Observation of intermolecular Coulombic decay and shake-up satellites in liquid ammonia
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35982825
PubMed Central
PMC9380002
DOI
10.1063/4.0000151
PII: 4.0000151
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We report the first nitrogen 1s Auger-Meitner electron spectrum from a liquid ammonia microjet at a temperature of ∼223 K (-50 °C) and compare it with the simultaneously measured spectrum for gas-phase ammonia. The spectra from both phases are interpreted with the assistance of high-level electronic structure and ab initio molecular dynamics calculations. In addition to the regular Auger-Meitner-electron features, we observe electron emission at kinetic energies of 374-388 eV, above the leading Auger-Meitner peak (3a1 2). Based on the electronic structure calculations, we assign this peak to a shake-up satellite in the gas phase, i.e., Auger-Meitner emission from an intermediate state with additional valence excitation present. The high-energy contribution is significantly enhanced in the liquid phase. We consider various mechanisms contributing to this feature. First, in analogy with other hydrogen-bonded liquids (noticeably water), the high-energy signal may be a signature for an ultrafast proton transfer taking place before the electronic decay (proton transfer mediated charge separation). The ab initio dynamical calculations show, however, that such a process is much slower than electronic decay and is, thus, very unlikely. Next, we consider a non-local version of the Auger-Meitner decay, the Intermolecular Coulombic Decay. The electronic structure calculations support an important contribution of this purely electronic mechanism. Finally, we discuss a non-local enhancement of the shake-up processes.
Zobrazit více v PubMed
Thürmer S., Ončák M., Ottosson N., Seidel R., Hergenhahn U., Bradforth S. E., Slavíček P., and Winter B., Nat. Chem. 5(7), 590–596 (2013).10.1038/nchem.1680 PubMed DOI
Slavíček P., Winter B., Cederbaum L. S., and Kryzhevoi N. V., J. Am. Chem. Soc. 136(52), 18170–18176 (2014).10.1021/ja5117588 PubMed DOI
Meitner L., Z. Phys. 9(1), 131–144 (1922).10.1007/BF01326962 DOI
Auger P., C. R. Acad. Sci. (F) 177, 169 (1923).
Matsakis D., Coster A., Laster B., and Sime R., Phys. Today 72(9), 10–11 (2019).10.1063/PT.3.4281 DOI
Jahnke T., Hergenhahn U., Winter B., Dörner R., Frühling U., Demekhin P. V., Gokhberg K., Cederbaum L. S., Ehresmann A., Knie A. et al., Chem. Rev. 120(20), 11295–11369 (2020).10.1021/acs.chemrev.0c00106 PubMed DOI PMC
Hergenhahn U., J. Electron Spectrosc. Relat. Phenom. 184(3–6), 78–90 (2011).10.1016/j.elspec.2010.12.020 DOI
Jahnke T., J. Phys. B 48(8), 082001 (2015).10.1088/0953-4075/48/8/082001 DOI
Unger I., Hollas D., Seidel R., Thürmer S., Aziz E. F., Slavíček P., and Winter B., J. Phys. Chem. B 119(33), 10750–10759 (2015).10.1021/acs.jpcb.5b07283 PubMed DOI
Cederbaum L. S., Zobeley J., and Tarantelli F., Phys. Rev. Lett. 79(24), 4778–4781 (1997).10.1103/PhysRevLett.79.4778 DOI
Hans A., Küstner-Wetekam C., Schmidt P., Ozga C., Holzapfel X., Otto H., Zindel C., Richter C., Cederbaum L. S., Ehresmann A. et al., Phys. Rev. Res. 2(1), 012022(R) (2020).10.1103/PhysRevResearch.2.012022 DOI
Thürmer S., Unger I., Slavíček P., and Winter B., J. Phys. Chem. C 117(43), 22268–22275 (2013).10.1021/jp401569w DOI
Hollas D., Pohl M. N., Seidel R., Aziz E. F., Slavíček P., and Winter B., Sci. Rep. 7(1), 756 (2017).10.1038/s41598-017-00756-x PubMed DOI PMC
Stumpf V., Gokhberg K., and Cederbaum L. S., Nat. Chem. 8(3), 237–241 (2016).10.1038/nchem.2429 PubMed DOI
Mozumder A. and Hatano Y., Charged Particle and Photon Interactions with Matter: Chemical, Physicochemical, and Biological Consequences with Applications ( Taylor & Francis, 2003).
Pimblott S. M. and LaVerne J. A., J. Phys. Chem. A 101(33), 5828–5838 (1997).10.1021/jp970637d DOI
Mozumder A., Fundamentals of Radiation Chemistry ( Elsevier Science, 1999).
Hüfner S., Photoelectron Spectroscopy: Principles and Applications, 3rd ed. ( Springer, Berlin Heidelberg, 2010).
Slavíček P., Kryzhevoi N. V., Aziz E. F., and Winter B., J. Phys. Chem. Lett. 7(2), 234–243 (2016).10.1021/acs.jpclett.5b02665 PubMed DOI
Shaw R. W., Jen J. S., and Thomas T. D., J. Electron Spectrosc. Relat. Phenom. 11(1), 91–100 (1977).10.1016/0368-2048(77)85050-0 DOI
White J. M., Rye R. R., and Houston J. E., Chem. Phys. Lett. 46(1), 146–150 (1977).10.1016/0009-2614(77)85183-X DOI
Mitani M., Takahashi O., Saito K., and Iwata S., J. Electron Spectrosc. Relat. Phenom. 128(2–3), 103–117 (2003).10.1016/S0368-2048(02)00270-0 DOI
Lindblad A., Bergersen H., Pokapanich W., Tchaplyguine M., Öhrwall G., and Björneholm O., Phys. Chem. Chem. Phys. 11(11), 1758 (2009).10.1039/b815657c PubMed DOI
Larkins F. P. and Lubenfeld A., J. Electron Spectrosc. Relat. Phenom 15(1), 137–144 (1979).10.1016/0368-2048(79)87024-3 DOI
Kryzhevoi N. V. and Cederbaum L. S., J. Phys. Chem. B 115(18), 5441–5447 (2011).10.1021/jp109920p PubMed DOI
Buttersack T., Mason P. E., Jungwirth P., Schewe H. C., Winter B., Seidel R., McMullen R. S., and Bradforth S. E., Rev. Sci. Instrum 91(4), 043101 (2020).10.1063/1.5141359 PubMed DOI
Buttersack T., Mason P. E., McMullen R. S., Martinek T., Brezina K., Hein D., Ali H., Kolbeck C., Schewe C., Malerz S. et al., J. Am. Chem. Soc. 141(5), 1838–1841 (2019).10.1021/jacs.8b10942 PubMed DOI PMC
Buttersack T., Mason P. E., McMullen R. S., Schewe H. C., Martinek T., Brezina K., Crhan M., Gomez A., Hein D., Wartner G. et al., Science 368(6495), 1086–1091 (2020).10.1126/science.aaz7607 PubMed DOI
Schewe H. C., Brezina K., Kostal V., Mason P. E., Buttersack T., Stemer D. M., Seidel R., Quevedo W., Trinter F., Winter B. et al., J. Phys. Chem. B 126(1), 229–238 (2022).10.1021/acs.jpcb.1c08172 PubMed DOI
Thürmer S., Malerz S., Trinter F., Hergenhahn U., Lee C., Neumark D. M., Meijer G., Winter B., and Wilkinson I., Chem. Sci. 12(31), 10558–10582 (2021).10.1039/D1SC01908B PubMed DOI PMC
Seidel R., Pohl M. N., Ali H., Winter B., and Aziz E. F., Rev. Sci. Instrum. 88(7), 073107 (2017).10.1063/1.4990797 PubMed DOI
Siegbahn H. and Lundholm M., J. Electron Spectrosc. Relat. Phenom. 28(1), 135–138 (1982).10.1016/0368-2048(82)80023-6 DOI
Kachel T., J. Large-Scale Res. Facil. (JLSRF) 2, A72 (2016).10.17815/jlsrf-2-75 DOI
Barone V. and Cossi M., J. Phys. Chem. A 102(11), 1995–2001 (1998).10.1021/jp9716997 DOI
Lange A. W. and Herbert J. M., J. Chem. Phys. 133(24), 244111 (2010).10.1063/1.3511297 PubMed DOI
Billaud G. and Demortier A., J. Phys. Chem. 79(26), 3053–3055 (2002).10.1021/j100593a053 DOI
Rumble J. R. and Doa M. J., CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data ( CRC Press, 2020).
Besley N. A., Gilbert A. T. B., and Gill P. M. W., J. Chem. Phys. 130(12), 124308 (2009).10.1063/1.3092928 PubMed DOI
Gilbert A. T. B., Besley N. A., and Gill P. M. W., J. Phys. Chem. A 112(50), 13164–13171 (2008).10.1021/jp801738f PubMed DOI
Skomorowski W. and Krylov A. I., J. Chem. Phys. 154(8), 084124 (2021).10.1063/5.0036976 PubMed DOI
Skomorowski W. and Krylov A. I., J. Chem. Phys. 154(8), 084125 (2021).10.1063/5.0036977 PubMed DOI
Shao Y., Gan Z., Epifanovsky E., Gilbert A. T. B., Wormit M., Kussmann J., Lange A. W., Behn A., Deng J., Feng X. et al., Mol. Phys. 113(2), 184–215 (2014).10.1080/00268976.2014.952696 DOI
Stanton J. F. and Gauss J., J. Chem. Phys. 101(10), 8938–8944 (1994).10.1063/1.468022 DOI
Pieniazek P. A., Bradforth S. E., and Krylov A. I., J. Chem. Phys. 129(7), 074104 (2008).10.1063/1.2969107 PubMed DOI
Kuś T. and Krylov A. I., J. Chem. Phys. 135(8), 084109 (2011).10.1063/1.3626149 PubMed DOI
Bokhan D., Trubnikov D. N., Perera A., and Bartlett R. J., Chem. Phys. Lett. 692, 191–195 (2018).10.1016/j.cplett.2017.12.040 DOI
Perera A., Molt R. W., Lotrich V. F., and Bartlett R. J., Isaiah Shavitt ( Springer, 2016), pp. 153–165.
Ceriotti M., Bussi G., and Parrinello M., J. Chem. Theory Comput. 6(4), 1170–1180 (2010).10.1021/ct900563s DOI
Ceriotti M., Bussi G., and Parrinello M., Phys. Rev. Lett. 102(2), 020601 (2009).10.1103/PhysRevLett.102.020601 PubMed DOI
Ceriotti M., Bussi G., and Parrinello M., Phys. Rev. Lett. 103(3), 030603 (2009).10.1103/PhysRevLett.103.030603 PubMed DOI
Grimme S., Antony J., Ehrlich S., and Krieg H., J. Chem. Phys. 132(15), 154104 (2010).10.1063/1.3382344 PubMed DOI
Kempgens B., Kivimäki A., Neeb M., Köppe H. M., Bradshaw A. M., and Feldhaus J., J. Phys. B 29(22), 5389–5402 (1996).10.1088/0953-4075/29/22/016 PubMed DOI
Hollas, D. , Svoboda, O. , Slavíček, P. , and Ončák, M. , see https://github.com/PHOTOX/ABIN for our multipurpose ab initio MD program ABIN.
Titov A. V., Ufimtsev I. S., Luehr N., and Martinez T. J., J. Chem. Theory Comput. 9(1), 213–221 (2012).10.1021/ct300321a PubMed DOI
Ufimtsev I. S. and Martinez T. J., J. Chem. Theory Comput. 5(10), 2619–2628 (2009).10.1021/ct9003004 PubMed DOI
Epifanovsky E., Gilbert A. T. B., Feng X., Lee J., Mao Y., Mardirossian N., Pokhilko P., White A. F., Coons M. P., Dempwolff A. L. et al., J. Chem. Phys. 155(8), 084801 (2021).10.1063/5.0055522 PubMed DOI PMC
Camilloni R., Stefani G., and Giardini-Guidoni A., Chem. Phys. Lett. 50(2), 213–217 (1977).10.1016/0009-2614(77)80166-8 DOI
Winter B., Hergenhahn U., Faubel M., Björneholm O., and Hertel I. V., J. Chem. Phys. 127(9), 094501 (2007).10.1063/1.2770457 PubMed DOI
Chieux P. and Bertagnolli H., J. Phys. Chem. 88(17), 3726–3730 (2002).10.1021/j150661a009 DOI
Bausenwein T., Bertagnolli H., David A., Goller K., Zweier H., Tödheide K., and Chieux P., J. Chem. Phys. 101(1), 672–682 (1994).10.1063/1.468123 DOI
Ricci M. A., Nardone M., Ricci F. P., Andreani C., and Soper A. K., J. Chem. Phys. 102(19), 7650–7655 (1995).10.1063/1.469016 DOI
Guthrie M., Tulk C. A., Molaison J., and dos Santos A. M., Phys. Rev. B 85(18), 184205 (2012).10.1103/PhysRevB.85.184205 PubMed DOI
Kruh R. F. and Petz J. I., J. Chem. Phys. 41(3), 890–891 (1964).10.1063/1.1725978 DOI
Narten A. H., J. Chem. Phys. 66(7), 3117–3120 (1977).10.1063/1.434330 DOI
Giura P., Angelini R., Datchi F., Ruocco G., and Sette F., J. Chem. Phys. 127(8), 084508 (2007).10.1063/1.2753161 PubMed DOI
Jorgensen W. L. and Ibrahim M., J. Am. Chem. Soc. 102(10), 3309–3315 (1980).10.1021/ja00530a001 DOI
Diraison M., Martyna G. J., and Tuckerman M. E., J. Chem. Phys. 111(3), 1096–1103 (1999).10.1063/1.479194 DOI
Boese A. D., Chandra A., Martin J. M. L., and Marx D., J. Chem. Phys. 119(12), 5965–5980 (2003).10.1063/1.1599338 DOI
Tongraar A., Kerdcharoen T., and Hannongbua S., J. Phys. Chem. A 110(14), 4924–4929 (2006).10.1021/jp057342h PubMed DOI
Orabi E. A. and Lamoureux G., J. Chem. Theory Comput. 9(4), 2035–2051 (2013).10.1021/ct301123j PubMed DOI
Reed J. W. and Harris P. M., J. Chem. Phys. 35(5), 1730–1737 (1961).10.1063/1.1732137 DOI
Boese R., Niederprüm N., Bläser D., Maulitz A., Antipin M. Y., and Mallinson P. R., J. Phys. Chem. B 101(30), 5794–5799 (1997).10.1021/jp970580v DOI
Fortes A. D., Brodholt J. P., Wood I. G., and Vočadlo L., J. Chem. Phys. 118(13), 5987–5994 (2003).10.1063/1.1555630 DOI
Chalabala J. and Slavíček P., Phys. Chem. Chem. Phys. 18(30), 20422–20432 (2016).10.1039/C6CP02714H PubMed DOI
He L.-L., Zhang S.-Y., Sun T.-T., Zhao C.-L., Zhang C., Yang Z.-Z., and Zhao D.-X., Mol. Simul. 43(13–16), 1099–1106 (2017).10.1080/08927022.2017.1324958 DOI
Sankari R., Ehara M., Nakatsuji H., Senba Y., Hosokawa K., Yoshida H., De Fanis A., Tamenori Y., Aksela S., and Ueda K., Chem. Phys. Lett. 380(5–6), 647–653 (2003).10.1016/j.cplett.2003.08.108 DOI
Malerz S., Trinter F., Hergenhahn U., Ghrist A., Ali H., Nicolas C., Saak C.-M., Richter C., Hartweg S., Nahon L. et al., Phys. Chem. Chem. Phys. 23(14), 8246–8260 (2021).10.1039/D1CP00430A PubMed DOI
Schewe H. C., Muchová E., Belina M., Buttersack T., Stemer D., Seidel R., Thürmer S., Slavíček P., and Winter B. (2022). “Observation of intermolecular Coulombic decay and shake-up satellites in liquid ammonia,” Zenodo, V. 1.0, Dataset. 10.5281/zenodo.6509532 PubMed DOI PMC
Fárník M., Pysanenko A., Moriová K., Ballauf L., Scheier P., Chalabala J., and Slavíček P., J. Phys. Chem. A 122(43), 8458–8468 (2018).10.1021/acs.jpca.8b07974 PubMed DOI
The well-known Auger-decay process was first discovered by Lise Meitner3 and then later rediscovered by Pierre Auger.4 We would like to give credit to this fact by following the naming suggestion of Ref. 5 and refer to the Auger–Meitner process throughout the paper.
See supplementary material at https://www.scitation.org/doi/suppl/10.1063/4.0000151 for a demonstration of the equivalency of the subtraction (method 1) and biasing (method 2) and for the procedure to prepare the satellite-free gas-phase spectrum shown in Fig. 2(b) and fitting procedure. We also provide computed energies of the initially N 1s core-ionized state, various intermediate and final states of the isolated ammonia molecule, the ammonia dimer, and the ammonia trimer. DOI
Observation of intermolecular Coulombic decay and shake-up satellites in liquid ammonia