Food Chem. 2009;112:279–289. doi: 10.1016/j.foodchem.2008.05.103. DOI
Zhao G.X., Etherton T.D., Martin K.R., West S.G., Gillies P.J., Kris-Etherton P.M. Dietary alpha-linolenic acid reduces inflammatory and lipid cardiovascular risk factors in hypercholesterolemic men and women. J. Nutr. 2004;134:2991–2997. doi: 10.1093/jn/134.11.2991. PubMed DOI
Liu J.J., Ma D.W.L. The Role of n-3 polyunsaturated fatty acids in the prevention and treatment of breast cancer. Nutrients. 2014;6:5184–5223. doi: 10.3390/nu6115184. PubMed DOI PMC
Destaillats F., Trottier J.P., Galvez J.M.G., Angers P. Analysis of alpha-linolenic acid biohydrogenation intermediates in milk fat with emphasis on conjugated linolenic acids. J. Dairy Sci. 2005;88:3231–3239. doi: 10.3168/jds.S0022-0302(05)73006-X. PubMed DOI
Lerch S., Shingfield K.J., Ferlay A., Vanhatalo A., Chilliard Y. Rapeseed or linseed in grass-based diets: Effects on conjugated linoleic and conjugated linolenic acid isomers in milk fat from Holstein cows over 2 consecutive lactations. J. Dairy Sci. 2012;95:7269–7287. doi: 10.3168/jds.2012-5654. PubMed DOI
Allen B.G., Bhatia S.K., Anderson C.M., Eichenberger-Gilmore J.M., Sibenaller Z.A., Mapuskar K.A., Schoenfeld J.D., Buatti J.M., Spitz D.R., Fath M.A. Ketogenic diets as an adjuvant cancer therapy: History and potential mechanism. Redox Biol. 2014;2:963–970. doi: 10.1016/j.redox.2014.08.002. PubMed DOI PMC
Lamarche B., Givens D.I., Soedamah-Muthu S., Krauss R.M., Jakobsen M.U., Bischoff-Ferrari H.A., Pan A., Despres J.P. Does milk consumption contribute to cardiometabolic health and overall diet quality? Can. J. Cardiol. 2016;32:1026–1032. doi: 10.1016/j.cjca.2015.12.033. PubMed DOI
Kiczorowska B., Samolinska W., Marczuk J., Winiarska-Mieczan A., Klebaniuk R., Kowalczuk-Vasilev E., Kiczorowski P., Zasadna Z. Comparative effects of organic, traditional, and intensive production with probiotics on the fatty acid profile of cow’s milk. J. Food Compos. Anal. 2017;63:157–163. doi: 10.1016/j.jfca.2017.08.002. DOI
Lukiw W.J., Cui J.G., Marcheselli V.L., Bodker M., Botkjaer A., Gotlinger K., Serhan C.N., Bazan N.G. A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J. Clin. Investig. 2005;115:2774–2783. doi: 10.1172/JCI25420. PubMed DOI PMC