• This record comes from PubMed

Silver nanoparticles by atomic vapour deposition on an alcohol micro-jet

. 2019 Oct 09 ; 1 (10) : 4041-4051. [epub] 20190906

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection

Document type Journal Article

We achieved sputter deposition of silver atoms onto liquid alcohols by injection of solvents into vacuum via a liquid microjet. Mixing silver atoms into ethanol by this method produced metallic silver nanoparticles. These had a broad, log-normal size distribution, with median size between 3.3 ± 1.4 nm and 2.0 ± 0.7 nm, depending on experiment geometry; and a broad plasmon absorption band centred around 450 nm. We also deposited silver atoms into a solution of colloidal silica nanoparticles, generating silver-decorated silica particles with consistent decoration of almost one silver particle to each silica sphere. The silver-silica mixture showed increased colloidal stability and yield of silver, along with a narrowed size distribution and a narrower plasmon band blue-shifted to 410 nm. Significant methanol loss of 1.65 × 10-7 mol MeOH per g per s from the mature silver-silica solutions suggests we have reproduced known silica supported silver catalysts. The excellent distribution of silver on each silica sphere shows this technique has potential to improve the distribution of catalytically active particles in supported catalysts.

See more in PubMed

Zhao P. Li N. Astruc D. Coord. Chem. Rev. 2013;257:638–665. doi: 10.1016/j.ccr.2012.09.002. DOI

Dreaden E. C. Alkilany A. M. Huang X. Murphy C. J. El-Sayed M. a. Chem. Soc. Rev. 2012;41:2740. doi: 10.1039/C1CS15237H. PubMed DOI PMC

Jing L. Kershaw S. V. Li Y. Huang X. Li Y. Rogach A. L. Gao M. Chem. Rev. 2016;116:10623–10730. doi: 10.1021/acs.chemrev.6b00041. PubMed DOI

De Trizio L. Manna L. Chem. Rev. 2016;116:10852–10887. doi: 10.1021/acs.chemrev.5b00739. PubMed DOI PMC

Wang F. Dong A. Buhro W. E. Chem. Rev. 2016;116:10888–10933. doi: 10.1021/acs.chemrev.5b00701. PubMed DOI

Boles M. A. Engel M. Talapin D. V. Chem. Rev. 2016;116:11220–11289. doi: 10.1021/acs.chemrev.6b00196. PubMed DOI

Talapin D. V. Shevchenko E. V. Chem. Rev. 2016;116:10343–10345. doi: 10.1021/acs.chemrev.6b00566. PubMed DOI

Gilroy K. D. Ruditskiy A. Peng H.-C. Qin D. Xia Y. Chem. Rev. 2016;116:10414–10472. doi: 10.1021/acs.chemrev.6b00211. PubMed DOI

Jin R. Zeng C. Zhou M. Chen Y. Chem. Rev. 2016;116:10346–10413. doi: 10.1021/acs.chemrev.5b00703. PubMed DOI

Wang X. Feng J. Bai Y. Zhang Q. Yin Y. Chem. Rev. 2016;116:10983–11060. doi: 10.1021/acs.chemrev.5b00731. PubMed DOI

Nasilowski M. Mahler B. Lhuillier E. Ithurria S. Dubertret B. Chem. Rev. 2016;116:10934–10982. doi: 10.1021/acs.chemrev.6b00164. PubMed DOI

Reiss P. Carrière M. Lincheneau C. Vaure L. Tamang S. Chem. Rev. 2016;116:10731–10819. doi: 10.1021/acs.chemrev.6b00116. PubMed DOI

Pietryga J. M. Park Y.-S. Lim J. Fidler A. F. Bae W. K. Brovelli S. Klimove V. I. Chem. Rev. 2016;116:10513–10622. doi: 10.1021/acs.chemrev.6b00169. PubMed DOI

Wu L. Mendoza-Garcia A. Li Q. Sun S. Chem. Rev. 2016;116:10473–10512. doi: 10.1021/acs.chemrev.5b00687. PubMed DOI

Bastús N. Merkoçi F. Piella J. Puntes V. Chem. Mater. 2014;26:2836. doi: 10.1021/cm500316k. DOI

Sun Y. Chem. Soc. Rev. 2013;42:2497–2511. doi: 10.1039/C2CS35289C. PubMed DOI

Tang Y. Ouyang M. Nat. Mater. 2007;6:754–759. doi: 10.1038/nmat1982. PubMed DOI

Yin Y. Alivisatos A. P. Nature. 2005;437:664–670. doi: 10.1038/nature04165. PubMed DOI

Wang X. Zhuang J. Peng Q. Li Y. Nature. 2005;437:121–124. doi: 10.1038/nature03968. PubMed DOI

Min Y. Akbulut M. Kristiansen K. Golan Y. Israelachvili J. Nat. Mater. 2008;7:527–538. doi: 10.1038/nmat2206. PubMed DOI

You H. Yang S. Ding B. Yang H. Chem. Soc. Rev. 2013;42:2880–2904. doi: 10.1039/C2CS35319A. PubMed DOI

Xia Y. Xiong Y. Lim B. Skrabalak S. E. Angew. Chem., Int. Ed. 2009;48:60–103. doi: 10.1002/anie.200802248. PubMed DOI PMC

Jones M. R. Osberg K. D. MacFarlane R. J. Langille M. R. Mirkin C. A. Chem. Rev. 2011;111:3736–3827. doi: 10.1021/cr1004452. PubMed DOI

Murphy C. J. Sau T. K. Gole A. M. Orendorff C. J. Gao J. Gou L. Hunyadi S. E. Li T. J. Phys. Chem. B. 2005;109:13857–13870. doi: 10.1021/jp0516846. PubMed DOI

Klabunde K. J. Efner H. F. Satek L. Donley W. J. Organomet. Chem. 1974;71:309–313. doi: 10.1016/S0022-328X(00)95163-5. DOI

Stoeva S. Klabunde K. J. Sorensen C. M. Dragieva I. J. Am. Chem. Soc. 2002;124:2305–2311. doi: 10.1021/ja012076g. PubMed DOI

Smetana A. B. Klabunde K. J. Sorensen C. M. J. Colloid Interface Sci. 2005;284:521–526. doi: 10.1016/j.jcis.2004.10.038. PubMed DOI

Smetana A. B., Ph.D. thesis, Kansas State University, 2006

Li D. Wang C. Tripkovic D. Sun S. Markovic N. M. Stamenkovic V. R. ACS Catal. 2012;2:1358–1362. doi: 10.1021/cs300219j. DOI

Amendola V. Meneghetti M. Phys. Chem. Chem. Phys. 2009:3805–3821. doi: 10.1039/B900654K. PubMed DOI

Amendola V. Polizzi S. Meneghetti M. Langmuir. 2007;23:6766–6770. doi: 10.1021/la0637061. PubMed DOI

Amendola V. Rizzi G. A. Polizzi S. Meneghetti M. J. Phys. Chem. B. 2005;109:23125–23128. doi: 10.1021/jp055783v. PubMed DOI

Swiatkowska-warkocka Z. Koga K. Kawaguchi K. Wang H. Pyatenko A. Koshizaki N. RSC Adv. 2013;3:79–83. doi: 10.1039/C2RA22119E. DOI

Werner D. Hashimoto S. Tomita T. Matsuo S. Makita Y. J. Phys. Chem. C. 2008;112:1321–1329. doi: 10.1021/jp075401g. DOI

Jin R. Cao Y. C. Hao E. Me G. S. Schatz G. C. Mirkin C. A. Nature. 2003;425:487–490. doi: 10.1038/nature02020. PubMed DOI

Barankin M. D. Creyghton Y. Schmidt-Ott A. J. Nanopart. Res. 2006;8:511–517. doi: 10.1007/s11051-005-9013-1. DOI

Kortshagen U. R. Sankaran R. M. Pereira R. N. Girshick S. L. Wu J. J. Aydil E. S. Chem. Rev. 2016;116:11061–11127. doi: 10.1021/acs.chemrev.6b00039. PubMed DOI

Chiang W. H. Richmonds C. Sankaran R. M. Plasma Sci. Technol. 2010;19:034011. doi: 10.1088/0963-0252/19/3/034011. DOI

Belmonte T. Arnoult G. Henrion G. Gries T. Belmonte T. Arnoult G. Henrion G. Nanoscience T. G. J. Phys. D: Appl. Phys. 2011;44:363001. doi: 10.1088/0022-3727/44/36/363001. DOI

Patel J. Němcová L. Maguire P. Graham W. G. Mariotti D. Nanotechnology. 2013;24:245604. doi: 10.1088/0957-4484/24/24/245604. PubMed DOI

Mariotti D. Sankaran R. M. J. Phys. D: Appl. Phys. 2010;43:323001. doi: 10.1088/0022-3727/43/32/323001. DOI

Marechal N. Quesnel E. Pauleau Y. Thin Solid Films. 1994;241:34–38. doi: 10.1016/0040-6090(94)90391-3. DOI

Gnaser H. Oechsner H. Nucl. Instrum. Methods Phys. Res., Sect. B. 1991;58:438–442. doi: 10.1016/0168-583X(91)95882-E. DOI

Williams P. Surf. Sci. 1979;90:588–634. doi: 10.1016/0039-6028(79)90363-7. DOI

Torimoto T. Okazaki K.-i. Kiyama T. Hirahara K. Tanaka N. Kuwabata S. Appl. Phys. Lett. 2006;89:243117. doi: 10.1063/1.2404975. DOI

Wender H. Migowski P. Feil A. F. Teixeira S. R. Dupont J. Coord. Chem. Rev. 2013;257:2468–2483. doi: 10.1016/j.ccr.2013.01.013. DOI

Wender H. Gonçalves R. J. Phys. Chem. C. 2011;115:16362–16367. doi: 10.1021/jp205390d. DOI

Wender H. de Oliveira L. Feil A. Chem. Commun. 2010;46:7019–7021. doi: 10.1039/C0CC01353F. PubMed DOI

Wender H. de Oliveira L. J. Phys. Chem. C. 2010;114:11764–11768. doi: 10.1021/jp102231x. DOI

Carette X. Debièvre B. Cornil D. Cornil J. Leclère P. Maes B. Gautier N. Gautron E. El Mel A.-A. Raquez J.-M. Konstantinidis S. J. Phys. Chem. C. 2018;122:26605–26612. doi: 10.1021/acs.jpcc.8b06987. DOI

Nguyen M. T. Zhang H. Deng L. Tokunaga T. Yonezawa T. Langmuir. 2017;33:12389–12397. doi: 10.1021/acs.langmuir.7b03194. PubMed DOI

Vanecht E. Binnemans K. Seo J. W. Stappersb L. Fransaerb J. Phys. Chem. Chem. Phys. 2011;13:13565–13571. doi: 10.1039/C1CP20552H. PubMed DOI

Foppa L. Luza L. Gual A. Weibel D. E. Eberhardt D. Teixeira S. R. Dupont J. Dalton Trans. 2015;44:2827–2834. doi: 10.1039/C4DT03039G. PubMed DOI

Hatakeyama Y. Judai K. Onishi K. Takahashi S. Kimurab S. Nishikawa K. Phys. Chem. Chem. Phys. 2016;18:2339–2349. doi: 10.1039/C5CP04123F. PubMed DOI

Faubel M. Steiner B. Toennies J. P. J. Chem. Phys. 1997;106:9013. doi: 10.1063/1.474034. DOI

Nathanson G. M. Annu. Rev. Phys. Chem. 2004;55:231–255. doi: 10.1146/annurev.physchem.55.091602.094357. PubMed DOI

Winter B. Weber R. Hertel I. J. Am. Chem. Soc. 2005;127:7203–7214. doi: 10.1021/ja042908l. PubMed DOI

Brown M. A. Beloqui Redondo A. Sterrer M. Winter B. Pacchioni G. Abbas Z. van Bokhoven J. A. Nano Lett. 2013;13:5403–5407. doi: 10.1021/nl402957y. PubMed DOI

Küpper J. Göttlicher P. Kuhn M. Mills G. Münnich A. Szuba J. Ginn H. M. Laurus T. Gumprecht L. Shoeman R. L. Andreasson J. Silenzi A. Vagovic P. Al-Qudami N. Botha S. Mariani V. Lahey-Rudolph J. M. Frank M. Morgan A. Villanueva-Perez P. Bajt S. Giewekemeyer K. Schmidt M. Wrona K. Shi X. Seuring C. Xu C. Sarrou I. Schönherr R. Zhang J. Mancuso A. P. Trebbin M. Klyuev A. Fromme P. Awel S. Imlau S. Le Cong K. Doak R. B. Kim Y. Sikorski M. Yefanov O. Kupitz C. Abbey B. Aplin S. Round A. Holmes S. Nugent K. A. Hauf S. Aepfelbacher M. Nuguid T. Monteiro D. C. F. Oberthür D. Pandey S. White T. A. Werner N. Adriano L. Metz M. Safenreiter T. Fleckenstein H. Gevorkov Y. Trunk U. Graceffa R. Kobe B. Mühlig K. Domaracky M. Brehm W. Schulz J. Xavier P. L. Boukhelef D. Dörner K. Munke A. Nette J. Darmanin C. Messerschmidt M. Letrun R. Zatsepin N. Fangohr H. Schubert R. Betzel C. Shelby M. L. Sztuk-Dambietz J. Wiedorn M. O. Bielecki J. Knoška J. Redecke L. Barty A. Bari S. Graafsma H. Riekehr W. M. Du Y. Poehlsen J. Chapman H. Rohde H. Allahgholi A. Horke D. A. Coleman M. A. Gañán-Calvo A. M. Orville A. M. Ayyer K. Hajdu J. Hunter M. S. Perbandt M. Stern S. Michelat T. Pena G. Schmitt B. Cruz-Mazo F. Sato T. Danilevski C. Bean R. Cheviakov I. Tolstikova A. Maia F. R. N. C. Stan C. A. Ve T. Seibert M. M. Kaukher A. Brockhauser S. Heymann M. Barák I. Weinhausen B. Mezza D. Sellberg J. A. Previtali G. Maia L. Greiffenberg D. Nat. Commun. 2018;9:1–11. doi: 10.1038/s41467-017-02088-w. PubMed DOI PMC

Koralek J. D. Bechtel H. A. Curry C. B. Cordones A. A. DePonte D. P. Moeller S. P. Sperling P. Toleikis S. Kim J. B. Glenzer S. H. Kern J. F. BrÅŕža P. Chen Z. Nat. Commun. 2018;9:1–8. doi: 10.1038/s41467-017-02088-w. PubMed DOI PMC

van Hoeve W. Gekle S. Snoeijer J. Versluis M. Brenner M. Lohse D. Phys. Fluids. 2002;22:122003. doi: 10.1063/1.3524533. DOI

von Haeften K. and Galinis G., Reaction by combination of gas-phase and wet-chemical methods, 2013

Paramelle D. Sadovoy A. Gorelik S. Free P. Hobley J. Fernig D. G. Analyst. 2014;139:4855–4861. doi: 10.1039/C4AN00978A. PubMed DOI

Bayram S. Zahr O. K. Blum A. S. RSC Adv. 2015;5:6553–6559. doi: 10.1039/C4RA09667C. DOI

Wiley B. J. Im S. H. Li Z.-Y. McLellan J. Siekkinen A. Xia Y. J. Phys. Chem. B. 2006;110:15666–15675. doi: 10.1021/jp0608628. PubMed DOI

Wu J. Zhao X. Yan J. Häkkinen H. Edwards A. J. Yang H. Zheng N. Wang Y. Tang Z. Wang D. Xu C. Huang H. Lehtovaara L. Chen X. Gu L. Li G. Dittrich B. Nat. Commun. 2016;7:1–8. PubMed PMC

Santillán J. M. J. Scaffardi L. B. Schinca D. C. J. Phys. D: Appl. Phys. 2011;44:105104. doi: 10.1088/0022-3727/44/10/105104. DOI

Chatterjee K. Banerjee S. Chakravorty D. Phys. Rev. B: Condens. Matter Mater. Phys. 2002;66:085421. doi: 10.1103/PhysRevB.66.085421. DOI

Peng S. McMahon J. M. Schatz G. C. Gray S. K. Sun Y. Proc. Natl. Acad. Sci. U. S. A. 2010;107:14530–14534. doi: 10.1073/pnas.1007524107. PubMed DOI PMC

Simo A. Polte J. Pfänder N. Vainio U. Emmerling F. Rademann K. J. Am. Chem. Soc. 2012;134:18824–18833. doi: 10.1021/ja309034n. PubMed DOI

Busto N. García B. Leal J. M. Giovanetti L. J. Buceta D. Barone G. Requejo F. G. Domínguez F. López-Quintela M. A. Angew. Chem., Int. Ed. 2015;54:7612–7616. doi: 10.1002/anie.201502917. PubMed DOI

Sherry L. Chang S.-h. Schatz G. Nano Lett. 2005;5:2034–2038. doi: 10.1021/nl0515753. PubMed DOI

Malinsky M. D. Kelly K. L. Schatz G. C. Duyne R. P. J. Phys. Chem. B. 2001;105:2343–2350. doi: 10.1021/jp002906x. DOI

Mogensen K. Kneipp K. J. Phys. Chem. C. 2014;118:28075. doi: 10.1021/jp505632n. DOI

Raza S. Yan W. Stenger N. Wubs M. Mortensen N. A. Opt. Express. 2013;21:27344–27355. doi: 10.1364/OE.21.027344. PubMed DOI

Waterhouse G. I. N. Bowmaker G. A. Metson J. B. Appl. Surf. Sci. 2003;214:36–51. doi: 10.1016/S0169-4332(03)00350-7. DOI

Qayyum E. Castillo V. A. Warrington K. Barakat M. A. Kuhn J. N. Catal. Commun. 2012;28:128–133. doi: 10.1016/j.catcom.2012.08.026. DOI

Plessers E. Stassen I. Sree S. P. Janssen K. P. Yuan H. Martens J. Hofkens J. De Vos D. Roeffaers M. B. ACS Catal. 2015;5:6690–6695. doi: 10.1021/acscatal.5b02119. PubMed DOI PMC

Kiasat A. R. Mirzajani R. Ataeian F. Fallah-Mehrjardi M. Chin. Chem. Lett. 2010;21:1015–1019. doi: 10.1016/j.cclet.2010.05.024. DOI

Zhai H. J. Sun D. W. Wang H. S. J. Nanosci. Nanotechnol. 2006;6:1968–1972. doi: 10.1166/jnn.2006.320. PubMed DOI

Raji V. Chakraborty M. Parikh P. A. Ind. Eng. Chem. Res. 2012;51:5691–5698. doi: 10.1021/ie2027603. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...