X-ray spectroscopy station for sample characterization at ELI Beamlines
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
PAN-20-20
Bilateral mobility projects CAS-PAN
PAN-20-20
Bilateral mobility projects CAS-PAN
PAN-20-20
Bilateral mobility projects CAS-PAN
PAN-20-20
Bilateral mobility projects CAS-PAN
PAN-20-20
Bilateral mobility projects CAS-PAN
CZ.02.1.01/0.0/0.0/16 019/0000789
European Regional Development Fund and the Ministry of Education, Youth and Sports
CZ.02.1.01/0.0/0.0/16 019/0000789
European Regional Development Fund and the Ministry of Education, Youth and Sports
CZ.02.1.01/0.0/0.0/16 019/0000789
European Regional Development Fund and the Ministry of Education, Youth and Sports
CZ.02.1.01/0.0/0.0/16 019/0000789
European Regional Development Fund and the Ministry of Education, Youth and Sports
CZ.02.1.01/0.0/0.0/16 019/0000789
European Regional Development Fund and the Ministry of Education, Youth and Sports
21-05180S
Czech Science Foundation
390715994
Deutsche Forschungsgemeinschaft
2020/37/B/ST3/00555
National Science Centre (Poland)
VEKOP-2.3.2-16-2017-00015
Government of Hungary and European Regional Development Fund under Grant
VEKOP-2.3.2-16-2017-00015
Government of Hungary and European Regional Development Fund under Grant
FK 124460 and SNN 135636
National Research, Development and Innovation Fund (NKFIH)
FK 124460 and SNN 135636
National Research, Development and Innovation Fund (NKFIH)
PubMed
37828024
PubMed Central
PMC10570313
DOI
10.1038/s41598-023-43924-y
PII: 10.1038/s41598-023-43924-y
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
X-ray spectroscopy is a demanded tool across multiple user communities. Here we report on a new station for X-ray emission spectroscopy at the Extreme Light Infrastructure Beamlines Facility. The instrument utilizes the von Hamos geometry and works with a number of different sample types, notably including liquid systems. We demonstrate a simple and reliable method for source position control using two cameras. This approach addresses energy calibration dependence on sample position, which is a characteristic source of measurement uncertainty for wavelength dispersive spectrometers in XES arrangement. We also present a straightforward procedure for energy calibration of liquid and powder samples to a thin film reference. The developed instrumentation enabled us to perform the first experimental determination of the Kα lines of liquidized K3Fe(CN)6 as well as powdered and liquidized FeNH4(SO4)2. Finally, we report on proof-of-principle use of a colliding jet liquid sample delivery system in an XES experiment.
Institute of Nuclear Physics PAN Radzikowskiego 152 31 342 Kraków Poland
National Synchrotron Radiation Centre SOLARIS Czerwone Maki 98 30 392 Kraków Poland
Uppsala University Lägerhyddsvägen 1 SE 751 05 Uppsala Sweden
Wigner Research Centre for Physics Konkoly Thege Miklós 29 33 Budapest 1121 Hungary
Zobrazit více v PubMed
Zimmermann P, et al. Modern X-ray spectroscopy: XAS and XES in the laboratory. Coord. Chem. Rev. 2020;423:213466. doi: 10.1016/j.ccr.2020.213466. DOI
Fullagar W, et al. Radiations from a water jet plasma source. Rev. Sci. Instrum. 2007;78:115105. doi: 10.1063/1.2813340. PubMed DOI
Korn G, et al. Ultrashort 1-kHz laser plasma hard x-ray source. Opt. Lett. 2002;27:866–868. doi: 10.1364/OL.27.000866. PubMed DOI
Zamponi F, et al. Femtosecond hard X-ray plasma sources with a kilohertz repetition rate. Appl. Phys. A. 2009;96:51–58. doi: 10.1007/s00339-009-5171-9. DOI
Mahieu B, et al. Probing warm dense matter using femtosecond X-ray absorption spectroscopy with a laser-produced betatron source. Nat. Comms. 2018;9:3276. doi: 10.1038/s41467-018-05791-4. PubMed DOI PMC
Batysta F, et al. Broadband OPCPA system with 11 mJ output at 1 kHz, compressible to 12 fs. Opt. Express. 2016;24:17843. doi: 10.1364/OE.24.017843. PubMed DOI
Zymaková A, et al. First experiments with a water-jet plasma X-ray source driven by the novel high-power-high-repetition rate L1 Allegra laser at ELI. J. Synchrotron Radiat. 2021;28:1778–1785. doi: 10.1107/S1600577521008729. PubMed DOI PMC
Chaulagain U, et al. ELI gammatron beamline: a dawn of ultrafast hard X-ray science. Photonics. 2022;9:853. doi: 10.3390/photonics9110853. DOI
Noei H, Vonk V, Keller TK, Roehlsberger R, Stierle A. DESY nanolab deutsches elektronen synchrotron (DESY) J. Large-Scale Res. Facil. 2016;2:1–9.
Zymaková, A. (2020). Status and prospective of the ELI X-ray spectroscopy end-station: Global XAS Journal Club lecture.
Thompson A, Attwood D, Gullikson E, Howells M, Kim K-J, Kirz J, Kortright J, Lindau I, Liu Y, Pianetta P, Robinson A, Scofield J, Underwood J, Williams G, Winick H. X-ray data booklet. U.S. Government Printing Office; 2009.
Lafuerza S, Carlantuono A, Retegan M, Glatzel P. Chemical sensitivity of Kβ and Kα X-ray emission from a systematic investigation of iron compounds. Inorg. Chem. 2020;59:12518–12535. doi: 10.1021/acs.inorgchem.0c01620. PubMed DOI
Uhlig J, et al. High-resolution X-ray emission spectroscopy with transition-edge sensors: present performance and future potential. J. Synchrotron Radiat. 2015;22:766–775. doi: 10.1107/S1600577515004312. PubMed DOI
Ditter AS, et al. Resonant inelastic X-ray scattering using a miniature dispersive Rowland refocusing spectrometer. J. Synchrotron Radiat. 2020;27:446–454. doi: 10.1107/S1600577520001022. PubMed DOI PMC
Holden WM, et al. A compact dispersive refocusing Rowland circle X-ray emission spectrometer for laboratory, synchrotron, and XFEL applications. Rev. Sci. Instrum. 2017;88:073904. doi: 10.1063/1.4994739. PubMed DOI
Sokaras D, et al. A seven-crystal Johann-type hard x-ray spectrometer at the Stanford Synchrotron Radiation Lightsource. Rev. Sci. Instrum. 2013;84:053102. doi: 10.1063/1.4803669. PubMed DOI PMC
Szlachetko J, et al. A von Hamos x-ray spectrometer based on a segmented-type diffraction crystal for single-shot x-ray emission spectroscopy and time-resolved resonant inelastic x-ray scattering studies. Rev. Sci. Instrum. 2012;83:103105. doi: 10.1063/1.4756691. PubMed DOI
Zymaková A, et al. Implementation of a crossed-slit system for fast alignment of sealed polycapillary X-ray optics. J. Synchrotron Radiat. 2020;27:1730–1733. doi: 10.1107/S1600577520012217. PubMed DOI PMC
Šmíd M, et al. Highly efficient angularly resolving X-ray spectrometer optimized for absorption measurements with collimated sources. Rev. Sci. Instrum. 2017;88:063102. doi: 10.1063/1.4986464. PubMed DOI
Smolentsev G, Sundström V. Time-resolved X-ray absorption spectroscopy for the study of molecular systems relevant for artificial photosynthesis. Coord. Chem. Rev. 2015;304–305:117–132. doi: 10.1016/j.ccr.2015.03.001. DOI
Picchiotti A, Prokhorenko VI, Miller RJD. A closed-loop pump-driven wire-guided flow jet for ultrafast spectroscopy of liquid samples. Rev. Sci. Instrum. 2015;86:093105. doi: 10.1063/1.4929860. PubMed DOI
Picchiotti A, et al. Engraving of stainless-steel wires to improve optical quality of closed-loop wire-guided flow jet systems for optical and X-ray spectroscopy. Front. Mol. Biosci. 2023;10:1079029. doi: 10.3389/fmolb.2023.1079029. PubMed DOI PMC
Koralek JD, et al. Generation and characterization of ultrathin free-flowing liquid sheets. Nat. Commun. 2018;9:1353. doi: 10.1038/s41467-018-03696-w. PubMed DOI PMC
Németh Z, Szlachetko J, Bajnoczi ÉG, Vankó G. Laboratory von Hámos X-ray spectroscopy for routine sample characterization. Rev. Sci. Instrum. 2016;87:103105. doi: 10.1063/1.4964098. PubMed DOI
Ross M, et al. comprehensive experimental and computational spectroscopic study of hexacyanoferrate complexes in water: from infrared to X-ray wavelengths. J. Phys. Chem. B. 2018;122:5075–5086. doi: 10.1021/acs.jpcb.7b12532. PubMed DOI
Dicke B, et al. Transferring the entatic-state principle to copper photochemistry. Nat. Chem. 2018;10:355–362. doi: 10.1038/nchem.2916. PubMed DOI
Naumova M, et al. Structural dynamics upon photoexcitation-induced charge transfer in a dicopper(i)-disulfide complex. Phys. Chem. Chem. Phys. 2018;20:6274–6286. doi: 10.1039/C7CP04880G. PubMed DOI
Campbell JL, Papp T. Widths of the atomic K-N7 levels. Atomic Data Nuclear Data Tables. 2001;77(1):1–56. doi: 10.1006/adnd.2000.0848. DOI
XOS (2019). fIeX-Beam Test Report.
Bewer B. Soller slit design and characteristics. J. Synchrotron Radiat. 2012;19:185–190. doi: 10.1107/S0909049511052319. PubMed DOI
Błachucki W, Czapla-Masztafiak J, Sá J, Szlachetko J. A laboratory-based double X-ray spectrometer for simultaneous X-ray emission and X-ray absorption studies. J. Anal. At. Spectrom. 2019;34:1409–1415. doi: 10.1039/C9JA00159J. DOI
Zymaková, A. et al. A fast-integrated X-ray emission spectrometer dedicated to the investigation of Pt presence in gold Celtic coins (3rd -1st century BCE). X-Ray Spectrom 1–11 (2023).