Aqueous Solution Chemistry of Ammonium Cation in the Auger Time Window
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28389650
PubMed Central
PMC5429669
DOI
10.1038/s41598-017-00756-x
PII: 10.1038/s41598-017-00756-x
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We report on chemical reactions triggered by core-level ionization of ammonium ([Formula: see text]) cation in aqueous solution. Based on a combination of photoemission experiments from a liquid microjet and high-level ab initio simulations, we identified simultaneous single and double proton transfer occurring on a very short timescale spanned by the Auger-decay lifetime. Molecular dynamics simulations indicate that the proton transfer to a neighboring water molecule leads to essentially complete formation of H3O+ (aq) and core-ionized ammonia [Formula: see text](aq) within the ~7 fs lifetime of the nitrogen 1s core hole. A second proton transfer leads to a transient structure with the proton shared between the remaining NH2 moiety and another water molecule in the hydration shell. These ultrafast proton transfers are stimulated by very strong hydrogen bonds between the ammonium cation and water. Experimentally, the proton transfer dynamics is identified from an emerging signal at the high-kinetic energy side of the Auger-electron spectrum in analogy to observations made for other hydrogen-bonded aqueous solutions. The present study represents the most pronounced charge separation observed upon core ionization in liquids so far.
Department of Physics Freie Universität Berlin Arnimallee 14 D 141595 Berlin Germany
Fritz Haber Institut der Max Planck Gesellschaft Faradayweg 4 6 D 14195 Berlin Germany
J Heyrovský Institute of Physical Chemistry Dolejškova 3 18223 Prague 8 Czech Republic
School of Chemistry Monash University 3800 Clayton Victoria Australia
Zobrazit více v PubMed
Suga, S. & Sekiyama, A. Photoelectron Spectroscopy. 176, (Springer Berlin Heidelberg, 2014).
Aziz EF, Ottosson N, Faubel M, Hertel IV, Winter B. Interaction between liquid water and hydroxide revealed by core-hole de-excitation. Nature. 2008;455:89–91. doi: 10.1038/nature07252. PubMed DOI
Fransson T, et al. X-ray and Electron Spectroscopy of Water. Chem. Rev. 2016;116:7551–7569. doi: 10.1021/acs.chemrev.5b00672. PubMed DOI
Nilsson A, Pettersson LGM. Perspective on the structure of liquid water. Chem. Phys. 2011;389:1–34. doi: 10.1016/j.chemphys.2011.07.021. DOI
Thürmer S, et al. On the nature and origin of dicationic, charge-separated species formed in liquid water on X-ray irradiation. Nat. Chem. 2013;5:590–6. doi: 10.1038/nchem.1680. PubMed DOI
Stumpf V, Gokhberg K, Cederbaum LS. The role of metal ions in X-ray-induced photochemistry. Nat. Chem. 2016;8:237–241. doi: 10.1038/nchem.2429. PubMed DOI
Hirayama R, et al. Contributions of Direct and Indirect Actions in Cell Killing by High-LET Radiations. Radiat. Res. 2009;171:212–218. doi: 10.1667/RR1490.1. PubMed DOI
Palacios A, Sanz-Vicario JL, Martín F. Theoretical methods for attosecond electron and nuclear dynamics: applications to the H2 molecule. J. Phys. B At. Mol. Opt. Phys. 2015;48:242001–63. doi: 10.1088/0953-4075/48/24/242001. DOI
Ottosson N, Faubel M, Bradforth SE, Jungwirth P, Winter B. Photoelectron spectroscopy of liquid water and aqueous solution: Electron effective attenuation lengths and emission-angle anisotropy. J. Electron Spectros. Relat. Phenomena. 2010;177:60–70. doi: 10.1016/j.elspec.2009.08.007. DOI
Seidel R, Winter B, Bradforth SE. Valence Electronic Structure of Aqueous Solutions: Insights from Photoelectron Spectroscopy. Annu. Rev. Phys. Chem. 2016;67:283–305. doi: 10.1146/annurev-physchem-040513-103715. PubMed DOI
Ottosson N, Öhrwall G, Björneholm O. Ultrafast charge delocalization dynamics in aqueous electrolytes: New insights from Auger electron spectroscopy. Chem. Phys. Lett. 2012;543:1–11. doi: 10.1016/j.cplett.2012.05.051. DOI
Slavíček P, Kryzhevoi NV, Aziz EF, Winter B. Relaxation Processes in Aqueous Systems upon X-ray Ionization: Entanglement of Electronic and Nuclear Dynamics. J. Phys. Chem. Lett. 2016;7:234–243. doi: 10.1021/acs.jpclett.5b02665. PubMed DOI
Jahnke T. Interatomic and intermolecular Coulombic decay: the coming of age story. J. Phys. B At. Mol. Opt. Phys. 2015;48:82001. doi: 10.1088/0953-4075/48/8/082001. DOI
Slavíček P, Winter B, Cederbaum LS, Kryzhevoi NV. Proton-Transfer Mediated Enhancement of Nonlocal Electronic Relaxation Processes in X-ray Irradiated Liquid Water. J. Am. Chem. Soc. 2014;136:18170–18176. doi: 10.1021/ja5117588. PubMed DOI
Unger I, et al. Ultrafast Proton and Electron Dynamics in Core-Ionized Hydrated Hydrogen Peroxide: Photoemission Measurements with Isotopically Substituted Hydrogen Peroxide. J. Phys. Chem. C. 2014;118:29142–29150. doi: 10.1021/jp504707h. DOI
Unger I, et al. Control of X-ray Induced Electron and Nuclear Dynamics in Ammonia and Glycine Aqueous Solution via Hydrogen Bonding. J. Phys. Chem. B. 2015;119:10750–10759. doi: 10.1021/acs.jpcb.5b07283. PubMed DOI
Stoychev SD, Kuleff AI, Cederbaum LS. Intermolecular Coulombic decay in small biochemically relevant hydrogen-bonded systems. J. Am. Chem. Soc. 2011;133:6817–6824. doi: 10.1021/ja200963y. PubMed DOI
Hergenhahn U. Interatomic and intermolecular coulombic decay: The early years. J. Electron Spectros. Relat. Phenomena. 2011;184:78–90. doi: 10.1016/j.elspec.2010.12.020. DOI
Zundel G, Metzger H. Energy bands of tunneling excess protons in liquid acids. IR spectroscopic study of the nature of H5O2+ groups. Z. Phys. Chem. 1968;58:225–245. doi: 10.1524/zpch.1968.58.5_6.225. DOI
Odelius M, et al. Ultrafast Core-Hole-Induced Dynamics in Water Probed by X-Ray Emission Spectroscopy. Phys. Rev. Lett. 2005;94:227401. doi: 10.1103/PhysRevLett.94.227401. PubMed DOI
Odelius M. Molecular dynamics simulations of fine structure in oxygen K-edge x-ray emission spectra of liquid water and ice. Phys. Rev. B. 2009;79:144204. doi: 10.1103/PhysRevB.79.144204. DOI
Fuchs O, et al. Isotope and Temperature Effects in Liquid Water Probed by X-Ray Absorption and Resonant X-Ray Emission Spectroscopy. Phys. Rev. Lett. 2008;100:27801. doi: 10.1103/PhysRevLett.100.027801. PubMed DOI
Morin P, Nenner I. Atomic autoionization following very fast dissociation of core-Excited HBr. Phys. Rev. Lett. 1986;56:1913–1916. doi: 10.1103/PhysRevLett.56.1913. PubMed DOI
Pahl E, Cederbaum LS, Meyer HD, Tarantelli F. Controlled interplay between decay and fragmentation in resonant Auger processes. Phys. Rev. Lett. 1998;80:1865–1868. doi: 10.1103/PhysRevLett.80.1865. DOI
Hjelte I, et al. Evidence for ultra-fast dissociation of molecular water from resonant Auger spectroscopy. Chem. Phys. Lett. 2001;334:151–158. doi: 10.1016/S0009-2614(00)01434-2. DOI
Kempgens B, et al. A high-resolution N 1s photoionization study of the molecule in the near-threshold region. J. Phys. B At. Mol. Opt. Phys. 1999;29:5389–5402. doi: 10.1088/0953-4075/29/22/016. DOI
Steiner T. The Hydrogen Bond in the Solid State. Angew. Chemie Int. Ed. 2002;41:48–76. doi: 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U. PubMed DOI
Hutter J, Iannuzzi M, Schiffmann F, VandeVondele J. CP2K: atomistic simulations of condensed matter systems. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2014;4:15–25. doi: 10.1002/wcms.1159. DOI
Vandevondele J, et al. Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 2005;167:103–128. doi: 10.1016/j.cpc.2004.12.014. DOI
Lippert G, Hutter J, Parrinello M. The Gaussian and augmented-plane-wave density functional method for ab initio molecular dynamics simulations. Theor. Chem. Accounts Theory, Comput. Model. (Theoretica Chim. Acta) 1999;103:124–140. doi: 10.1007/s002140050523. DOI
VandeVondele J, Hutter J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 2007;127:114105. doi: 10.1063/1.2770708. PubMed DOI
Goedecker S, Teter M, Hutter J. Separable Dual-Space Gaussian Pseudopotentials. Phys. Rev. B. 1996;54:1703–1710. doi: 10.1103/PhysRevB.54.1703. PubMed DOI
Ceriotti M, Bussi G, Parrinello M. Nuclear Quantum Effects in Solids Using a Colored-Noise Thermostat. Phys. Rev. Lett. 2009;103:30603. doi: 10.1103/PhysRevLett.103.030603. PubMed DOI
Ceriotti M, Bussi G, Parrinello M. Colored-Noise Thermostats a la Carte. J. Chem. Theory Comput. 2010;6:1170–1180. doi: 10.1021/ct900563s. DOI
Basire M, Borgis D, Vuilleumier R. Computing Wigner distributions and time correlation functions using the quantum thermal bath method: application to proton transfer spectroscopy. Phys. Chem. Chem. Phys. 2013;15:12591–601. doi: 10.1039/c3cp50493j. PubMed DOI
Tokushima T, et al. High resolution X-ray emission spectroscopy of liquid water: The observation of two structural motifs. Chem. Phys. Lett. 2008;460:387–400. doi: 10.1016/j.cplett.2008.04.077. DOI
Gilbert ATB, Besley NA, Gill PMW. Self-Consistent Field Calculations of Excited States Using the Maximum Overlap Method (MOM) J. Phys. Chem. A. 2008;112:13164–13171. doi: 10.1021/jp801738f. PubMed DOI
Besley NA, Gilbert ATB, Gill PMW. Self-consistent-field calculations of core excited states. J. Chem. Phys. 2009;130:124308. doi: 10.1063/1.3092928. PubMed DOI
Cabral do Couto P, Hollas D, Slavíček P. On the Performance of Optimally Tuned Range-Separated Hybrid Functionals for X-ray Absorption Modeling. J. Chem. Theory Comput. 2015;11:3234–3244. doi: 10.1021/acs.jctc.5b00066. PubMed DOI
Barone V, Cossi M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A. 1998;102:1995–2001. doi: 10.1021/jp9716997. DOI
Lange AW, Herbert JM. A smooth, nonsingular, and faithful discretization scheme for polarizable continuum models: The switching/Gaussian approach. J. Chem. Phys. 2010;133:244111. doi: 10.1063/1.3511297. PubMed DOI
Bondi A. van der Waals Volumes and Radii. J. Phys. Chem. 1964;68:441–451. doi: 10.1021/j100785a001. DOI
Mantina M, Chamberlin AC, Valero R, Cramer CJ, Truhlar DG. Consistent van der Waals Radii for the Whole Main Group. J. Phys. Chem. A. 2009;113:5806–5812. doi: 10.1021/jp8111556. PubMed DOI PMC
Boys S, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970;19:553–566. doi: 10.1080/00268977000101561. DOI
Ufimtsev IS, Martinez TJ. Quantum Chemistry on Graphical Processing Units. 3. Analytical Energy Gradients, Geometry Optimization, and First Principles Molecular Dynamics. J. Chem. Theory Comput. 2009;5:2619–2628. doi: 10.1021/ct9003004. PubMed DOI
Titov AV, Ufimtsev IS, Luehr N, Martinez TJ. Generating efficient quantum chemistry codes for novel architectures. J. Chem. Theory Comput. 2013;9:213–221. doi: 10.1021/ct300321a. PubMed DOI
Krylov AI, Gill PMW. Q-Chem: An engine for innovation. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2013;3:317–326. doi: 10.1002/wcms.1122. DOI
Frisch, M. J. et al. Gaussian 09 Revision A.1.
Hollas, D., Svoboda, O., Slavíček, P. & Ončák, M. ABIN: source code available at. Available at: https://github.com/PHOTOX/ABIN. PubMed
Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M. Molpro: A general-purpose quantum chemistry program package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012;2:242–253. doi: 10.1002/wcms.82. DOI
Winter B, Faubel M. Photoemission from Liquid Aqueous Solutions. Chem. Rev. 2006;106:1176–1211. doi: 10.1021/cr040381p. PubMed DOI
Seidel R, Thürmer S, Winter B. Photoelectron Spectroscopy Meets Aqueous Solution: Studies from a Vacuum Liquid Microjet. J. Phys. Chem. Lett. 2011;2:633–641. doi: 10.1021/jz101636y. DOI
Lindblad A, et al. Charge delocalization dynamics of ammonia in different hydrogen bonding environments: free clusters and in liquid water solution. Phys. Chem. Chem. Phys. 2009;11:1758–64. doi: 10.1039/b815657c. PubMed DOI
Heyda J, Lund M, Ončák M, Slavíček P, Jungwirth P. Reversal of Hofmeister Ordering for Pairing of NH4+ vs Alkylated Ammonium Cations with Halide Anions in Water. J. Phys. Chem. B. 2010;114:10843–10852. doi: 10.1021/jp101393k. PubMed DOI
Kulig W, Agmon N. Both zundel and eigen isomers contribute to the IR spectrum of the gas-phase H9O4+ cluster. J. Phys. Chem. B. 2014;118:278–286. doi: 10.1021/jp410446d. PubMed DOI
Schnorr K, et al. Time-Resolved Measurement of Interatomic Coulombic Decay in Ne2. Phys. Rev. Lett. 2013;111:93402. doi: 10.1103/PhysRevLett.111.093402. PubMed DOI
Schnorr K, et al. Time-resolved study of ICD in Ne dimers using FEL radiation. J. Electron Spectros. Relat. Phenomena. 2015;204:245–256. doi: 10.1016/j.elspec.2015.07.009. DOI
Behrens C, et al. Few-femtosecond time-resolved measurements of X-ray free-electron lasers. Nat. Commun. 2014;5:3762. doi: 10.1038/ncomms4762. PubMed DOI
Selecting Initial Conditions for Trajectory-Based Nonadiabatic Simulations
Observation of intermolecular Coulombic decay and shake-up satellites in liquid ammonia
Following in Emil Fischer's Footsteps: A Site-Selective Probe of Glucose Acid-Base Chemistry
Competition between proton transfer and intermolecular Coulombic decay in water