Imaging of Chemical Kinetics at the Water-Water Interface in a Free-Flowing Liquid Flat-Jet

. 2022 May 04 ; 144 (17) : 7790-7795. [epub] 20220426

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35471014

We present chemical kinetics measurements of the luminol oxidation chemiluminescence (CL) reaction at the interface between two aqueous solutions, using liquid jet technology. Free-flowing liquid microjets are a relatively recent development that have found their way into a growing number of applications in spectroscopy and dynamics. A variant thereof, called flat-jet, is obtained when two cylindrical jets of a liquid are crossed, leading to a chain of planar leaf-shaped structures of the flowing liquid. We here show that in the first leaf of this chain, the fluids do not exhibit turbulent mixing, providing a clean interface between the liquids from the impinging jets. We also show, using the example of the luminol CL reaction, how this setup can be used to obtain kinetics information from friction-less flow and by circumventing the requirement for rapid mixing by intentionally suppressing all turbulent mixing and instead relying on diffusion.

Zobrazit více v PubMed

Faubel M.Photoionization and Photodetachment; Advanced Series in Physical Chemistry; World Scientific, 2000; Vol. 10; pp 634–690.

Faubel M.; Steiner B.; Toennies J. P. Photoelectron Spectroscopy of Liquid Water, Some Alcohols, and Pure Nonane in Free Micro Jets. J. Chem. Phys. 1997, 106, 9013–9031. 10.1063/1.474034. DOI

Faubel M.; Siefermann K. R.; Liu Y.; Abel B. Ultrafast Soft X-Ray Photoelectron Spectroscopy at Liquid Water Microjets. Acc. Chem. Res. 2012, 45, 120–130. 10.1021/ar200154w. PubMed DOI

Winter B.; Faubel M. Photoemission from Liquid Aqueous Solutions. Chem. Rev. 2006, 106, 1176–1211. 10.1021/cr040381p. PubMed DOI

Faubel M.; Schlemmer S.; Toennies J. P. A Molecular Beam Study of the Evaporation of Water from a Liquid Jet. Z. Phys. D: At., Mol. Clusters 1988, 10, 269–277. 10.1007/bf01384861. DOI

Ali H.; Seidel R.; Bergmann A.; Winter B. Electronic Structure of Aqueous-Phase Anatase Titanium Dioxide Nanoparticles Probed by Liquid Jet Photoelectron Spectroscopy. J. Mater. Chem. A 2019, 7, 6665–6675. 10.1039/c8ta09414d. DOI

Buttersack T.; Mason P. E.; McMullen R. S.; Martinek T.; Brezina K.; Hein D.; Ali H.; Kolbeck C.; Schewe C.; Malerz S.; Winter B.; Seidel R.; Marsalek O.; Jungwirth P.; Bradforth S. E. Valence and Core-Level X-Ray Photoelectron Spectroscopy of a Liquid Ammonia Microjet. J. Am. Chem. Soc. 2019, 141, 1838–1841. 10.1021/jacs.8b10942. PubMed DOI PMC

Fransson T.; Harada Y.; Kosugi N.; Besley N. A.; Winter B.; Rehr J. J.; Pettersson L. G. M.; Nilsson A. X-Ray and Electron Spectroscopy of Water. Chem. Rev. 2016, 116, 7551–7569. 10.1021/acs.chemrev.5b00672. PubMed DOI

Jungwirth P.; Winter B. Ions at Aqueous Interfaces: From Water Surface to Hydrated Proteins. Annu. Rev. Phys. Chem. 2008, 59, 343–366. 10.1146/annurev.physchem.59.032607.093749. PubMed DOI

Lewis T.; Faubel M.; Winter B.; Hemminger J. C. CO2 Capture in Amine-Based Aqueous Solution: Role of the Gas-Solution Interface. Angew. Chem., Int. Ed. 2011, 50, 10178–10181. 10.1002/anie.201101250. PubMed DOI

Winter B. Liquid Microjet for Photoelectron Spectroscopy. Nucl. Instrum. Methods Phys. Res., Sect. A 2009, 601, 139–150. 10.1016/j.nima.2008.12.108. DOI

Karashima S.; Yamamoto Y.-i.; Suzuki T. Ultrafast Internal Conversion and Solvation of Electrons in Water, Methanol, and Ethanol. J. Phys. Chem. Lett. 2019, 10, 4499–4504. 10.1021/acs.jpclett.9b01750. PubMed DOI

Suzuki T. Time-Resolved Photoelectron Spectroscopy of Non-Adiabatic Electronic Dynamics in Gas and Liquid Phases. Int. Rev. Phys. Chem. 2012, 31, 265–318. 10.1080/0144235x.2012.699346. DOI

Suzuki T. Ultrafast Photoelectron Spectroscopy of Aqueous Solutions. J. Chem. Phys. 2019, 151, 090901.10.1063/1.5098402. PubMed DOI

Ryazanov M.; Nesbitt D. J. Quantum-State-Resolved Studies of Aqueous Evaporation Dynamics: NO Ejection from a Liquid Water Microjet. J. Chem. Phys. 2019, 150, 044201.10.1063/1.5083050. PubMed DOI

Faust J. A.; Sobyra T. B.; Nathanson G. M. Gas–Microjet Reactive Scattering: Collisions of HCl and DCl with Cool Salty Water. J. Phys. Chem. Lett. 2016, 7, 730–735. 10.1021/acs.jpclett.5b02848. PubMed DOI

Hahn C.; Kann Z. R.; Faust J. A.; Skinner J. L.; Nathanson G. M. Super-Maxwellian Helium Evaporation from Pure and Salty Water. J. Chem. Phys. 2016, 144, 044707.10.1063/1.4940144. PubMed DOI

Lancaster D. K.; Johnson A. M.; Kappes K.; Nathanson G. M. Probing Gas–Liquid Interfacial Dynamics by Helium Evaporation from Hydrocarbon Liquids and Jet Fuels. J. Phys. Chem. C 2015, 119, 14613–14623. 10.1021/jp512392b. DOI

Sobyra T. B.; Melvin M. P.; Nathanson G. M. Liquid Microjet Measurements of the Entry of Organic Acids and Bases into Salty Water. J. Phys. Chem. C 2017, 121, 20911–20924. 10.1021/acs.jpcc.7b07887. DOI

Murdachaew G.; Nathanson G. M.; Halonen L. Deprotonation of Formic Acid in Collisions with a Liquid Water Surface Studied by Molecular Dynamics and Metadynamics Simulations. Phys. Chem. Chem. Phys. 2016, 18, 29756–29770. 10.1039/c6cp06071d. PubMed DOI

Faust J. A.; Nathanson G. M. Microjets and Coated Wheels: Versatile Tools for Exploring Collisions and Reactions at Gas–Liquid Interfaces. Chem. Soc. Rev. 2016, 45, 3609–3620. 10.1039/c6cs00079g. PubMed DOI

Jordan I.; Jain A.; Gaumnitz T.; Ma J.; Wörner H. J. Photoelectron Spectrometer for Liquid and Gas-Phase Attosecond Spectroscopy with Field-Free and Magnetic Bottle Operation Modes. Rev. Sci. Instrum. 2018, 89, 053103.10.1063/1.5011657. PubMed DOI

Yin Z.; Luu T. T.; Wörner H. J. Few-Cycle High-Harmonic Generation in Liquids: In-Operando Thickness Measurement of Flat Microjets. J. Phys.: Photonics 2020, 2, 044007.10.1088/2515-7647/abb0ef. DOI

Lancaster D. K.; Johnson A. M.; Burden D. K.; Wiens J. P.; Nathanson G. M. Inert Gas Scattering from Liquid Hydrocarbon Microjets. J. Phys. Chem. Lett. 2013, 4, 3045–3049. 10.1021/jz4015212. DOI

Artiglia L.; Edebeli J.; Orlando F.; Chen S.; Lee M.-T.; Corral Arroyo P.; Gilgen A.; Bartels-Rausch T.; Kleibert A.; Vazdar M.; Andres Carignano M.; Francisco J. S.; Shepson P. B.; Gladich I.; Ammann M. A Surface-Stabilized Ozonide Triggers Bromide Oxidation at the Aqueous Solution-Vapour Interface. Nat. Commun. 2017, 8, 700.10.1038/s41467-017-00823-x. PubMed DOI PMC

Thürmer S.; Seidel R.; Faubel M.; Eberhardt W.; Hemminger J. C.; Bradforth S. E.; Winter B. Photoelectron Angular Distributions from Liquid Water: Effects of Electron Scattering. Phys. Rev. Lett. 2013, 111, 173005.10.1103/physrevlett.111.173005. PubMed DOI

Galinis G.; Strucka J.; Barnard J. C. T.; Braun A.; Smith R. A.; Marangos J. P. Micrometer-Thickness Liquid Sheet Jets Flowing in Vacuum. Rev. Sci. Instrum. 2017, 88, 083117.10.1063/1.4990130. PubMed DOI

Koralek J. D.; Kim J. B.; Brůža P.; Curry C. B.; Chen Z.; Bechtel H. A.; Cordones A. A.; Sperling P.; Toleikis S.; Kern J. F.; Moeller S. P.; Glenzer S. H.; DePonte D. P. Generation and Characterization of Ultrathin Free-Flowing Liquid Sheets. Nat. Commun. 2018, 9, 1353.10.1038/s41467-018-03696-w. PubMed DOI PMC

Ekimova M.; Quevedo W.; Faubel M.; Wernet P.; Nibbering E. T. J. A Liquid Flatjet System for Solution Phase Soft-x-Ray Spectroscopy. Struct. Dyn. 2015, 2, 054301.10.1063/1.4928715. PubMed DOI PMC

Bush J. W. M.; Hasha A. E. On the Collision of Laminar Jets: Fluid Chains and Fishbones. J. Fluid Mech. 2004, 511, 285–310. 10.1017/s002211200400967x. DOI

Chen X.; Ma D.; Yang V.; Popinet S. High-Fidelity Simulations of Impinging Jet Atomization. Atomization Sprays 2013, 23, 1079–1101. 10.1615/atomizspr.2013007619. DOI

Atencia J.; Beebe D. J. Controlled Microfluidic Interfaces. Nature 2005, 437, 648–655. 10.1038/nature04163. PubMed DOI

Ismagilov R. F.; Stroock A. D.; Kenis P. J. A.; Whitesides G.; Stone H. A. Experimental and Theoretical Scaling Laws for Transverse Diffusive Broadening in Two-Phase Laminar Flows in Microchannels. Appl. Phys. Lett. 2000, 76, 2376–2378. 10.1063/1.126351. DOI

Song H.; Ismagilov R. F. Millisecond Kinetics on a Microfluidic Chip Using Nanoliters of Reagents. J. Am. Chem. Soc. 2003, 125, 14613–14619. 10.1021/ja0354566. PubMed DOI PMC

Rose A. L.; Waite T. D. Chemiluminescence of Luminol in the Presence of Iron(II) and Oxygen: Oxidation Mechanism and Implications for Its Analytical Use. Anal. Chem. 2001, 73, 5909–5920. 10.1021/ac015547q. PubMed DOI

Matsumoto R.; Yoshida K.; Matsuo R. Diffusion in Microchannel Analyzed by Chemiluminescence. J. Therm. Sci. Technol. 2013, 8, 448–459. 10.1299/jtst.8.448. DOI

Merenyi G.; Lind J.; Eriksen T. E. The Equilibrium Reaction of the Luminol Radical with Oxygen and the One-Electron-Reduction Potential of 5-Aminophthalazine-1,4-Dione. J. Phys. Chem. 1984, 88, 2320–2323. 10.1021/j150655a027. DOI

Merényi G.; Lind J.; Eriksen T. E. Luminol Chemiluminescence: Chemistry, Excitation, Emitter. J. Biolumin. Chemilumin 1990, 5, 53–56. 10.1002/bio.1170050111. PubMed DOI

Merenyi G.; Lind J.; Eriksen T. E. The Reactivity of Superoxide (O2-) and Its Abiulkity to Induce Chemiluminescence with Luminol. Photochem. Photobiol. 1985, 41, 203–208. 10.1111/j.1751-1097.1985.tb03472.x. DOI

Burdo T. G.; Seitz W. R. Mechanism of Cobalt Catalysis of Luminol Chemiluminescence. Anal. Chem. 1975, 47, 1639–1643. 10.1021/ac60359a019. DOI

Gaikwad A.; Silva M.; Pérez-Bendito D. Selective Stopped-Flow Determination of Manganese with Luminol in the Absence of Hydrogen Peroxide. Anal. Chim. Acta 1995, 302, 275–282. 10.1016/0003-2670(94)00497-a. DOI

Ojima H. In Advances in Catalytic Activation of Dioxygen by Metal Complexes; Simándi L. I., Ed.; Catalysis by Metal Complexes; Springer US, 2002.

Menzi S.; Knopp G.; Al Haddad A.; Augustin S.; Borca C.; Gashi D.; Huthwelker T.; James D.; Jin J.; Pamfilidis G.; Schnorr K.; Sun Z.; Wetter R.; Zhang Q.; Cirelli C. Generation and Simple Characterization of Flat, Liquid Jets. Rev. Sci. Instrum. 2020, 91, 105109.10.1063/5.0007228. PubMed DOI

O’Sullivan D. W.; Hanson A. K.; Kester D. R. Stopped Flow Luminol Chemiluminescence Determination of Fe(II) and Reducible Iron in Seawater at Subnanomolar Levels. Mar. Chem. 1995, 49, 65–77. 10.1016/0304-4203(94)00046-G. DOI

Steinfeld J. I.; Francisco J. S.; Hase W. L.. Chemical Kinetics and Dynamics, 2nd ed.; Pearson: Upper Saddle River, N.J, 1998.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...