X-ray spectroscopy station for sample characterization at ELI Beamlines

. 2023 Oct 12 ; 13 (1) : 17258. [epub] 20231012

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37828024

Grantová podpora
PAN-20-20 Bilateral mobility projects CAS-PAN
PAN-20-20 Bilateral mobility projects CAS-PAN
PAN-20-20 Bilateral mobility projects CAS-PAN
PAN-20-20 Bilateral mobility projects CAS-PAN
PAN-20-20 Bilateral mobility projects CAS-PAN
CZ.02.1.01/0.0/0.0/16 019/0000789 European Regional Development Fund and the Ministry of Education, Youth and Sports
CZ.02.1.01/0.0/0.0/16 019/0000789 European Regional Development Fund and the Ministry of Education, Youth and Sports
CZ.02.1.01/0.0/0.0/16 019/0000789 European Regional Development Fund and the Ministry of Education, Youth and Sports
CZ.02.1.01/0.0/0.0/16 019/0000789 European Regional Development Fund and the Ministry of Education, Youth and Sports
CZ.02.1.01/0.0/0.0/16 019/0000789 European Regional Development Fund and the Ministry of Education, Youth and Sports
21-05180S Czech Science Foundation
390715994 Deutsche Forschungsgemeinschaft
2020/37/B/ST3/00555 National Science Centre (Poland)
VEKOP-2.3.2-16-2017-00015 Government of Hungary and European Regional Development Fund under Grant
VEKOP-2.3.2-16-2017-00015 Government of Hungary and European Regional Development Fund under Grant
FK 124460 and SNN 135636 National Research, Development and Innovation Fund (NKFIH)
FK 124460 and SNN 135636 National Research, Development and Innovation Fund (NKFIH)

Odkazy

PubMed 37828024
PubMed Central PMC10570313
DOI 10.1038/s41598-023-43924-y
PII: 10.1038/s41598-023-43924-y
Knihovny.cz E-zdroje

X-ray spectroscopy is a demanded tool across multiple user communities. Here we report on a new station for X-ray emission spectroscopy at the Extreme Light Infrastructure Beamlines Facility. The instrument utilizes the von Hamos geometry and works with a number of different sample types, notably including liquid systems. We demonstrate a simple and reliable method for source position control using two cameras. This approach addresses energy calibration dependence on sample position, which is a characteristic source of measurement uncertainty for wavelength dispersive spectrometers in XES arrangement. We also present a straightforward procedure for energy calibration of liquid and powder samples to a thin film reference. The developed instrumentation enabled us to perform the first experimental determination of the Kα lines of liquidized K3Fe(CN)6 as well as powdered and liquidized FeNH4(SO4)2. Finally, we report on proof-of-principle use of a colliding jet liquid sample delivery system in an XES experiment.

Zobrazit více v PubMed

Zimmermann P, et al. Modern X-ray spectroscopy: XAS and XES in the laboratory. Coord. Chem. Rev. 2020;423:213466. doi: 10.1016/j.ccr.2020.213466. DOI

Fullagar W, et al. Radiations from a water jet plasma source. Rev. Sci. Instrum. 2007;78:115105. doi: 10.1063/1.2813340. PubMed DOI

Korn G, et al. Ultrashort 1-kHz laser plasma hard x-ray source. Opt. Lett. 2002;27:866–868. doi: 10.1364/OL.27.000866. PubMed DOI

Zamponi F, et al. Femtosecond hard X-ray plasma sources with a kilohertz repetition rate. Appl. Phys. A. 2009;96:51–58. doi: 10.1007/s00339-009-5171-9. DOI

Mahieu B, et al. Probing warm dense matter using femtosecond X-ray absorption spectroscopy with a laser-produced betatron source. Nat. Comms. 2018;9:3276. doi: 10.1038/s41467-018-05791-4. PubMed DOI PMC

Batysta F, et al. Broadband OPCPA system with 11 mJ output at 1 kHz, compressible to 12 fs. Opt. Express. 2016;24:17843. doi: 10.1364/OE.24.017843. PubMed DOI

Zymaková A, et al. First experiments with a water-jet plasma X-ray source driven by the novel high-power-high-repetition rate L1 Allegra laser at ELI. J. Synchrotron Radiat. 2021;28:1778–1785. doi: 10.1107/S1600577521008729. PubMed DOI PMC

Chaulagain U, et al. ELI gammatron beamline: a dawn of ultrafast hard X-ray science. Photonics. 2022;9:853. doi: 10.3390/photonics9110853. DOI

Noei H, Vonk V, Keller TK, Roehlsberger R, Stierle A. DESY nanolab deutsches elektronen synchrotron (DESY) J. Large-Scale Res. Facil. 2016;2:1–9.

Zymaková, A. (2020). Status and prospective of the ELI X-ray spectroscopy end-station: Global XAS Journal Club lecture.

Thompson A, Attwood D, Gullikson E, Howells M, Kim K-J, Kirz J, Kortright J, Lindau I, Liu Y, Pianetta P, Robinson A, Scofield J, Underwood J, Williams G, Winick H. X-ray data booklet. U.S. Government Printing Office; 2009.

Lafuerza S, Carlantuono A, Retegan M, Glatzel P. Chemical sensitivity of Kβ and Kα X-ray emission from a systematic investigation of iron compounds. Inorg. Chem. 2020;59:12518–12535. doi: 10.1021/acs.inorgchem.0c01620. PubMed DOI

Uhlig J, et al. High-resolution X-ray emission spectroscopy with transition-edge sensors: present performance and future potential. J. Synchrotron Radiat. 2015;22:766–775. doi: 10.1107/S1600577515004312. PubMed DOI

Ditter AS, et al. Resonant inelastic X-ray scattering using a miniature dispersive Rowland refocusing spectrometer. J. Synchrotron Radiat. 2020;27:446–454. doi: 10.1107/S1600577520001022. PubMed DOI PMC

Holden WM, et al. A compact dispersive refocusing Rowland circle X-ray emission spectrometer for laboratory, synchrotron, and XFEL applications. Rev. Sci. Instrum. 2017;88:073904. doi: 10.1063/1.4994739. PubMed DOI

Sokaras D, et al. A seven-crystal Johann-type hard x-ray spectrometer at the Stanford Synchrotron Radiation Lightsource. Rev. Sci. Instrum. 2013;84:053102. doi: 10.1063/1.4803669. PubMed DOI PMC

Szlachetko J, et al. A von Hamos x-ray spectrometer based on a segmented-type diffraction crystal for single-shot x-ray emission spectroscopy and time-resolved resonant inelastic x-ray scattering studies. Rev. Sci. Instrum. 2012;83:103105. doi: 10.1063/1.4756691. PubMed DOI

Zymaková A, et al. Implementation of a crossed-slit system for fast alignment of sealed polycapillary X-ray optics. J. Synchrotron Radiat. 2020;27:1730–1733. doi: 10.1107/S1600577520012217. PubMed DOI PMC

Šmíd M, et al. Highly efficient angularly resolving X-ray spectrometer optimized for absorption measurements with collimated sources. Rev. Sci. Instrum. 2017;88:063102. doi: 10.1063/1.4986464. PubMed DOI

Smolentsev G, Sundström V. Time-resolved X-ray absorption spectroscopy for the study of molecular systems relevant for artificial photosynthesis. Coord. Chem. Rev. 2015;304–305:117–132. doi: 10.1016/j.ccr.2015.03.001. DOI

Picchiotti A, Prokhorenko VI, Miller RJD. A closed-loop pump-driven wire-guided flow jet for ultrafast spectroscopy of liquid samples. Rev. Sci. Instrum. 2015;86:093105. doi: 10.1063/1.4929860. PubMed DOI

Picchiotti A, et al. Engraving of stainless-steel wires to improve optical quality of closed-loop wire-guided flow jet systems for optical and X-ray spectroscopy. Front. Mol. Biosci. 2023;10:1079029. doi: 10.3389/fmolb.2023.1079029. PubMed DOI PMC

Koralek JD, et al. Generation and characterization of ultrathin free-flowing liquid sheets. Nat. Commun. 2018;9:1353. doi: 10.1038/s41467-018-03696-w. PubMed DOI PMC

Németh Z, Szlachetko J, Bajnoczi ÉG, Vankó G. Laboratory von Hámos X-ray spectroscopy for routine sample characterization. Rev. Sci. Instrum. 2016;87:103105. doi: 10.1063/1.4964098. PubMed DOI

Ross M, et al. comprehensive experimental and computational spectroscopic study of hexacyanoferrate complexes in water: from infrared to X-ray wavelengths. J. Phys. Chem. B. 2018;122:5075–5086. doi: 10.1021/acs.jpcb.7b12532. PubMed DOI

Dicke B, et al. Transferring the entatic-state principle to copper photochemistry. Nat. Chem. 2018;10:355–362. doi: 10.1038/nchem.2916. PubMed DOI

Naumova M, et al. Structural dynamics upon photoexcitation-induced charge transfer in a dicopper(i)-disulfide complex. Phys. Chem. Chem. Phys. 2018;20:6274–6286. doi: 10.1039/C7CP04880G. PubMed DOI

Campbell JL, Papp T. Widths of the atomic K-N7 levels. Atomic Data Nuclear Data Tables. 2001;77(1):1–56. doi: 10.1006/adnd.2000.0848. DOI

XOS (2019). fIeX-Beam Test Report.

Bewer B. Soller slit design and characteristics. J. Synchrotron Radiat. 2012;19:185–190. doi: 10.1107/S0909049511052319. PubMed DOI

Błachucki W, Czapla-Masztafiak J, Sá J, Szlachetko J. A laboratory-based double X-ray spectrometer for simultaneous X-ray emission and X-ray absorption studies. J. Anal. At. Spectrom. 2019;34:1409–1415. doi: 10.1039/C9JA00159J. DOI

Zymaková, A. et al. A fast-integrated X-ray emission spectrometer dedicated to the investigation of Pt presence in gold Celtic coins (3rd -1st century BCE). X-Ray Spectrom 1–11 (2023).

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace