Engraving of stainless-steel wires to improve optical quality of closed-loop wire-guided flow jet systems for optical and X-ray spectroscopy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37388247
PubMed Central
PMC10300417
DOI
10.3389/fmolb.2023.1079029
PII: 1079029
Knihovny.cz E-zdroje
- Klíčová slova
- engraving, etching, jet, laser, microfluidics, spectroscopy, wet-etching, x-ray,
- Publikační typ
- časopisecké články MeSH
This paper describes performance enhancement developments to a closed-loop pump-driven wire-guided flow jet (WGJ) for ultrafast X-ray spectroscopy of liquid samples. Achievements include dramatically improved sample surface quality and reduced equipment footprint from 7 × 20 cm2 to 6 × 6 cm2, cost, and manufacturing time. Qualitative and quantitative measurements show that micro-scale wire surface modification yields significant improvements to the topography of the sample liquid surface. By manipulating their wettability, it is possible to better control the liquid sheet thickness and to obtain a smooth liquid sample surface, as demonstrated in this work.
Department of Physics Universität Hamburg Hamburg Germany
Deutsches Elektronen Synchrotron Hamburg Germany
ELI Beamlines Facility The Extreme Light Infrastructure ERIC Dolni Brezany Czechia
Institute of Biotechnology Czech Academy of Sciences Vestec Czechia
Institute of Physics Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Barnard J. C. T., Lee J. P., Alexander O., Jarosch S., Garratt D., Picciuto R., et al. (2022). Delivery of stable ultra-thin liquid sheets in vacuum for biochemical spectroscopy. Front. Mol. Biosci. 9, 1044610–1044619. 10.3389/fmolb.2022.1044610 PubMed DOI PMC
Barthlott W., Neinhuis C. (1997). Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202 (1), 1–8. 10.1007/s004250050096 DOI
Bourauel C., Fries T., Drescher D., Plietsch R. (1998). Surface roughness of orthodontic wires via atomic force microscopy, laser specular reflectance, and profilometry. Eur. J. Orthod. 20 (1), 79–92. 10.1093/ejo/20.1.79 PubMed DOI
Cannelli O., Bacellar C., Ingle R. A., Bohinc R., Kinschel D., Bauer B., et al. (2019). Toward time-resolved laser T-jump/X-ray probe spectroscopy in aqueous solutions. Struct. Dyn. 6 (6), 064303. 10.1063/1.5129626 PubMed DOI PMC
Chapman H. N., Caleman C., Timneanu N. (2014). Diffraction before destruction. Philosophical Trans. R. Soc. B Biol. Sci. 369 (1647), 20130313. 10.1098/rstb.2013.0313 PubMed DOI PMC
Dong L., Zhang Z., Ding R., Wang L., Liu M., Weng Z., et al. (2019). Controllable superhydrophobic surfaces with tunable adhesion fabricated by laser interference lithography. Surf. Coatings Technol. 372, 434–441. 10.1016/j.surfcoat.2019.05.039 DOI
Duris J., Li S., Driver T., Champenois E. G., MacArthur J. P., Lutman A. A., et al. (2020). Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser. Nat. Photonics 14 (1), 30–36. 10.1038/s41566-019-0549-5 DOI
Elter A., Dorsch S., Mann P., Runz A., Johnen W., Karger C. P. (2019). Compatibility of 3D printing materials and printing techniques with PAGAT gel dosimetry. Phys. Med. Biol. 64 (4), 04NT02. 10.1088/1361-6560/aafef0 PubMed DOI
Fondell M., Eckert S., Jay R. M., Weniger C., Quevedo W., Niskanen J., et al. (2017). Time-resolved soft X-ray absorption spectroscopy in transmission mode on liquids at MHz repetition rates. Struct. Dyn. 4 (5), 054902. 10.1063/1.4993755 PubMed DOI PMC
Galestian Pour A., Lincoln C. N., Perlík V., Šanda F., Hauer J. (2017). Anharmonic vibrational effects in linear and two-dimensional electronic spectra. Phys. Chem. Chem. Phys. 19 (36), 24752–24760. 10.1039/c7cp05189a PubMed DOI
Galinis G., Strucka J., Barnard J. C. T., Braun A., Smith R. A., Marangos J. P. (2017). Micrometer-thickness liquid sheet jets flowing in vacuum. Rev. Sci. Instrum. 88 (8), 083117. 10.1063/1.4990130 PubMed DOI
Grünbein M. L., Nass Kovacs G. (2019). Sample delivery for serial crystallography at free-electron lasers and synchrotrons. Acta Crystallogr. Sect. D. Struct. Biol. 75 (2), 178–191. 10.1107/S205979831801567X PubMed DOI PMC
Hejazian M., Darmanin C., Balaur E., Abbey B. (2020). Mixing and jetting analysis using continuous flow microfluidic sample delivery devices. RSC Adv. 10 (27), 15694–15701. 10.1039/D0RA00232A PubMed DOI PMC
Kim J., Kim K. H., Oang K. Y., Lee J. H., Hong K., Cho H., et al. (2016). Tracking reaction dynamics in solution by pump–probe X-ray absorption spectroscopy and X-ray liquidography (solution scattering). Chem. Commun. 52 (19), 3734–3749. 10.1039/C5CC08949B PubMed DOI
Laimgruber S., Schachenmayr H., Schmidt B., Zinth W., Gilch P. (2006). A femtosecond stimulated Raman spectrograph for the near ultraviolet. Appl. Phys. B 85 (4), 557–564. 10.1007/s00340-006-2386-8 DOI
Li L., Breedveld V., Hess D. W. (2012). Creation of superhydrophobic stainless steel surfaces by acid treatments and hydrophobic film deposition. ACS Appl. Mater. Interfaces 4 (9), 4549–4556. 10.1021/am301666c PubMed DOI
Macdonald N. P., Cabot J. M., Smejkal P., Guijt R. M., Paull B., Breadmore M. C. (2017). Comparing microfluidic performance of three-dimensional (3D) printing platforms. Anal. Chem. 89 (7), 3858–3866. 10.1021/acs.analchem.7b00136 PubMed DOI
Menzi S., Knopp G., Al Haddad A., Augustin S., Borca C., Gashi D., et al. (2020). Generation and simple characterization of flat, liquid jets. Rev. Sci. Instrum. 91 (10), 105109. 10.1063/5.0007228 PubMed DOI
Miaja-Avila L., O’Neil G. C., Uhlig J., Cromer C. L., Dowell M. L., Jimenez R., et al. (2015). Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy. Struct. Dyn. 2 (2), 024301. 10.1063/1.4913585 PubMed DOI PMC
Mikrosysteme GmbH (2020). Hnp Mikrosysteme GmbH mzr-4622 data sheet. https://www.hnp-mikrosysteme.de/de/produkte/detail/mzr-4622-1/pdf/.
Monnier H., Mhiri N., Falk L. (2010). Falling liquid film stability in microgas/liquid absorption. Chem. Eng. Process. Process Intensif. 49 (9), 953–957. 10.1016/j.cep.2010.05.001 DOI
Oppermann M., Bauer B., Rossi T., Zinna F., Helbing J., Lacour J., et al. (2019). Ultrafast broadband circular dichroism in the deep ultraviolet. Optica 6 (1), 56. 10.1364/optica.6.000056 DOI
Pastorczak M., Nejbauer M., Radzewicz C. (2019). Femtosecond infrared pump-stimulated Raman probe spectroscopy: The first application of the method to studies of vibrational relaxation pathways in the liquid HDO/D2O system. Phys. Chem. Chem. Phys. 21 (31), 16895–16904. 10.1039/c9cp00855a PubMed DOI
Penzkofer A., Leupacher W. (1987). Fluorescence behaviour of highly concentrated rhodamine 6G solutions. J. Luminescence 37 (2), 61–72. 10.1016/0022-2313(87)90167-0 DOI
Picchiotti A., Nenov A., Giussani A., Prokhorenko V. I., Miller R. J. D., Mukamel S., et al. (2019). Pyrene, a test case for deep-ultraviolet molecular photophysics. J. Phys. Chem. Lett. 10 (12), 3481–3487. 10.1021/acs.jpclett.9b01325 PubMed DOI PMC
Picchiotti A., Prokhorenko V. I., Miller R. J. D. D. (2015). A closed-loop pump-driven wire-guided flow jet for ultrafast spectroscopy of liquid samples. Rev. Sci. Instrum. 86 (9), 093105. 10.1063/1.4929860 PubMed DOI
Prokhorenko V. I., Picchiotti A., Pola M., Dijkstra A. G., Miller R. J. D. D. (2016). New insights into the photophysics of DNA nucleobases. J. Phys. Chem. Lett. 7 (22), 4445–4450. 10.1021/acs.jpclett.6b02085 PubMed DOI
Rauscher M., Dietrich S. (2008). Wetting phenomena in nanofluidics. Annu. Rev. Mater. Res. 38 (1), 143–172. 10.1146/annurev.matsci.38.060407.132451 DOI
Rimington R. P., Capel A. J., Player D. J., Bibb R. J., Christie S. D. R., Lewis M. P. (2018). Feasibility and biocompatibility of 3D-printed photopolymerized and laser sintered polymers for neuronal, myogenic, and hepatic cell types. Macromol. Biosci. 18 (7), 1800113. 10.1002/mabi.201800113 PubMed DOI
Sadevinox (2017). Stainless steel wire. https://www.stainlesssteelwire.com/stainless-steel-wire-history-manufacturing-applications.html.
Schreck S., Gavrila G., Weniger C., Wernet P. (2011). A sample holder for soft x-ray absorption spectroscopy of liquids in transmission mode. Rev. Sci. Instrum. 82 (10), 103101. 10.1063/1.3644192 PubMed DOI
Stange U. C., Temps F. (2018). Ultrafast electronic deactivation of UV-excited adenine and its ribo- and deoxyribonucleosides and -nucleotides: A comparative study. Chem. Phys. 515, 441–451. 10.1016/j.chemphys.2018.08.031 DOI
Stratasys Ltd (2020). Vero clear:rigid transparent 3D print-ing material.
Szlachetko J., Nachtegaal M., de Boni E., Willimann M., Safonova O., Sa J., et al. (2012). A von Hamos x-ray spectrometer based on a segmented-type diffraction crystal for single-shot x-ray emission spectroscopy and time-resolved resonant inelastic x-ray scattering studies. Rev. Sci. Instrum. 83 (10), 103105. 10.1063/1.4756691 PubMed DOI
Szott M., Fiflis P., Kalathiparambil K., Shchelkanov I., Ruzic D. N., Jurczyk B., et al. (2015). “Wetting of lithium on nanostructured surfaces for first wall components,” in Proceedings of the 2015 IEEE 26th Symposium on Fusion Engineering (SOFE), Austin, TX, USA, 2016-May, 1–4. 10.1109/SOFE.2015.7482285 DOI
Tauber M. J., Mathies R. A., Chen X., Bradforth S. E. (2003). Flowing liquid sample jet for resonance Raman and ultrafast optical spectroscopy. Rev. Sci. Instrum., 74(11), 4958. 4960. 10.1063/1.1614874 DOI
Wang Z., Paul S., Stein L. H., Salemi A., Mitra S. (2022). Recent developments in blood-compatible superhydrophobic surfaces. Polymers 14 (6), 1075. 10.3390/polym14061075 PubMed DOI PMC
Weierstall U. (2014). Liquid sample delivery techniques for serial femtosecond crystallography. Philosophical Trans. R. Soc. B Biol. Sci. 369 (1647), 20130337–7. 10.1098/rstb.2013.0337 PubMed DOI PMC
Wilson D. I., Le B. L., Dao H. D. A., Lai K. Y., Morison K. R., Davidson J. F. (2012). Surface flow and drainage films created by horizontal impinging liquid jets. Chem. Eng. Sci. 68 (1), 449–460. 10.1016/j.ces.2011.10.003 DOI
Yu S., Wang X., Wang W., Yao Q., Xu J., Xiong W. (2013). A new method for preparing bionic multi scale superhydrophobic functional surface on X70 pipeline steel. Appl. Surf. Sci. 271, 149–155. 10.1016/j.apsusc.2013.01.152 DOI
Zhang Y., Zhang Z., Yang J., Yue Y., Zhang H. (2022). Fabrication of superhydrophobic surface on stainless steel by two-step chemical etching. Chem. Phys. Lett. 797, 139567. 10.1016/j.cplett.2022.139567 DOI
Zymaková A., Khakurel K., Picchiotti A., Błachucki W., Szlachetko J., Rebarz M., et al. (2020). Implementation of a crossed-slit system for fast alignment of sealed polycapillary X-ray optics. J. Synchrotron Radiat. 27 (6), 1730–1733. 10.1107/S1600577520012217 PubMed DOI PMC
Zymaková A., Albrecht M., Antipenkov R., Špaček A., Karatodorov S., Hort O., et al. (2021). First experiments with a water-jet plasma X-ray source driven by the novel high-power–high-repetition rate L1 Allegra laser at ELI Beamlines. J. Synchrotron Radiat. 28 (6), 1778–1785. 10.1107/S1600577521008729 PubMed DOI PMC
Zymaková A., Precek M., Picchiotti A., Błachucki W., Szlachetko J., Vankó G., et al. In preparation. 2022. PubMed PMC
Zymaková A., Kantarelou V., Stanček S., Bursak D., Danielisová A., Anagnostopoulos D. F., et al. (2023). A fast-integrated x-ray emission spectrometer dedicated to the investigation of Pt presence in gold Celtic coins (3rd–1st century BCE). X-ray spectrom., 1–11. 10.1002/xrs.3354 DOI
X-ray spectroscopy station for sample characterization at ELI Beamlines