Generation and characterization of ultrathin free-flowing liquid sheets
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
Grant support
R01 GM110501
NIGMS NIH HHS - United States
R01 GM126289
NIGMS NIH HHS - United States
PubMed
29636445
PubMed Central
PMC5893585
DOI
10.1038/s41467-018-03696-w
PII: 10.1038/s41467-018-03696-w
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
The physics and chemistry of liquid solutions play a central role in science, and our understanding of life on Earth. Unfortunately, key tools for interrogating aqueous systems, such as infrared and soft X-ray spectroscopy, cannot readily be applied because of strong absorption in water. Here we use gas-dynamic forces to generate free-flowing, sub-micron, liquid sheets which are two orders of magnitude thinner than anything previously reported. Optical, infrared, and X-ray spectroscopies are used to characterize the sheets, which are found to be tunable in thickness from over 1 μm down to less than 20 nm, which corresponds to fewer than 100 water molecules thick. At this thickness, aqueous sheets can readily transmit photons across the spectrum, leading to potentially transformative applications in infrared, X-ray, electron spectroscopies and beyond. The ultrathin sheets are stable for days in vacuum, and we demonstrate their use at free-electron laser and synchrotron light sources.
Advanced Light Source Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
Department of Electrical and Computer Engineering University of Alberta Edmonton AB T6G 1H9 Canada
Deutsches Elektronen Synchrotron DESY Notkestraße 85 Hamburg D 22607 Germany
European 10 Ray Free Electron Laser Facility GmbH Schenefeld 22869 Germany
SLAC National Accelerator Laboratory Menlo Park CA 94720 USA
Thayer School of Engineering Dartmouth College 14 Engineering Dr Hanover NH 03755 USA
See more in PubMed
Naslund LA, et al. X-ray absorption spectroscopy measurements of liquid water. J. Phys. Chem. B. 2005;109:13835–13839. doi: 10.1021/jp052046q. PubMed DOI
Fransson T, et al. X-ray and electron spectroscopy of water. Chem. Rev. 2016;116:7551–7569. doi: 10.1021/acs.chemrev.5b00672. PubMed DOI
DePonte, D. P. et al. Gas dynamic virtual nozzle for generation of microscopic droplet streams. J. Phys. D Appl. Phys. 41, 19 (2008).
Ekimova M, Quevedo W, Faubel M, Wernet P, Nibbering ETJ. A liquid flatjet system for solution phase soft-x-ray spectroscopy. Struct. Dyn. 2015;2:054301. doi: 10.1063/1.4928715. PubMed DOI PMC
Fondell M, et al. Time-resolved soft X-ray absorption spectroscopy in transmission mode on liquids at MHz repetition rates. Struct. Dyn. 2017;4:054902. doi: 10.1063/1.4993755. PubMed DOI PMC
Galinis G, et al. Micrometer-thickness liquid sheet jets flowing in vacuum. Rev. Sci. Instrum. 2017;88:083117. doi: 10.1063/1.4990130. PubMed DOI
Obst L, et al. Efficient laser-driven proton acceleration from cylindrical and planar cryogenic hydrogen jets. Sci. Rep. 2017;7:10248. doi: 10.1038/s41598-017-10589-3. PubMed DOI PMC
Gañán-Calvo AM. Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Phys. Rev. Lett. 1998;80:285. doi: 10.1103/PhysRevLett.80.285. DOI
Trebbin M, et al. Microfluidic liquid jet system with compatibility for atmospheric and high-vacuum conditions. Lab. Chip. 2014;14:1733. doi: 10.1039/C3LC51363G. PubMed DOI
Taylor G. Formation of thin flat sheets of water. Proc. R. Soc. Lond. A. 1960;259:1.
Hasson, D. & Peck, R. E. Thickness distribution in a sheet formed by impinging jets. AIChE J. 10, 752–754 (1964).
Bush JWM, Hasha AE. On the collision of laminar jets: fluid chains and fishbones. J. Fluid. Mech. 2004;511:285. doi: 10.1017/S002211200400967X. DOI
Choo Y, Kang B. Parametric study on impinging-jet liquid sheet thickness distribution using an interferometric method. Exp. Fluids. 2001;31:56. doi: 10.1007/s003480000258. DOI
Sanjay V, Das AK. Formation of liquid chain by collision of two laminar jets. Phys. Fluids. 2017;29:112101. doi: 10.1063/1.4998288. DOI
Faubel, M., Schlemmer, S. & Toennies, J. P. A molecular beam study of the evaporation of water from a liquid jet. Z. Phys. D Atoms Mol. Clust. 10, 269–277 (1988).
Ganan-Calvo, et al. Liquid capillary micro/nanojets in free-jet expansion. Small. 2010;6:822. doi: 10.1002/smll.200901786. PubMed DOI
Stenzel, O. The Physics of Thin Film Optical Spectra (Springer, Berlin, 2015).
Daimon M, Masumura A. Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region. Appl. Opt. 2007;46:3811–3820. doi: 10.1364/AO.46.003811. PubMed DOI
Max JJ, Chapados C. Isotope effects in liquid water by infrared spectroscopy. III. H2O and D2O spectra from 6000 to 0cm−1. J. Chem. Phys. 2009;131:184505. doi: 10.1063/1.3258646. PubMed DOI
X-ray spectroscopy station for sample characterization at ELI Beamlines
Imaging of Chemical Kinetics at the Water-Water Interface in a Free-Flowing Liquid Flat-Jet
Silver nanoparticles by atomic vapour deposition on an alcohol micro-jet