Valence and Core-Level X-ray Photoelectron Spectroscopy of a Liquid Ammonia Microjet
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
30673221
PubMed Central
PMC6728086
DOI
10.1021/jacs.8b10942
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Photoelectron spectroscopy of microjets expanded into vacuum allows access to orbital energies for solute or solvent molecules in the liquid phase. Microjets of water, acetonitrile and alcohols have previously been studied; however, it has been unclear whether jets of low temperature molecular solvents could be realized. Here we demonstrate a stable 20 μm jet of liquid ammonia (-60 °C) in a vacuum, which we use to record both valence and core-level band photoelectron spectra using soft X-ray synchrotron radiation. Significant shifts from isolated ammonia in the gas-phase are observed, as is the liquid-phase photoelectron angular anisotropy. Comparisons with spectra of ammonia in clusters and the solid phase, as well as spectra for water in various phases potentially reveal how hydrogen bonding is reflected in the condensed phase electronic structure.
Faculty of Mathematics and Physics Charles University Ke Karlovu 3 121 16 Prague 2 Czech Republic
Fritz Haber Institut der Max Planck Gesellschaft D 14195 Berlin Germany
Helmholtz Zentrum Berlin für Materialien und Energie D 14109 Berlin Germany
Zobrazit více v PubMed
Birch A. J. 117. Reduction by Dissolving Metals. Part I. J. Chem. Soc. 1944, 430–437. 10.1039/jr9440000430. DOI
Aulich H.; Baron B.; Delahay P.; Lugo R. Photoelectron Emission by Solvated Electrons in Liquid-Ammonia. J. Chem. Phys. 1973, 58 (10), 4439–4443. 10.1063/1.1679004. DOI
Hartweg S.; West A. H. C.; Yoder B. L.; Signorell R. Metal Transition in Sodium-Ammonia Nanodroplets. Angew. Chem. 2016, 128 (40), 12535–12538. 10.1002/ange.201604282. PubMed DOI
Vöhringer P. Ultrafast Dynamics of Electrons in Ammonia. Annu. Rev. Phys. Chem. 2015, 66 (1), 97–118. 10.1146/annurev-physchem-040214-121228. PubMed DOI
Lindblad A.; Bergersen H.; Pokapanich W.; Tchaplyguine M.; Öhrwall G.; Bjorneholm O. Charge Delocalization Dynamics of Ammonia in Different Hydrogen Bonding Environments: Free Clusters and in Liquid Water Solution. Phys. Chem. Chem. Phys. 2009, 11 (11), 1758–7. 10.1039/b815657c. PubMed DOI
Yu K. Y.; McMenamin J. C.; Spicer W. E. UPS Measurements of Molecular Energy Level of Condensed Gases. Surf. Sci. 1975, 50 (1), 149–156. 10.1016/0039-6028(75)90179-X. DOI
Edvardsson D.; Baltzer P.; Karlsson L.; Wannberg B.; Holland D. M. P.; Shaw D. A.; Rennie E. E. A Photoabsorption, Photodissociation and Photoelectron Spectroscopy Study of NH 3and ND 3. J. Phys. B: At., Mol. Opt. Phys. 1999, 32 (11), 2583–2609. 10.1088/0953-4075/32/11/309. DOI
Vogler T.; Vöhringer P. Probing the Band Gap of Liquid Ammonia with Femtosecond Multiphoton Ionization Spectroscopy. Phys. Chem. Chem. Phys. 2018, 20 (40), 25657–25665. 10.1039/C8CP05030A. PubMed DOI
Zurek E.; Edwards P. P.; Hoffmann R. A Molecular Perspective on Lithium-Ammonia Solutions. Angew. Chem., Int. Ed. 2009, 48 (44), 8198–8232. 10.1002/anie.200900373. PubMed DOI
Winter B.; Weber R.; Widdra W.; Dittmar M.; Faubel M.; Hertel I. V. Full Valence Band Photoemission from Liquid Water Using EUV Synchrotron Radiation. J. Phys. Chem. A 2004, 108 (14), 2625–2632. 10.1021/jp030263q. DOI
Faubel M.; Steiner B.; Toennies J. P. Photoelectron Spectroscopy of Liquid Water, Some Alcohols, and Pure Nonane in Free Micro Jets. J. Chem. Phys. 1997, 106 (22), 9013–9031. 10.1063/1.474034. DOI
Wieland M.; Wilhein T.; Faubel M.; Ellert C.; Schmidt M.; Sublemontier O. EUV and Fast Ion Emission from Cryogenic Liquid Jet Target. Appl. Phys. B: Lasers Opt. 2001, 72 (5), 591–597. 10.1007/s003400100542. DOI
Kurahashi N.; Karashima S.; Tang Y.; Horio T.; Abulimiti B.; Suzuki Y.-I.; Ogi Y.; Oura M.; Suzuki T. Photoelectron Spectroscopy of Aqueous Solutions: Streaming Potentials of NaX (X = Cl, Br, and I) Solutions and Electron Binding Energies of Liquid Water and X-. J. Chem. Phys. 2014, 140 (17), 174506.10.1063/1.4871877. PubMed DOI
Seidel R.; Pohl M. N.; Ali H.; Winter B.; Aziz E. F. Advances in Liquid Phase Soft-X-Ray Photoemission Spectroscopy: a New Experimental Setup at BESSY II. Rev. Sci. Instrum. 2017, 88 (7), 073107.10.1063/1.4990797. PubMed DOI
Helmholtz Zentrum Berlin für Materialien und Energie, The Variable Polarization Undulator Beamline UE52 SGM at BESSY II. J. Large-Scale Res. Facilities 2016, 2, A70.
Banna M. S.; Shirley D. A. Molecular Photoelectron Spectroscopy at 132.3 eV. the Second-Row Hydrides. J. Chem. Phys. 1975, 63 (11), 4759–4766. 10.1063/1.431263. DOI
Chen W.; Ambrosio F.; Miceli G.; Pasquarello A. Ab Initio Electronic Structure of Liquid Water. Phys. Rev. Lett. 2016, 117 (18), 186401.10.1103/PhysRevLett.117.186401. PubMed DOI
Ambrosio F.; Guo Z.; Pasquarello A. Absolute Energy Levels of Liquid Water. J. Phys. Chem. Lett. 2018, 9 (12), 3212–3216. 10.1021/acs.jpclett.8b00891. PubMed DOI
Gaiduk A. P.; Pham T. A.; Govoni M.; Paesani F.; Galli G. Electron Affinity of Liquid Water. Nat. Commun. 2018, 9 (1), 247.10.1038/s41467-017-02673-z. PubMed DOI PMC
Luckhaus D.; Yamamoto Y.-I.; Suzuki T.; Signorell R. Genuine Binding Energy of the Hydrated Electron. Sci. Adv. 2017, 3 (4), e1603224.10.1126/sciadv.1603224. PubMed DOI PMC
Thürmer S.; Seidel R.; Faubel M.; Eberhardt W.; Hemminger J. C.; Bradforth S. E.; Winter B. Photoelectron Angular Distributions from Liquid Water: Effects of Electron Scattering. Phys. Rev. Lett. 2013, 111 (17), 173005.10.1103/PhysRevLett.111.173005. PubMed DOI
Observation of intermolecular Coulombic decay and shake-up satellites in liquid ammonia
Imaging of Chemical Kinetics at the Water-Water Interface in a Free-Flowing Liquid Flat-Jet