Valence and Core-Level X-ray Photoelectron Spectroscopy of a Liquid Ammonia Microjet

. 2019 Feb 06 ; 141 (5) : 1838-1841. [epub] 20190125

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid30673221

Photoelectron spectroscopy of microjets expanded into vacuum allows access to orbital energies for solute or solvent molecules in the liquid phase. Microjets of water, acetonitrile and alcohols have previously been studied; however, it has been unclear whether jets of low temperature molecular solvents could be realized. Here we demonstrate a stable 20 μm jet of liquid ammonia (-60 °C) in a vacuum, which we use to record both valence and core-level band photoelectron spectra using soft X-ray synchrotron radiation. Significant shifts from isolated ammonia in the gas-phase are observed, as is the liquid-phase photoelectron angular anisotropy. Comparisons with spectra of ammonia in clusters and the solid phase, as well as spectra for water in various phases potentially reveal how hydrogen bonding is reflected in the condensed phase electronic structure.

Zobrazit více v PubMed

Birch A. J. 117. Reduction by Dissolving Metals. Part I. J. Chem. Soc. 1944, 430–437. 10.1039/jr9440000430. DOI

Aulich H.; Baron B.; Delahay P.; Lugo R. Photoelectron Emission by Solvated Electrons in Liquid-Ammonia. J. Chem. Phys. 1973, 58 (10), 4439–4443. 10.1063/1.1679004. DOI

Hartweg S.; West A. H. C.; Yoder B. L.; Signorell R. Metal Transition in Sodium-Ammonia Nanodroplets. Angew. Chem. 2016, 128 (40), 12535–12538. 10.1002/ange.201604282. PubMed DOI

Vöhringer P. Ultrafast Dynamics of Electrons in Ammonia. Annu. Rev. Phys. Chem. 2015, 66 (1), 97–118. 10.1146/annurev-physchem-040214-121228. PubMed DOI

Lindblad A.; Bergersen H.; Pokapanich W.; Tchaplyguine M.; Öhrwall G.; Bjorneholm O. Charge Delocalization Dynamics of Ammonia in Different Hydrogen Bonding Environments: Free Clusters and in Liquid Water Solution. Phys. Chem. Chem. Phys. 2009, 11 (11), 1758–7. 10.1039/b815657c. PubMed DOI

Yu K. Y.; McMenamin J. C.; Spicer W. E. UPS Measurements of Molecular Energy Level of Condensed Gases. Surf. Sci. 1975, 50 (1), 149–156. 10.1016/0039-6028(75)90179-X. DOI

Edvardsson D.; Baltzer P.; Karlsson L.; Wannberg B.; Holland D. M. P.; Shaw D. A.; Rennie E. E. A Photoabsorption, Photodissociation and Photoelectron Spectroscopy Study of NH 3and ND 3. J. Phys. B: At., Mol. Opt. Phys. 1999, 32 (11), 2583–2609. 10.1088/0953-4075/32/11/309. DOI

Vogler T.; Vöhringer P. Probing the Band Gap of Liquid Ammonia with Femtosecond Multiphoton Ionization Spectroscopy. Phys. Chem. Chem. Phys. 2018, 20 (40), 25657–25665. 10.1039/C8CP05030A. PubMed DOI

Zurek E.; Edwards P. P.; Hoffmann R. A Molecular Perspective on Lithium-Ammonia Solutions. Angew. Chem., Int. Ed. 2009, 48 (44), 8198–8232. 10.1002/anie.200900373. PubMed DOI

Winter B.; Weber R.; Widdra W.; Dittmar M.; Faubel M.; Hertel I. V. Full Valence Band Photoemission from Liquid Water Using EUV Synchrotron Radiation. J. Phys. Chem. A 2004, 108 (14), 2625–2632. 10.1021/jp030263q. DOI

Faubel M.; Steiner B.; Toennies J. P. Photoelectron Spectroscopy of Liquid Water, Some Alcohols, and Pure Nonane in Free Micro Jets. J. Chem. Phys. 1997, 106 (22), 9013–9031. 10.1063/1.474034. DOI

Wieland M.; Wilhein T.; Faubel M.; Ellert C.; Schmidt M.; Sublemontier O. EUV and Fast Ion Emission from Cryogenic Liquid Jet Target. Appl. Phys. B: Lasers Opt. 2001, 72 (5), 591–597. 10.1007/s003400100542. DOI

Kurahashi N.; Karashima S.; Tang Y.; Horio T.; Abulimiti B.; Suzuki Y.-I.; Ogi Y.; Oura M.; Suzuki T. Photoelectron Spectroscopy of Aqueous Solutions: Streaming Potentials of NaX (X = Cl, Br, and I) Solutions and Electron Binding Energies of Liquid Water and X-. J. Chem. Phys. 2014, 140 (17), 174506.10.1063/1.4871877. PubMed DOI

Seidel R.; Pohl M. N.; Ali H.; Winter B.; Aziz E. F. Advances in Liquid Phase Soft-X-Ray Photoemission Spectroscopy: a New Experimental Setup at BESSY II. Rev. Sci. Instrum. 2017, 88 (7), 073107.10.1063/1.4990797. PubMed DOI

Helmholtz Zentrum Berlin für Materialien und Energie, The Variable Polarization Undulator Beamline UE52 SGM at BESSY II. J. Large-Scale Res. Facilities 2016, 2, A70.

Banna M. S.; Shirley D. A. Molecular Photoelectron Spectroscopy at 132.3 eV. the Second-Row Hydrides. J. Chem. Phys. 1975, 63 (11), 4759–4766. 10.1063/1.431263. DOI

Chen W.; Ambrosio F.; Miceli G.; Pasquarello A. Ab Initio Electronic Structure of Liquid Water. Phys. Rev. Lett. 2016, 117 (18), 186401.10.1103/PhysRevLett.117.186401. PubMed DOI

Ambrosio F.; Guo Z.; Pasquarello A. Absolute Energy Levels of Liquid Water. J. Phys. Chem. Lett. 2018, 9 (12), 3212–3216. 10.1021/acs.jpclett.8b00891. PubMed DOI

Gaiduk A. P.; Pham T. A.; Govoni M.; Paesani F.; Galli G. Electron Affinity of Liquid Water. Nat. Commun. 2018, 9 (1), 247.10.1038/s41467-017-02673-z. PubMed DOI PMC

Luckhaus D.; Yamamoto Y.-I.; Suzuki T.; Signorell R. Genuine Binding Energy of the Hydrated Electron. Sci. Adv. 2017, 3 (4), e1603224.10.1126/sciadv.1603224. PubMed DOI PMC

Thürmer S.; Seidel R.; Faubel M.; Eberhardt W.; Hemminger J. C.; Bradforth S. E.; Winter B. Photoelectron Angular Distributions from Liquid Water: Effects of Electron Scattering. Phys. Rev. Lett. 2013, 111 (17), 173005.10.1103/PhysRevLett.111.173005. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...