• This record comes from PubMed

Generation and characterization of ultrathin free-flowing liquid sheets

. 2018 Apr 10 ; 9 (1) : 1353. [epub] 20180410

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.

Grant support
R01 GM110501 NIGMS NIH HHS - United States
R01 GM126289 NIGMS NIH HHS - United States

Links

PubMed 29636445
PubMed Central PMC5893585
DOI 10.1038/s41467-018-03696-w
PII: 10.1038/s41467-018-03696-w
Knihovny.cz E-resources

The physics and chemistry of liquid solutions play a central role in science, and our understanding of life on Earth. Unfortunately, key tools for interrogating aqueous systems, such as infrared and soft X-ray spectroscopy, cannot readily be applied because of strong absorption in water. Here we use gas-dynamic forces to generate free-flowing, sub-micron, liquid sheets which are two orders of magnitude thinner than anything previously reported. Optical, infrared, and X-ray spectroscopies are used to characterize the sheets, which are found to be tunable in thickness from over 1 μm down to less than 20 nm, which corresponds to fewer than 100 water molecules thick. At this thickness, aqueous sheets can readily transmit photons across the spectrum, leading to potentially transformative applications in infrared, X-ray, electron spectroscopies and beyond. The ultrathin sheets are stable for days in vacuum, and we demonstrate their use at free-electron laser and synchrotron light sources.

Erratum In

PubMed

Erratum In

PubMed

See more in PubMed

Naslund LA, et al. X-ray absorption spectroscopy measurements of liquid water. J. Phys. Chem. B. 2005;109:13835–13839. doi: 10.1021/jp052046q. PubMed DOI

Fransson T, et al. X-ray and electron spectroscopy of water. Chem. Rev. 2016;116:7551–7569. doi: 10.1021/acs.chemrev.5b00672. PubMed DOI

DePonte, D. P. et al. Gas dynamic virtual nozzle for generation of microscopic droplet streams. J. Phys. D Appl. Phys. 41, 19 (2008).

Ekimova M, Quevedo W, Faubel M, Wernet P, Nibbering ETJ. A liquid flatjet system for solution phase soft-x-ray spectroscopy. Struct. Dyn. 2015;2:054301. doi: 10.1063/1.4928715. PubMed DOI PMC

Fondell M, et al. Time-resolved soft X-ray absorption spectroscopy in transmission mode on liquids at MHz repetition rates. Struct. Dyn. 2017;4:054902. doi: 10.1063/1.4993755. PubMed DOI PMC

Galinis G, et al. Micrometer-thickness liquid sheet jets flowing in vacuum. Rev. Sci. Instrum. 2017;88:083117. doi: 10.1063/1.4990130. PubMed DOI

Obst L, et al. Efficient laser-driven proton acceleration from cylindrical and planar cryogenic hydrogen jets. Sci. Rep. 2017;7:10248. doi: 10.1038/s41598-017-10589-3. PubMed DOI PMC

Gañán-Calvo AM. Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Phys. Rev. Lett. 1998;80:285. doi: 10.1103/PhysRevLett.80.285. DOI

Trebbin M, et al. Microfluidic liquid jet system with compatibility for atmospheric and high-vacuum conditions. Lab. Chip. 2014;14:1733. doi: 10.1039/C3LC51363G. PubMed DOI

Taylor G. Formation of thin flat sheets of water. Proc. R. Soc. Lond. A. 1960;259:1.

Hasson, D. & Peck, R. E. Thickness distribution in a sheet formed by impinging jets. AIChE J. 10, 752–754 (1964).

Bush JWM, Hasha AE. On the collision of laminar jets: fluid chains and fishbones. J. Fluid. Mech. 2004;511:285. doi: 10.1017/S002211200400967X. DOI

Choo Y, Kang B. Parametric study on impinging-jet liquid sheet thickness distribution using an interferometric method. Exp. Fluids. 2001;31:56. doi: 10.1007/s003480000258. DOI

Sanjay V, Das AK. Formation of liquid chain by collision of two laminar jets. Phys. Fluids. 2017;29:112101. doi: 10.1063/1.4998288. DOI

Faubel, M., Schlemmer, S. & Toennies, J. P. A molecular beam study of the evaporation of water from a liquid jet. Z. Phys. D Atoms Mol. Clust. 10, 269–277 (1988).

Ganan-Calvo, et al. Liquid capillary micro/nanojets in free-jet expansion. Small. 2010;6:822. doi: 10.1002/smll.200901786. PubMed DOI

Stenzel, O. The Physics of Thin Film Optical Spectra (Springer, Berlin, 2015).

Daimon M, Masumura A. Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region. Appl. Opt. 2007;46:3811–3820. doi: 10.1364/AO.46.003811. PubMed DOI

Max JJ, Chapados C. Isotope effects in liquid water by infrared spectroscopy. III. H2O and D2O spectra from 6000 to 0cm−1. J. Chem. Phys. 2009;131:184505. doi: 10.1063/1.3258646. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...