Observation of intermolecular Coulombic decay and shake-up satellites in liquid ammonia

. 2022 Jul ; 9 (4) : 044901. [epub] 20220728

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35982825

We report the first nitrogen 1s Auger-Meitner electron spectrum from a liquid ammonia microjet at a temperature of ∼223 K (-50 °C) and compare it with the simultaneously measured spectrum for gas-phase ammonia. The spectra from both phases are interpreted with the assistance of high-level electronic structure and ab initio molecular dynamics calculations. In addition to the regular Auger-Meitner-electron features, we observe electron emission at kinetic energies of 374-388 eV, above the leading Auger-Meitner peak (3a1 2). Based on the electronic structure calculations, we assign this peak to a shake-up satellite in the gas phase, i.e., Auger-Meitner emission from an intermediate state with additional valence excitation present. The high-energy contribution is significantly enhanced in the liquid phase. We consider various mechanisms contributing to this feature. First, in analogy with other hydrogen-bonded liquids (noticeably water), the high-energy signal may be a signature for an ultrafast proton transfer taking place before the electronic decay (proton transfer mediated charge separation). The ab initio dynamical calculations show, however, that such a process is much slower than electronic decay and is, thus, very unlikely. Next, we consider a non-local version of the Auger-Meitner decay, the Intermolecular Coulombic Decay. The electronic structure calculations support an important contribution of this purely electronic mechanism. Finally, we discuss a non-local enhancement of the shake-up processes.

Zobrazit více v PubMed

Thürmer S., Ončák M., Ottosson N., Seidel R., Hergenhahn U., Bradforth S. E., Slavíček P., and Winter B., Nat. Chem. 5(7), 590–596 (2013).10.1038/nchem.1680 PubMed DOI

Slavíček P., Winter B., Cederbaum L. S., and Kryzhevoi N. V., J. Am. Chem. Soc. 136(52), 18170–18176 (2014).10.1021/ja5117588 PubMed DOI

Meitner L., Z. Phys. 9(1), 131–144 (1922).10.1007/BF01326962 DOI

Auger P., C. R. Acad. Sci. (F) 177, 169 (1923).

Matsakis D., Coster A., Laster B., and Sime R., Phys. Today 72(9), 10–11 (2019).10.1063/PT.3.4281 DOI

Jahnke T., Hergenhahn U., Winter B., Dörner R., Frühling U., Demekhin P. V., Gokhberg K., Cederbaum L. S., Ehresmann A., Knie A. et al., Chem. Rev. 120(20), 11295–11369 (2020).10.1021/acs.chemrev.0c00106 PubMed DOI PMC

Hergenhahn U., J. Electron Spectrosc. Relat. Phenom. 184(3–6), 78–90 (2011).10.1016/j.elspec.2010.12.020 DOI

Jahnke T., J. Phys. B 48(8), 082001 (2015).10.1088/0953-4075/48/8/082001 DOI

Unger I., Hollas D., Seidel R., Thürmer S., Aziz E. F., Slavíček P., and Winter B., J. Phys. Chem. B 119(33), 10750–10759 (2015).10.1021/acs.jpcb.5b07283 PubMed DOI

Cederbaum L. S., Zobeley J., and Tarantelli F., Phys. Rev. Lett. 79(24), 4778–4781 (1997).10.1103/PhysRevLett.79.4778 DOI

Hans A., Küstner-Wetekam C., Schmidt P., Ozga C., Holzapfel X., Otto H., Zindel C., Richter C., Cederbaum L. S., Ehresmann A. et al., Phys. Rev. Res. 2(1), 012022(R) (2020).10.1103/PhysRevResearch.2.012022 DOI

Thürmer S., Unger I., Slavíček P., and Winter B., J. Phys. Chem. C 117(43), 22268–22275 (2013).10.1021/jp401569w DOI

Hollas D., Pohl M. N., Seidel R., Aziz E. F., Slavíček P., and Winter B., Sci. Rep. 7(1), 756 (2017).10.1038/s41598-017-00756-x PubMed DOI PMC

Stumpf V., Gokhberg K., and Cederbaum L. S., Nat. Chem. 8(3), 237–241 (2016).10.1038/nchem.2429 PubMed DOI

Mozumder A. and Hatano Y., Charged Particle and Photon Interactions with Matter: Chemical, Physicochemical, and Biological Consequences with Applications ( Taylor & Francis, 2003).

Pimblott S. M. and LaVerne J. A., J. Phys. Chem. A 101(33), 5828–5838 (1997).10.1021/jp970637d DOI

Mozumder A., Fundamentals of Radiation Chemistry ( Elsevier Science, 1999).

Hüfner S., Photoelectron Spectroscopy: Principles and Applications, 3rd ed. ( Springer, Berlin Heidelberg, 2010).

Slavíček P., Kryzhevoi N. V., Aziz E. F., and Winter B., J. Phys. Chem. Lett. 7(2), 234–243 (2016).10.1021/acs.jpclett.5b02665 PubMed DOI

Shaw R. W., Jen J. S., and Thomas T. D., J. Electron Spectrosc. Relat. Phenom. 11(1), 91–100 (1977).10.1016/0368-2048(77)85050-0 DOI

White J. M., Rye R. R., and Houston J. E., Chem. Phys. Lett. 46(1), 146–150 (1977).10.1016/0009-2614(77)85183-X DOI

Mitani M., Takahashi O., Saito K., and Iwata S., J. Electron Spectrosc. Relat. Phenom. 128(2–3), 103–117 (2003).10.1016/S0368-2048(02)00270-0 DOI

Lindblad A., Bergersen H., Pokapanich W., Tchaplyguine M., Öhrwall G., and Björneholm O., Phys. Chem. Chem. Phys. 11(11), 1758 (2009).10.1039/b815657c PubMed DOI

Larkins F. P. and Lubenfeld A., J. Electron Spectrosc. Relat. Phenom 15(1), 137–144 (1979).10.1016/0368-2048(79)87024-3 DOI

Kryzhevoi N. V. and Cederbaum L. S., J. Phys. Chem. B 115(18), 5441–5447 (2011).10.1021/jp109920p PubMed DOI

Buttersack T., Mason P. E., Jungwirth P., Schewe H. C., Winter B., Seidel R., McMullen R. S., and Bradforth S. E., Rev. Sci. Instrum 91(4), 043101 (2020).10.1063/1.5141359 PubMed DOI

Buttersack T., Mason P. E., McMullen R. S., Martinek T., Brezina K., Hein D., Ali H., Kolbeck C., Schewe C., Malerz S. et al., J. Am. Chem. Soc. 141(5), 1838–1841 (2019).10.1021/jacs.8b10942 PubMed DOI PMC

Buttersack T., Mason P. E., McMullen R. S., Schewe H. C., Martinek T., Brezina K., Crhan M., Gomez A., Hein D., Wartner G. et al., Science 368(6495), 1086–1091 (2020).10.1126/science.aaz7607 PubMed DOI

Schewe H. C., Brezina K., Kostal V., Mason P. E., Buttersack T., Stemer D. M., Seidel R., Quevedo W., Trinter F., Winter B. et al., J. Phys. Chem. B 126(1), 229–238 (2022).10.1021/acs.jpcb.1c08172 PubMed DOI

Thürmer S., Malerz S., Trinter F., Hergenhahn U., Lee C., Neumark D. M., Meijer G., Winter B., and Wilkinson I., Chem. Sci. 12(31), 10558–10582 (2021).10.1039/D1SC01908B PubMed DOI PMC

Seidel R., Pohl M. N., Ali H., Winter B., and Aziz E. F., Rev. Sci. Instrum. 88(7), 073107 (2017).10.1063/1.4990797 PubMed DOI

Siegbahn H. and Lundholm M., J. Electron Spectrosc. Relat. Phenom. 28(1), 135–138 (1982).10.1016/0368-2048(82)80023-6 DOI

Kachel T., J. Large-Scale Res. Facil. (JLSRF) 2, A72 (2016).10.17815/jlsrf-2-75 DOI

Barone V. and Cossi M., J. Phys. Chem. A 102(11), 1995–2001 (1998).10.1021/jp9716997 DOI

Lange A. W. and Herbert J. M., J. Chem. Phys. 133(24), 244111 (2010).10.1063/1.3511297 PubMed DOI

Billaud G. and Demortier A., J. Phys. Chem. 79(26), 3053–3055 (2002).10.1021/j100593a053 DOI

Rumble J. R. and Doa M. J., CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data ( CRC Press, 2020).

Besley N. A., Gilbert A. T. B., and Gill P. M. W., J. Chem. Phys. 130(12), 124308 (2009).10.1063/1.3092928 PubMed DOI

Gilbert A. T. B., Besley N. A., and Gill P. M. W., J. Phys. Chem. A 112(50), 13164–13171 (2008).10.1021/jp801738f PubMed DOI

Skomorowski W. and Krylov A. I., J. Chem. Phys. 154(8), 084124 (2021).10.1063/5.0036976 PubMed DOI

Skomorowski W. and Krylov A. I., J. Chem. Phys. 154(8), 084125 (2021).10.1063/5.0036977 PubMed DOI

Shao Y., Gan Z., Epifanovsky E., Gilbert A. T. B., Wormit M., Kussmann J., Lange A. W., Behn A., Deng J., Feng X. et al., Mol. Phys. 113(2), 184–215 (2014).10.1080/00268976.2014.952696 DOI

Stanton J. F. and Gauss J., J. Chem. Phys. 101(10), 8938–8944 (1994).10.1063/1.468022 DOI

Pieniazek P. A., Bradforth S. E., and Krylov A. I., J. Chem. Phys. 129(7), 074104 (2008).10.1063/1.2969107 PubMed DOI

Kuś T. and Krylov A. I., J. Chem. Phys. 135(8), 084109 (2011).10.1063/1.3626149 PubMed DOI

Bokhan D., Trubnikov D. N., Perera A., and Bartlett R. J., Chem. Phys. Lett. 692, 191–195 (2018).10.1016/j.cplett.2017.12.040 DOI

Perera A., Molt R. W., Lotrich V. F., and Bartlett R. J., Isaiah Shavitt ( Springer, 2016), pp. 153–165.

Ceriotti M., Bussi G., and Parrinello M., J. Chem. Theory Comput. 6(4), 1170–1180 (2010).10.1021/ct900563s DOI

Ceriotti M., Bussi G., and Parrinello M., Phys. Rev. Lett. 102(2), 020601 (2009).10.1103/PhysRevLett.102.020601 PubMed DOI

Ceriotti M., Bussi G., and Parrinello M., Phys. Rev. Lett. 103(3), 030603 (2009).10.1103/PhysRevLett.103.030603 PubMed DOI

Grimme S., Antony J., Ehrlich S., and Krieg H., J. Chem. Phys. 132(15), 154104 (2010).10.1063/1.3382344 PubMed DOI

Kempgens B., Kivimäki A., Neeb M., Köppe H. M., Bradshaw A. M., and Feldhaus J., J. Phys. B 29(22), 5389–5402 (1996).10.1088/0953-4075/29/22/016 PubMed DOI

Hollas, D. , Svoboda, O. , Slavíček, P. , and Ončák, M. , see https://github.com/PHOTOX/ABIN for our multipurpose ab initio MD program ABIN.

Titov A. V., Ufimtsev I. S., Luehr N., and Martinez T. J., J. Chem. Theory Comput. 9(1), 213–221 (2012).10.1021/ct300321a PubMed DOI

Ufimtsev I. S. and Martinez T. J., J. Chem. Theory Comput. 5(10), 2619–2628 (2009).10.1021/ct9003004 PubMed DOI

Epifanovsky E., Gilbert A. T. B., Feng X., Lee J., Mao Y., Mardirossian N., Pokhilko P., White A. F., Coons M. P., Dempwolff A. L. et al., J. Chem. Phys. 155(8), 084801 (2021).10.1063/5.0055522 PubMed DOI PMC

Camilloni R., Stefani G., and Giardini-Guidoni A., Chem. Phys. Lett. 50(2), 213–217 (1977).10.1016/0009-2614(77)80166-8 DOI

Winter B., Hergenhahn U., Faubel M., Björneholm O., and Hertel I. V., J. Chem. Phys. 127(9), 094501 (2007).10.1063/1.2770457 PubMed DOI

Chieux P. and Bertagnolli H., J. Phys. Chem. 88(17), 3726–3730 (2002).10.1021/j150661a009 DOI

Bausenwein T., Bertagnolli H., David A., Goller K., Zweier H., Tödheide K., and Chieux P., J. Chem. Phys. 101(1), 672–682 (1994).10.1063/1.468123 DOI

Ricci M. A., Nardone M., Ricci F. P., Andreani C., and Soper A. K., J. Chem. Phys. 102(19), 7650–7655 (1995).10.1063/1.469016 DOI

Guthrie M., Tulk C. A., Molaison J., and dos Santos A. M., Phys. Rev. B 85(18), 184205 (2012).10.1103/PhysRevB.85.184205 PubMed DOI

Kruh R. F. and Petz J. I., J. Chem. Phys. 41(3), 890–891 (1964).10.1063/1.1725978 DOI

Narten A. H., J. Chem. Phys. 66(7), 3117–3120 (1977).10.1063/1.434330 DOI

Giura P., Angelini R., Datchi F., Ruocco G., and Sette F., J. Chem. Phys. 127(8), 084508 (2007).10.1063/1.2753161 PubMed DOI

Jorgensen W. L. and Ibrahim M., J. Am. Chem. Soc. 102(10), 3309–3315 (1980).10.1021/ja00530a001 DOI

Diraison M., Martyna G. J., and Tuckerman M. E., J. Chem. Phys. 111(3), 1096–1103 (1999).10.1063/1.479194 DOI

Boese A. D., Chandra A., Martin J. M. L., and Marx D., J. Chem. Phys. 119(12), 5965–5980 (2003).10.1063/1.1599338 DOI

Tongraar A., Kerdcharoen T., and Hannongbua S., J. Phys. Chem. A 110(14), 4924–4929 (2006).10.1021/jp057342h PubMed DOI

Orabi E. A. and Lamoureux G., J. Chem. Theory Comput. 9(4), 2035–2051 (2013).10.1021/ct301123j PubMed DOI

Reed J. W. and Harris P. M., J. Chem. Phys. 35(5), 1730–1737 (1961).10.1063/1.1732137 DOI

Boese R., Niederprüm N., Bläser D., Maulitz A., Antipin M. Y., and Mallinson P. R., J. Phys. Chem. B 101(30), 5794–5799 (1997).10.1021/jp970580v DOI

Fortes A. D., Brodholt J. P., Wood I. G., and Vočadlo L., J. Chem. Phys. 118(13), 5987–5994 (2003).10.1063/1.1555630 DOI

Chalabala J. and Slavíček P., Phys. Chem. Chem. Phys. 18(30), 20422–20432 (2016).10.1039/C6CP02714H PubMed DOI

He L.-L., Zhang S.-Y., Sun T.-T., Zhao C.-L., Zhang C., Yang Z.-Z., and Zhao D.-X., Mol. Simul. 43(13–16), 1099–1106 (2017).10.1080/08927022.2017.1324958 DOI

Sankari R., Ehara M., Nakatsuji H., Senba Y., Hosokawa K., Yoshida H., De Fanis A., Tamenori Y., Aksela S., and Ueda K., Chem. Phys. Lett. 380(5–6), 647–653 (2003).10.1016/j.cplett.2003.08.108 DOI

Malerz S., Trinter F., Hergenhahn U., Ghrist A., Ali H., Nicolas C., Saak C.-M., Richter C., Hartweg S., Nahon L. et al., Phys. Chem. Chem. Phys. 23(14), 8246–8260 (2021).10.1039/D1CP00430A PubMed DOI

Schewe H. C., Muchová E., Belina M., Buttersack T., Stemer D., Seidel R., Thürmer S., Slavíček P., and Winter B. (2022). “Observation of intermolecular Coulombic decay and shake-up satellites in liquid ammonia,” Zenodo, V. 1.0, Dataset. 10.5281/zenodo.6509532 PubMed DOI PMC

Fárník M., Pysanenko A., Moriová K., Ballauf L., Scheier P., Chalabala J., and Slavíček P., J. Phys. Chem. A 122(43), 8458–8468 (2018).10.1021/acs.jpca.8b07974 PubMed DOI

The well-known Auger-decay process was first discovered by Lise Meitner3 and then later rediscovered by Pierre Auger.4 We would like to give credit to this fact by following the naming suggestion of Ref. 5 and refer to the Auger–Meitner process throughout the paper.

See supplementary material at https://www.scitation.org/doi/suppl/10.1063/4.0000151 for a demonstration of the equivalency of the subtraction (method 1) and biasing (method 2) and for the procedure to prepare the satellite-free gas-phase spectrum shown in Fig. 2(b) and fitting procedure. We also provide computed energies of the initially N 1s core-ionized state, various intermediate and final states of the isolated ammonia molecule, the ammonia dimer, and the ammonia trimer. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Observation of intermolecular Coulombic decay and shake-up satellites in liquid ammonia

. 2022 Jul ; 9 (4) : 044901. [epub] 20220728

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace