Imaging of Chemical Kinetics at the Water-Water Interface in a Free-Flowing Liquid Flat-Jet
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35471014
PubMed Central
PMC9073938
DOI
10.1021/jacs.2c01232
Knihovny.cz E-zdroje
- MeSH
- difuze MeSH
- kinetika MeSH
- luminol * MeSH
- voda * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- luminol * MeSH
- voda * MeSH
We present chemical kinetics measurements of the luminol oxidation chemiluminescence (CL) reaction at the interface between two aqueous solutions, using liquid jet technology. Free-flowing liquid microjets are a relatively recent development that have found their way into a growing number of applications in spectroscopy and dynamics. A variant thereof, called flat-jet, is obtained when two cylindrical jets of a liquid are crossed, leading to a chain of planar leaf-shaped structures of the flowing liquid. We here show that in the first leaf of this chain, the fluids do not exhibit turbulent mixing, providing a clean interface between the liquids from the impinging jets. We also show, using the example of the luminol CL reaction, how this setup can be used to obtain kinetics information from friction-less flow and by circumventing the requirement for rapid mixing by intentionally suppressing all turbulent mixing and instead relying on diffusion.
Fritz Haber Institut der Max Planck Gesellschaft Faradayweg 4 6 14195 Berlin Germany
Institut für Physik und CINSaT Universität Kassel Heinrich Plett Straße 40 34132 Kassel Germany
Institute for Chemical Sciences and Engineering 1015 Lausanne Switzerland
Zobrazit více v PubMed
Faubel M.Photoionization and Photodetachment; Advanced Series in Physical Chemistry; World Scientific, 2000; Vol. 10; pp 634–690.
Faubel M.; Steiner B.; Toennies J. P. Photoelectron Spectroscopy of Liquid Water, Some Alcohols, and Pure Nonane in Free Micro Jets. J. Chem. Phys. 1997, 106, 9013–9031. 10.1063/1.474034. DOI
Faubel M.; Siefermann K. R.; Liu Y.; Abel B. Ultrafast Soft X-Ray Photoelectron Spectroscopy at Liquid Water Microjets. Acc. Chem. Res. 2012, 45, 120–130. 10.1021/ar200154w. PubMed DOI
Winter B.; Faubel M. Photoemission from Liquid Aqueous Solutions. Chem. Rev. 2006, 106, 1176–1211. 10.1021/cr040381p. PubMed DOI
Faubel M.; Schlemmer S.; Toennies J. P. A Molecular Beam Study of the Evaporation of Water from a Liquid Jet. Z. Phys. D: At., Mol. Clusters 1988, 10, 269–277. 10.1007/bf01384861. DOI
Ali H.; Seidel R.; Bergmann A.; Winter B. Electronic Structure of Aqueous-Phase Anatase Titanium Dioxide Nanoparticles Probed by Liquid Jet Photoelectron Spectroscopy. J. Mater. Chem. A 2019, 7, 6665–6675. 10.1039/c8ta09414d. DOI
Buttersack T.; Mason P. E.; McMullen R. S.; Martinek T.; Brezina K.; Hein D.; Ali H.; Kolbeck C.; Schewe C.; Malerz S.; Winter B.; Seidel R.; Marsalek O.; Jungwirth P.; Bradforth S. E. Valence and Core-Level X-Ray Photoelectron Spectroscopy of a Liquid Ammonia Microjet. J. Am. Chem. Soc. 2019, 141, 1838–1841. 10.1021/jacs.8b10942. PubMed DOI PMC
Fransson T.; Harada Y.; Kosugi N.; Besley N. A.; Winter B.; Rehr J. J.; Pettersson L. G. M.; Nilsson A. X-Ray and Electron Spectroscopy of Water. Chem. Rev. 2016, 116, 7551–7569. 10.1021/acs.chemrev.5b00672. PubMed DOI
Jungwirth P.; Winter B. Ions at Aqueous Interfaces: From Water Surface to Hydrated Proteins. Annu. Rev. Phys. Chem. 2008, 59, 343–366. 10.1146/annurev.physchem.59.032607.093749. PubMed DOI
Lewis T.; Faubel M.; Winter B.; Hemminger J. C. CO2 Capture in Amine-Based Aqueous Solution: Role of the Gas-Solution Interface. Angew. Chem., Int. Ed. 2011, 50, 10178–10181. 10.1002/anie.201101250. PubMed DOI
Winter B. Liquid Microjet for Photoelectron Spectroscopy. Nucl. Instrum. Methods Phys. Res., Sect. A 2009, 601, 139–150. 10.1016/j.nima.2008.12.108. DOI
Karashima S.; Yamamoto Y.-i.; Suzuki T. Ultrafast Internal Conversion and Solvation of Electrons in Water, Methanol, and Ethanol. J. Phys. Chem. Lett. 2019, 10, 4499–4504. 10.1021/acs.jpclett.9b01750. PubMed DOI
Suzuki T. Time-Resolved Photoelectron Spectroscopy of Non-Adiabatic Electronic Dynamics in Gas and Liquid Phases. Int. Rev. Phys. Chem. 2012, 31, 265–318. 10.1080/0144235x.2012.699346. DOI
Suzuki T. Ultrafast Photoelectron Spectroscopy of Aqueous Solutions. J. Chem. Phys. 2019, 151, 090901.10.1063/1.5098402. PubMed DOI
Ryazanov M.; Nesbitt D. J. Quantum-State-Resolved Studies of Aqueous Evaporation Dynamics: NO Ejection from a Liquid Water Microjet. J. Chem. Phys. 2019, 150, 044201.10.1063/1.5083050. PubMed DOI
Faust J. A.; Sobyra T. B.; Nathanson G. M. Gas–Microjet Reactive Scattering: Collisions of HCl and DCl with Cool Salty Water. J. Phys. Chem. Lett. 2016, 7, 730–735. 10.1021/acs.jpclett.5b02848. PubMed DOI
Hahn C.; Kann Z. R.; Faust J. A.; Skinner J. L.; Nathanson G. M. Super-Maxwellian Helium Evaporation from Pure and Salty Water. J. Chem. Phys. 2016, 144, 044707.10.1063/1.4940144. PubMed DOI
Lancaster D. K.; Johnson A. M.; Kappes K.; Nathanson G. M. Probing Gas–Liquid Interfacial Dynamics by Helium Evaporation from Hydrocarbon Liquids and Jet Fuels. J. Phys. Chem. C 2015, 119, 14613–14623. 10.1021/jp512392b. DOI
Sobyra T. B.; Melvin M. P.; Nathanson G. M. Liquid Microjet Measurements of the Entry of Organic Acids and Bases into Salty Water. J. Phys. Chem. C 2017, 121, 20911–20924. 10.1021/acs.jpcc.7b07887. DOI
Murdachaew G.; Nathanson G. M.; Halonen L. Deprotonation of Formic Acid in Collisions with a Liquid Water Surface Studied by Molecular Dynamics and Metadynamics Simulations. Phys. Chem. Chem. Phys. 2016, 18, 29756–29770. 10.1039/c6cp06071d. PubMed DOI
Faust J. A.; Nathanson G. M. Microjets and Coated Wheels: Versatile Tools for Exploring Collisions and Reactions at Gas–Liquid Interfaces. Chem. Soc. Rev. 2016, 45, 3609–3620. 10.1039/c6cs00079g. PubMed DOI
Jordan I.; Jain A.; Gaumnitz T.; Ma J.; Wörner H. J. Photoelectron Spectrometer for Liquid and Gas-Phase Attosecond Spectroscopy with Field-Free and Magnetic Bottle Operation Modes. Rev. Sci. Instrum. 2018, 89, 053103.10.1063/1.5011657. PubMed DOI
Yin Z.; Luu T. T.; Wörner H. J. Few-Cycle High-Harmonic Generation in Liquids: In-Operando Thickness Measurement of Flat Microjets. J. Phys.: Photonics 2020, 2, 044007.10.1088/2515-7647/abb0ef. DOI
Lancaster D. K.; Johnson A. M.; Burden D. K.; Wiens J. P.; Nathanson G. M. Inert Gas Scattering from Liquid Hydrocarbon Microjets. J. Phys. Chem. Lett. 2013, 4, 3045–3049. 10.1021/jz4015212. DOI
Artiglia L.; Edebeli J.; Orlando F.; Chen S.; Lee M.-T.; Corral Arroyo P.; Gilgen A.; Bartels-Rausch T.; Kleibert A.; Vazdar M.; Andres Carignano M.; Francisco J. S.; Shepson P. B.; Gladich I.; Ammann M. A Surface-Stabilized Ozonide Triggers Bromide Oxidation at the Aqueous Solution-Vapour Interface. Nat. Commun. 2017, 8, 700.10.1038/s41467-017-00823-x. PubMed DOI PMC
Thürmer S.; Seidel R.; Faubel M.; Eberhardt W.; Hemminger J. C.; Bradforth S. E.; Winter B. Photoelectron Angular Distributions from Liquid Water: Effects of Electron Scattering. Phys. Rev. Lett. 2013, 111, 173005.10.1103/physrevlett.111.173005. PubMed DOI
Galinis G.; Strucka J.; Barnard J. C. T.; Braun A.; Smith R. A.; Marangos J. P. Micrometer-Thickness Liquid Sheet Jets Flowing in Vacuum. Rev. Sci. Instrum. 2017, 88, 083117.10.1063/1.4990130. PubMed DOI
Koralek J. D.; Kim J. B.; Brůža P.; Curry C. B.; Chen Z.; Bechtel H. A.; Cordones A. A.; Sperling P.; Toleikis S.; Kern J. F.; Moeller S. P.; Glenzer S. H.; DePonte D. P. Generation and Characterization of Ultrathin Free-Flowing Liquid Sheets. Nat. Commun. 2018, 9, 1353.10.1038/s41467-018-03696-w. PubMed DOI PMC
Ekimova M.; Quevedo W.; Faubel M.; Wernet P.; Nibbering E. T. J. A Liquid Flatjet System for Solution Phase Soft-x-Ray Spectroscopy. Struct. Dyn. 2015, 2, 054301.10.1063/1.4928715. PubMed DOI PMC
Bush J. W. M.; Hasha A. E. On the Collision of Laminar Jets: Fluid Chains and Fishbones. J. Fluid Mech. 2004, 511, 285–310. 10.1017/s002211200400967x. DOI
Chen X.; Ma D.; Yang V.; Popinet S. High-Fidelity Simulations of Impinging Jet Atomization. Atomization Sprays 2013, 23, 1079–1101. 10.1615/atomizspr.2013007619. DOI
Atencia J.; Beebe D. J. Controlled Microfluidic Interfaces. Nature 2005, 437, 648–655. 10.1038/nature04163. PubMed DOI
Ismagilov R. F.; Stroock A. D.; Kenis P. J. A.; Whitesides G.; Stone H. A. Experimental and Theoretical Scaling Laws for Transverse Diffusive Broadening in Two-Phase Laminar Flows in Microchannels. Appl. Phys. Lett. 2000, 76, 2376–2378. 10.1063/1.126351. DOI
Song H.; Ismagilov R. F. Millisecond Kinetics on a Microfluidic Chip Using Nanoliters of Reagents. J. Am. Chem. Soc. 2003, 125, 14613–14619. 10.1021/ja0354566. PubMed DOI PMC
Rose A. L.; Waite T. D. Chemiluminescence of Luminol in the Presence of Iron(II) and Oxygen: Oxidation Mechanism and Implications for Its Analytical Use. Anal. Chem. 2001, 73, 5909–5920. 10.1021/ac015547q. PubMed DOI
Matsumoto R.; Yoshida K.; Matsuo R. Diffusion in Microchannel Analyzed by Chemiluminescence. J. Therm. Sci. Technol. 2013, 8, 448–459. 10.1299/jtst.8.448. DOI
Merenyi G.; Lind J.; Eriksen T. E. The Equilibrium Reaction of the Luminol Radical with Oxygen and the One-Electron-Reduction Potential of 5-Aminophthalazine-1,4-Dione. J. Phys. Chem. 1984, 88, 2320–2323. 10.1021/j150655a027. DOI
Merényi G.; Lind J.; Eriksen T. E. Luminol Chemiluminescence: Chemistry, Excitation, Emitter. J. Biolumin. Chemilumin 1990, 5, 53–56. 10.1002/bio.1170050111. PubMed DOI
Merenyi G.; Lind J.; Eriksen T. E. The Reactivity of Superoxide (O2-) and Its Abiulkity to Induce Chemiluminescence with Luminol. Photochem. Photobiol. 1985, 41, 203–208. 10.1111/j.1751-1097.1985.tb03472.x. DOI
Burdo T. G.; Seitz W. R. Mechanism of Cobalt Catalysis of Luminol Chemiluminescence. Anal. Chem. 1975, 47, 1639–1643. 10.1021/ac60359a019. DOI
Gaikwad A.; Silva M.; Pérez-Bendito D. Selective Stopped-Flow Determination of Manganese with Luminol in the Absence of Hydrogen Peroxide. Anal. Chim. Acta 1995, 302, 275–282. 10.1016/0003-2670(94)00497-a. DOI
Ojima H. In Advances in Catalytic Activation of Dioxygen by Metal Complexes; Simándi L. I., Ed.; Catalysis by Metal Complexes; Springer US, 2002.
Menzi S.; Knopp G.; Al Haddad A.; Augustin S.; Borca C.; Gashi D.; Huthwelker T.; James D.; Jin J.; Pamfilidis G.; Schnorr K.; Sun Z.; Wetter R.; Zhang Q.; Cirelli C. Generation and Simple Characterization of Flat, Liquid Jets. Rev. Sci. Instrum. 2020, 91, 105109.10.1063/5.0007228. PubMed DOI
O’Sullivan D. W.; Hanson A. K.; Kester D. R. Stopped Flow Luminol Chemiluminescence Determination of Fe(II) and Reducible Iron in Seawater at Subnanomolar Levels. Mar. Chem. 1995, 49, 65–77. 10.1016/0304-4203(94)00046-G. DOI
Steinfeld J. I.; Francisco J. S.; Hase W. L.. Chemical Kinetics and Dynamics, 2nd ed.; Pearson: Upper Saddle River, N.J, 1998.