Silver nanoparticles by atomic vapour deposition on an alcohol micro-jet
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article
PubMed
36132097
PubMed Central
PMC9418456
DOI
10.1039/c9na00347a
PII: c9na00347a
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
We achieved sputter deposition of silver atoms onto liquid alcohols by injection of solvents into vacuum via a liquid microjet. Mixing silver atoms into ethanol by this method produced metallic silver nanoparticles. These had a broad, log-normal size distribution, with median size between 3.3 ± 1.4 nm and 2.0 ± 0.7 nm, depending on experiment geometry; and a broad plasmon absorption band centred around 450 nm. We also deposited silver atoms into a solution of colloidal silica nanoparticles, generating silver-decorated silica particles with consistent decoration of almost one silver particle to each silica sphere. The silver-silica mixture showed increased colloidal stability and yield of silver, along with a narrowed size distribution and a narrower plasmon band blue-shifted to 410 nm. Significant methanol loss of 1.65 × 10-7 mol MeOH per g per s from the mature silver-silica solutions suggests we have reproduced known silica supported silver catalysts. The excellent distribution of silver on each silica sphere shows this technique has potential to improve the distribution of catalytically active particles in supported catalysts.
Department of Engineering University of Leicester Leicester UK
Department of Physics and Astronomy University of Leicester Leicester UK
See more in PubMed
Zhao P. Li N. Astruc D. Coord. Chem. Rev. 2013;257:638–665. doi: 10.1016/j.ccr.2012.09.002. DOI
Dreaden E. C. Alkilany A. M. Huang X. Murphy C. J. El-Sayed M. a. Chem. Soc. Rev. 2012;41:2740. doi: 10.1039/C1CS15237H. PubMed DOI PMC
Jing L. Kershaw S. V. Li Y. Huang X. Li Y. Rogach A. L. Gao M. Chem. Rev. 2016;116:10623–10730. doi: 10.1021/acs.chemrev.6b00041. PubMed DOI
De Trizio L. Manna L. Chem. Rev. 2016;116:10852–10887. doi: 10.1021/acs.chemrev.5b00739. PubMed DOI PMC
Wang F. Dong A. Buhro W. E. Chem. Rev. 2016;116:10888–10933. doi: 10.1021/acs.chemrev.5b00701. PubMed DOI
Boles M. A. Engel M. Talapin D. V. Chem. Rev. 2016;116:11220–11289. doi: 10.1021/acs.chemrev.6b00196. PubMed DOI
Talapin D. V. Shevchenko E. V. Chem. Rev. 2016;116:10343–10345. doi: 10.1021/acs.chemrev.6b00566. PubMed DOI
Gilroy K. D. Ruditskiy A. Peng H.-C. Qin D. Xia Y. Chem. Rev. 2016;116:10414–10472. doi: 10.1021/acs.chemrev.6b00211. PubMed DOI
Jin R. Zeng C. Zhou M. Chen Y. Chem. Rev. 2016;116:10346–10413. doi: 10.1021/acs.chemrev.5b00703. PubMed DOI
Wang X. Feng J. Bai Y. Zhang Q. Yin Y. Chem. Rev. 2016;116:10983–11060. doi: 10.1021/acs.chemrev.5b00731. PubMed DOI
Nasilowski M. Mahler B. Lhuillier E. Ithurria S. Dubertret B. Chem. Rev. 2016;116:10934–10982. doi: 10.1021/acs.chemrev.6b00164. PubMed DOI
Reiss P. Carrière M. Lincheneau C. Vaure L. Tamang S. Chem. Rev. 2016;116:10731–10819. doi: 10.1021/acs.chemrev.6b00116. PubMed DOI
Pietryga J. M. Park Y.-S. Lim J. Fidler A. F. Bae W. K. Brovelli S. Klimove V. I. Chem. Rev. 2016;116:10513–10622. doi: 10.1021/acs.chemrev.6b00169. PubMed DOI
Wu L. Mendoza-Garcia A. Li Q. Sun S. Chem. Rev. 2016;116:10473–10512. doi: 10.1021/acs.chemrev.5b00687. PubMed DOI
Bastús N. Merkoçi F. Piella J. Puntes V. Chem. Mater. 2014;26:2836. doi: 10.1021/cm500316k. DOI
Sun Y. Chem. Soc. Rev. 2013;42:2497–2511. doi: 10.1039/C2CS35289C. PubMed DOI
Tang Y. Ouyang M. Nat. Mater. 2007;6:754–759. doi: 10.1038/nmat1982. PubMed DOI
Yin Y. Alivisatos A. P. Nature. 2005;437:664–670. doi: 10.1038/nature04165. PubMed DOI
Wang X. Zhuang J. Peng Q. Li Y. Nature. 2005;437:121–124. doi: 10.1038/nature03968. PubMed DOI
Min Y. Akbulut M. Kristiansen K. Golan Y. Israelachvili J. Nat. Mater. 2008;7:527–538. doi: 10.1038/nmat2206. PubMed DOI
You H. Yang S. Ding B. Yang H. Chem. Soc. Rev. 2013;42:2880–2904. doi: 10.1039/C2CS35319A. PubMed DOI
Xia Y. Xiong Y. Lim B. Skrabalak S. E. Angew. Chem., Int. Ed. 2009;48:60–103. doi: 10.1002/anie.200802248. PubMed DOI PMC
Jones M. R. Osberg K. D. MacFarlane R. J. Langille M. R. Mirkin C. A. Chem. Rev. 2011;111:3736–3827. doi: 10.1021/cr1004452. PubMed DOI
Murphy C. J. Sau T. K. Gole A. M. Orendorff C. J. Gao J. Gou L. Hunyadi S. E. Li T. J. Phys. Chem. B. 2005;109:13857–13870. doi: 10.1021/jp0516846. PubMed DOI
Klabunde K. J. Efner H. F. Satek L. Donley W. J. Organomet. Chem. 1974;71:309–313. doi: 10.1016/S0022-328X(00)95163-5. DOI
Stoeva S. Klabunde K. J. Sorensen C. M. Dragieva I. J. Am. Chem. Soc. 2002;124:2305–2311. doi: 10.1021/ja012076g. PubMed DOI
Smetana A. B. Klabunde K. J. Sorensen C. M. J. Colloid Interface Sci. 2005;284:521–526. doi: 10.1016/j.jcis.2004.10.038. PubMed DOI
Smetana A. B., Ph.D. thesis, Kansas State University, 2006
Li D. Wang C. Tripkovic D. Sun S. Markovic N. M. Stamenkovic V. R. ACS Catal. 2012;2:1358–1362. doi: 10.1021/cs300219j. DOI
Amendola V. Meneghetti M. Phys. Chem. Chem. Phys. 2009:3805–3821. doi: 10.1039/B900654K. PubMed DOI
Amendola V. Polizzi S. Meneghetti M. Langmuir. 2007;23:6766–6770. doi: 10.1021/la0637061. PubMed DOI
Amendola V. Rizzi G. A. Polizzi S. Meneghetti M. J. Phys. Chem. B. 2005;109:23125–23128. doi: 10.1021/jp055783v. PubMed DOI
Swiatkowska-warkocka Z. Koga K. Kawaguchi K. Wang H. Pyatenko A. Koshizaki N. RSC Adv. 2013;3:79–83. doi: 10.1039/C2RA22119E. DOI
Werner D. Hashimoto S. Tomita T. Matsuo S. Makita Y. J. Phys. Chem. C. 2008;112:1321–1329. doi: 10.1021/jp075401g. DOI
Jin R. Cao Y. C. Hao E. Me G. S. Schatz G. C. Mirkin C. A. Nature. 2003;425:487–490. doi: 10.1038/nature02020. PubMed DOI
Barankin M. D. Creyghton Y. Schmidt-Ott A. J. Nanopart. Res. 2006;8:511–517. doi: 10.1007/s11051-005-9013-1. DOI
Kortshagen U. R. Sankaran R. M. Pereira R. N. Girshick S. L. Wu J. J. Aydil E. S. Chem. Rev. 2016;116:11061–11127. doi: 10.1021/acs.chemrev.6b00039. PubMed DOI
Chiang W. H. Richmonds C. Sankaran R. M. Plasma Sci. Technol. 2010;19:034011. doi: 10.1088/0963-0252/19/3/034011. DOI
Belmonte T. Arnoult G. Henrion G. Gries T. Belmonte T. Arnoult G. Henrion G. Nanoscience T. G. J. Phys. D: Appl. Phys. 2011;44:363001. doi: 10.1088/0022-3727/44/36/363001. DOI
Patel J. Němcová L. Maguire P. Graham W. G. Mariotti D. Nanotechnology. 2013;24:245604. doi: 10.1088/0957-4484/24/24/245604. PubMed DOI
Mariotti D. Sankaran R. M. J. Phys. D: Appl. Phys. 2010;43:323001. doi: 10.1088/0022-3727/43/32/323001. DOI
Marechal N. Quesnel E. Pauleau Y. Thin Solid Films. 1994;241:34–38. doi: 10.1016/0040-6090(94)90391-3. DOI
Gnaser H. Oechsner H. Nucl. Instrum. Methods Phys. Res., Sect. B. 1991;58:438–442. doi: 10.1016/0168-583X(91)95882-E. DOI
Williams P. Surf. Sci. 1979;90:588–634. doi: 10.1016/0039-6028(79)90363-7. DOI
Torimoto T. Okazaki K.-i. Kiyama T. Hirahara K. Tanaka N. Kuwabata S. Appl. Phys. Lett. 2006;89:243117. doi: 10.1063/1.2404975. DOI
Wender H. Migowski P. Feil A. F. Teixeira S. R. Dupont J. Coord. Chem. Rev. 2013;257:2468–2483. doi: 10.1016/j.ccr.2013.01.013. DOI
Wender H. Gonçalves R. J. Phys. Chem. C. 2011;115:16362–16367. doi: 10.1021/jp205390d. DOI
Wender H. de Oliveira L. Feil A. Chem. Commun. 2010;46:7019–7021. doi: 10.1039/C0CC01353F. PubMed DOI
Wender H. de Oliveira L. J. Phys. Chem. C. 2010;114:11764–11768. doi: 10.1021/jp102231x. DOI
Carette X. Debièvre B. Cornil D. Cornil J. Leclère P. Maes B. Gautier N. Gautron E. El Mel A.-A. Raquez J.-M. Konstantinidis S. J. Phys. Chem. C. 2018;122:26605–26612. doi: 10.1021/acs.jpcc.8b06987. DOI
Nguyen M. T. Zhang H. Deng L. Tokunaga T. Yonezawa T. Langmuir. 2017;33:12389–12397. doi: 10.1021/acs.langmuir.7b03194. PubMed DOI
Vanecht E. Binnemans K. Seo J. W. Stappersb L. Fransaerb J. Phys. Chem. Chem. Phys. 2011;13:13565–13571. doi: 10.1039/C1CP20552H. PubMed DOI
Foppa L. Luza L. Gual A. Weibel D. E. Eberhardt D. Teixeira S. R. Dupont J. Dalton Trans. 2015;44:2827–2834. doi: 10.1039/C4DT03039G. PubMed DOI
Hatakeyama Y. Judai K. Onishi K. Takahashi S. Kimurab S. Nishikawa K. Phys. Chem. Chem. Phys. 2016;18:2339–2349. doi: 10.1039/C5CP04123F. PubMed DOI
Faubel M. Steiner B. Toennies J. P. J. Chem. Phys. 1997;106:9013. doi: 10.1063/1.474034. DOI
Nathanson G. M. Annu. Rev. Phys. Chem. 2004;55:231–255. doi: 10.1146/annurev.physchem.55.091602.094357. PubMed DOI
Winter B. Weber R. Hertel I. J. Am. Chem. Soc. 2005;127:7203–7214. doi: 10.1021/ja042908l. PubMed DOI
Brown M. A. Beloqui Redondo A. Sterrer M. Winter B. Pacchioni G. Abbas Z. van Bokhoven J. A. Nano Lett. 2013;13:5403–5407. doi: 10.1021/nl402957y. PubMed DOI
Küpper J. Göttlicher P. Kuhn M. Mills G. Münnich A. Szuba J. Ginn H. M. Laurus T. Gumprecht L. Shoeman R. L. Andreasson J. Silenzi A. Vagovic P. Al-Qudami N. Botha S. Mariani V. Lahey-Rudolph J. M. Frank M. Morgan A. Villanueva-Perez P. Bajt S. Giewekemeyer K. Schmidt M. Wrona K. Shi X. Seuring C. Xu C. Sarrou I. Schönherr R. Zhang J. Mancuso A. P. Trebbin M. Klyuev A. Fromme P. Awel S. Imlau S. Le Cong K. Doak R. B. Kim Y. Sikorski M. Yefanov O. Kupitz C. Abbey B. Aplin S. Round A. Holmes S. Nugent K. A. Hauf S. Aepfelbacher M. Nuguid T. Monteiro D. C. F. Oberthür D. Pandey S. White T. A. Werner N. Adriano L. Metz M. Safenreiter T. Fleckenstein H. Gevorkov Y. Trunk U. Graceffa R. Kobe B. Mühlig K. Domaracky M. Brehm W. Schulz J. Xavier P. L. Boukhelef D. Dörner K. Munke A. Nette J. Darmanin C. Messerschmidt M. Letrun R. Zatsepin N. Fangohr H. Schubert R. Betzel C. Shelby M. L. Sztuk-Dambietz J. Wiedorn M. O. Bielecki J. Knoška J. Redecke L. Barty A. Bari S. Graafsma H. Riekehr W. M. Du Y. Poehlsen J. Chapman H. Rohde H. Allahgholi A. Horke D. A. Coleman M. A. Gañán-Calvo A. M. Orville A. M. Ayyer K. Hajdu J. Hunter M. S. Perbandt M. Stern S. Michelat T. Pena G. Schmitt B. Cruz-Mazo F. Sato T. Danilevski C. Bean R. Cheviakov I. Tolstikova A. Maia F. R. N. C. Stan C. A. Ve T. Seibert M. M. Kaukher A. Brockhauser S. Heymann M. Barák I. Weinhausen B. Mezza D. Sellberg J. A. Previtali G. Maia L. Greiffenberg D. Nat. Commun. 2018;9:1–11. doi: 10.1038/s41467-017-02088-w. PubMed DOI PMC
Koralek J. D. Bechtel H. A. Curry C. B. Cordones A. A. DePonte D. P. Moeller S. P. Sperling P. Toleikis S. Kim J. B. Glenzer S. H. Kern J. F. BrÅŕža P. Chen Z. Nat. Commun. 2018;9:1–8. doi: 10.1038/s41467-017-02088-w. PubMed DOI PMC
van Hoeve W. Gekle S. Snoeijer J. Versluis M. Brenner M. Lohse D. Phys. Fluids. 2002;22:122003. doi: 10.1063/1.3524533. DOI
von Haeften K. and Galinis G., Reaction by combination of gas-phase and wet-chemical methods, 2013
Paramelle D. Sadovoy A. Gorelik S. Free P. Hobley J. Fernig D. G. Analyst. 2014;139:4855–4861. doi: 10.1039/C4AN00978A. PubMed DOI
Bayram S. Zahr O. K. Blum A. S. RSC Adv. 2015;5:6553–6559. doi: 10.1039/C4RA09667C. DOI
Wiley B. J. Im S. H. Li Z.-Y. McLellan J. Siekkinen A. Xia Y. J. Phys. Chem. B. 2006;110:15666–15675. doi: 10.1021/jp0608628. PubMed DOI
Wu J. Zhao X. Yan J. Häkkinen H. Edwards A. J. Yang H. Zheng N. Wang Y. Tang Z. Wang D. Xu C. Huang H. Lehtovaara L. Chen X. Gu L. Li G. Dittrich B. Nat. Commun. 2016;7:1–8. PubMed PMC
Santillán J. M. J. Scaffardi L. B. Schinca D. C. J. Phys. D: Appl. Phys. 2011;44:105104. doi: 10.1088/0022-3727/44/10/105104. DOI
Chatterjee K. Banerjee S. Chakravorty D. Phys. Rev. B: Condens. Matter Mater. Phys. 2002;66:085421. doi: 10.1103/PhysRevB.66.085421. DOI
Peng S. McMahon J. M. Schatz G. C. Gray S. K. Sun Y. Proc. Natl. Acad. Sci. U. S. A. 2010;107:14530–14534. doi: 10.1073/pnas.1007524107. PubMed DOI PMC
Simo A. Polte J. Pfänder N. Vainio U. Emmerling F. Rademann K. J. Am. Chem. Soc. 2012;134:18824–18833. doi: 10.1021/ja309034n. PubMed DOI
Busto N. García B. Leal J. M. Giovanetti L. J. Buceta D. Barone G. Requejo F. G. Domínguez F. López-Quintela M. A. Angew. Chem., Int. Ed. 2015;54:7612–7616. doi: 10.1002/anie.201502917. PubMed DOI
Sherry L. Chang S.-h. Schatz G. Nano Lett. 2005;5:2034–2038. doi: 10.1021/nl0515753. PubMed DOI
Malinsky M. D. Kelly K. L. Schatz G. C. Duyne R. P. J. Phys. Chem. B. 2001;105:2343–2350. doi: 10.1021/jp002906x. DOI
Mogensen K. Kneipp K. J. Phys. Chem. C. 2014;118:28075. doi: 10.1021/jp505632n. DOI
Raza S. Yan W. Stenger N. Wubs M. Mortensen N. A. Opt. Express. 2013;21:27344–27355. doi: 10.1364/OE.21.027344. PubMed DOI
Waterhouse G. I. N. Bowmaker G. A. Metson J. B. Appl. Surf. Sci. 2003;214:36–51. doi: 10.1016/S0169-4332(03)00350-7. DOI
Qayyum E. Castillo V. A. Warrington K. Barakat M. A. Kuhn J. N. Catal. Commun. 2012;28:128–133. doi: 10.1016/j.catcom.2012.08.026. DOI
Plessers E. Stassen I. Sree S. P. Janssen K. P. Yuan H. Martens J. Hofkens J. De Vos D. Roeffaers M. B. ACS Catal. 2015;5:6690–6695. doi: 10.1021/acscatal.5b02119. PubMed DOI PMC
Kiasat A. R. Mirzajani R. Ataeian F. Fallah-Mehrjardi M. Chin. Chem. Lett. 2010;21:1015–1019. doi: 10.1016/j.cclet.2010.05.024. DOI
Zhai H. J. Sun D. W. Wang H. S. J. Nanosci. Nanotechnol. 2006;6:1968–1972. doi: 10.1166/jnn.2006.320. PubMed DOI
Raji V. Chakraborty M. Parikh P. A. Ind. Eng. Chem. Res. 2012;51:5691–5698. doi: 10.1021/ie2027603. DOI