Aqueous Solution Chemistry of Ammonium Cation in the Auger Time Window

. 2017 Apr 07 ; 7 (1) : 756. [epub] 20170407

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28389650
Odkazy

PubMed 28389650
PubMed Central PMC5429669
DOI 10.1038/s41598-017-00756-x
PII: 10.1038/s41598-017-00756-x
Knihovny.cz E-zdroje

We report on chemical reactions triggered by core-level ionization of ammonium ([Formula: see text]) cation in aqueous solution. Based on a combination of photoemission experiments from a liquid microjet and high-level ab initio simulations, we identified simultaneous single and double proton transfer occurring on a very short timescale spanned by the Auger-decay lifetime. Molecular dynamics simulations indicate that the proton transfer to a neighboring water molecule leads to essentially complete formation of H3O+ (aq) and core-ionized ammonia [Formula: see text](aq) within the ~7 fs lifetime of the nitrogen 1s core hole. A second proton transfer leads to a transient structure with the proton shared between the remaining NH2 moiety and another water molecule in the hydration shell. These ultrafast proton transfers are stimulated by very strong hydrogen bonds between the ammonium cation and water. Experimentally, the proton transfer dynamics is identified from an emerging signal at the high-kinetic energy side of the Auger-electron spectrum in analogy to observations made for other hydrogen-bonded aqueous solutions. The present study represents the most pronounced charge separation observed upon core ionization in liquids so far.

Zobrazit více v PubMed

Suga, S. & Sekiyama, A. Photoelectron Spectroscopy. 176, (Springer Berlin Heidelberg, 2014).

Aziz EF, Ottosson N, Faubel M, Hertel IV, Winter B. Interaction between liquid water and hydroxide revealed by core-hole de-excitation. Nature. 2008;455:89–91. doi: 10.1038/nature07252. PubMed DOI

Fransson T, et al. X-ray and Electron Spectroscopy of Water. Chem. Rev. 2016;116:7551–7569. doi: 10.1021/acs.chemrev.5b00672. PubMed DOI

Nilsson A, Pettersson LGM. Perspective on the structure of liquid water. Chem. Phys. 2011;389:1–34. doi: 10.1016/j.chemphys.2011.07.021. DOI

Thürmer S, et al. On the nature and origin of dicationic, charge-separated species formed in liquid water on X-ray irradiation. Nat. Chem. 2013;5:590–6. doi: 10.1038/nchem.1680. PubMed DOI

Stumpf V, Gokhberg K, Cederbaum LS. The role of metal ions in X-ray-induced photochemistry. Nat. Chem. 2016;8:237–241. doi: 10.1038/nchem.2429. PubMed DOI

Hirayama R, et al. Contributions of Direct and Indirect Actions in Cell Killing by High-LET Radiations. Radiat. Res. 2009;171:212–218. doi: 10.1667/RR1490.1. PubMed DOI

Palacios A, Sanz-Vicario JL, Martín F. Theoretical methods for attosecond electron and nuclear dynamics: applications to the H2 molecule. J. Phys. B At. Mol. Opt. Phys. 2015;48:242001–63. doi: 10.1088/0953-4075/48/24/242001. DOI

Ottosson N, Faubel M, Bradforth SE, Jungwirth P, Winter B. Photoelectron spectroscopy of liquid water and aqueous solution: Electron effective attenuation lengths and emission-angle anisotropy. J. Electron Spectros. Relat. Phenomena. 2010;177:60–70. doi: 10.1016/j.elspec.2009.08.007. DOI

Seidel R, Winter B, Bradforth SE. Valence Electronic Structure of Aqueous Solutions: Insights from Photoelectron Spectroscopy. Annu. Rev. Phys. Chem. 2016;67:283–305. doi: 10.1146/annurev-physchem-040513-103715. PubMed DOI

Ottosson N, Öhrwall G, Björneholm O. Ultrafast charge delocalization dynamics in aqueous electrolytes: New insights from Auger electron spectroscopy. Chem. Phys. Lett. 2012;543:1–11. doi: 10.1016/j.cplett.2012.05.051. DOI

Slavíček P, Kryzhevoi NV, Aziz EF, Winter B. Relaxation Processes in Aqueous Systems upon X-ray Ionization: Entanglement of Electronic and Nuclear Dynamics. J. Phys. Chem. Lett. 2016;7:234–243. doi: 10.1021/acs.jpclett.5b02665. PubMed DOI

Jahnke T. Interatomic and intermolecular Coulombic decay: the coming of age story. J. Phys. B At. Mol. Opt. Phys. 2015;48:82001. doi: 10.1088/0953-4075/48/8/082001. DOI

Slavíček P, Winter B, Cederbaum LS, Kryzhevoi NV. Proton-Transfer Mediated Enhancement of Nonlocal Electronic Relaxation Processes in X-ray Irradiated Liquid Water. J. Am. Chem. Soc. 2014;136:18170–18176. doi: 10.1021/ja5117588. PubMed DOI

Unger I, et al. Ultrafast Proton and Electron Dynamics in Core-Ionized Hydrated Hydrogen Peroxide: Photoemission Measurements with Isotopically Substituted Hydrogen Peroxide. J. Phys. Chem. C. 2014;118:29142–29150. doi: 10.1021/jp504707h. DOI

Unger I, et al. Control of X-ray Induced Electron and Nuclear Dynamics in Ammonia and Glycine Aqueous Solution via Hydrogen Bonding. J. Phys. Chem. B. 2015;119:10750–10759. doi: 10.1021/acs.jpcb.5b07283. PubMed DOI

Stoychev SD, Kuleff AI, Cederbaum LS. Intermolecular Coulombic decay in small biochemically relevant hydrogen-bonded systems. J. Am. Chem. Soc. 2011;133:6817–6824. doi: 10.1021/ja200963y. PubMed DOI

Hergenhahn U. Interatomic and intermolecular coulombic decay: The early years. J. Electron Spectros. Relat. Phenomena. 2011;184:78–90. doi: 10.1016/j.elspec.2010.12.020. DOI

Zundel G, Metzger H. Energy bands of tunneling excess protons in liquid acids. IR spectroscopic study of the nature of H5O2+ groups. Z. Phys. Chem. 1968;58:225–245. doi: 10.1524/zpch.1968.58.5_6.225. DOI

Odelius M, et al. Ultrafast Core-Hole-Induced Dynamics in Water Probed by X-Ray Emission Spectroscopy. Phys. Rev. Lett. 2005;94:227401. doi: 10.1103/PhysRevLett.94.227401. PubMed DOI

Odelius M. Molecular dynamics simulations of fine structure in oxygen K-edge x-ray emission spectra of liquid water and ice. Phys. Rev. B. 2009;79:144204. doi: 10.1103/PhysRevB.79.144204. DOI

Fuchs O, et al. Isotope and Temperature Effects in Liquid Water Probed by X-Ray Absorption and Resonant X-Ray Emission Spectroscopy. Phys. Rev. Lett. 2008;100:27801. doi: 10.1103/PhysRevLett.100.027801. PubMed DOI

Morin P, Nenner I. Atomic autoionization following very fast dissociation of core-Excited HBr. Phys. Rev. Lett. 1986;56:1913–1916. doi: 10.1103/PhysRevLett.56.1913. PubMed DOI

Pahl E, Cederbaum LS, Meyer HD, Tarantelli F. Controlled interplay between decay and fragmentation in resonant Auger processes. Phys. Rev. Lett. 1998;80:1865–1868. doi: 10.1103/PhysRevLett.80.1865. DOI

Hjelte I, et al. Evidence for ultra-fast dissociation of molecular water from resonant Auger spectroscopy. Chem. Phys. Lett. 2001;334:151–158. doi: 10.1016/S0009-2614(00)01434-2. DOI

Kempgens B, et al. A high-resolution N 1s photoionization study of the molecule in the near-threshold region. J. Phys. B At. Mol. Opt. Phys. 1999;29:5389–5402. doi: 10.1088/0953-4075/29/22/016. DOI

Steiner T. The Hydrogen Bond in the Solid State. Angew. Chemie Int. Ed. 2002;41:48–76. doi: 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U. PubMed DOI

Hutter J, Iannuzzi M, Schiffmann F, VandeVondele J. CP2K: atomistic simulations of condensed matter systems. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2014;4:15–25. doi: 10.1002/wcms.1159. DOI

Vandevondele J, et al. Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 2005;167:103–128. doi: 10.1016/j.cpc.2004.12.014. DOI

Lippert G, Hutter J, Parrinello M. The Gaussian and augmented-plane-wave density functional method for ab initio molecular dynamics simulations. Theor. Chem. Accounts Theory, Comput. Model. (Theoretica Chim. Acta) 1999;103:124–140. doi: 10.1007/s002140050523. DOI

VandeVondele J, Hutter J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 2007;127:114105. doi: 10.1063/1.2770708. PubMed DOI

Goedecker S, Teter M, Hutter J. Separable Dual-Space Gaussian Pseudopotentials. Phys. Rev. B. 1996;54:1703–1710. doi: 10.1103/PhysRevB.54.1703. PubMed DOI

Ceriotti M, Bussi G, Parrinello M. Nuclear Quantum Effects in Solids Using a Colored-Noise Thermostat. Phys. Rev. Lett. 2009;103:30603. doi: 10.1103/PhysRevLett.103.030603. PubMed DOI

Ceriotti M, Bussi G, Parrinello M. Colored-Noise Thermostats a la Carte. J. Chem. Theory Comput. 2010;6:1170–1180. doi: 10.1021/ct900563s. DOI

Basire M, Borgis D, Vuilleumier R. Computing Wigner distributions and time correlation functions using the quantum thermal bath method: application to proton transfer spectroscopy. Phys. Chem. Chem. Phys. 2013;15:12591–601. doi: 10.1039/c3cp50493j. PubMed DOI

Tokushima T, et al. High resolution X-ray emission spectroscopy of liquid water: The observation of two structural motifs. Chem. Phys. Lett. 2008;460:387–400. doi: 10.1016/j.cplett.2008.04.077. DOI

Gilbert ATB, Besley NA, Gill PMW. Self-Consistent Field Calculations of Excited States Using the Maximum Overlap Method (MOM) J. Phys. Chem. A. 2008;112:13164–13171. doi: 10.1021/jp801738f. PubMed DOI

Besley NA, Gilbert ATB, Gill PMW. Self-consistent-field calculations of core excited states. J. Chem. Phys. 2009;130:124308. doi: 10.1063/1.3092928. PubMed DOI

Cabral do Couto P, Hollas D, Slavíček P. On the Performance of Optimally Tuned Range-Separated Hybrid Functionals for X-ray Absorption Modeling. J. Chem. Theory Comput. 2015;11:3234–3244. doi: 10.1021/acs.jctc.5b00066. PubMed DOI

Barone V, Cossi M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A. 1998;102:1995–2001. doi: 10.1021/jp9716997. DOI

Lange AW, Herbert JM. A smooth, nonsingular, and faithful discretization scheme for polarizable continuum models: The switching/Gaussian approach. J. Chem. Phys. 2010;133:244111. doi: 10.1063/1.3511297. PubMed DOI

Bondi A. van der Waals Volumes and Radii. J. Phys. Chem. 1964;68:441–451. doi: 10.1021/j100785a001. DOI

Mantina M, Chamberlin AC, Valero R, Cramer CJ, Truhlar DG. Consistent van der Waals Radii for the Whole Main Group. J. Phys. Chem. A. 2009;113:5806–5812. doi: 10.1021/jp8111556. PubMed DOI PMC

Boys S, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970;19:553–566. doi: 10.1080/00268977000101561. DOI

Ufimtsev IS, Martinez TJ. Quantum Chemistry on Graphical Processing Units. 3. Analytical Energy Gradients, Geometry Optimization, and First Principles Molecular Dynamics. J. Chem. Theory Comput. 2009;5:2619–2628. doi: 10.1021/ct9003004. PubMed DOI

Titov AV, Ufimtsev IS, Luehr N, Martinez TJ. Generating efficient quantum chemistry codes for novel architectures. J. Chem. Theory Comput. 2013;9:213–221. doi: 10.1021/ct300321a. PubMed DOI

Krylov AI, Gill PMW. Q-Chem: An engine for innovation. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2013;3:317–326. doi: 10.1002/wcms.1122. DOI

Frisch, M. J. et al. Gaussian 09 Revision A.1.

Hollas, D., Svoboda, O., Slavíček, P. & Ončák, M. ABIN: source code available at. Available at: https://github.com/PHOTOX/ABIN. PubMed

Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M. Molpro: A general-purpose quantum chemistry program package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012;2:242–253. doi: 10.1002/wcms.82. DOI

Winter B, Faubel M. Photoemission from Liquid Aqueous Solutions. Chem. Rev. 2006;106:1176–1211. doi: 10.1021/cr040381p. PubMed DOI

Seidel R, Thürmer S, Winter B. Photoelectron Spectroscopy Meets Aqueous Solution: Studies from a Vacuum Liquid Microjet. J. Phys. Chem. Lett. 2011;2:633–641. doi: 10.1021/jz101636y. DOI

Lindblad A, et al. Charge delocalization dynamics of ammonia in different hydrogen bonding environments: free clusters and in liquid water solution. Phys. Chem. Chem. Phys. 2009;11:1758–64. doi: 10.1039/b815657c. PubMed DOI

Heyda J, Lund M, Ončák M, Slavíček P, Jungwirth P. Reversal of Hofmeister Ordering for Pairing of NH4+ vs Alkylated Ammonium Cations with Halide Anions in Water. J. Phys. Chem. B. 2010;114:10843–10852. doi: 10.1021/jp101393k. PubMed DOI

Kulig W, Agmon N. Both zundel and eigen isomers contribute to the IR spectrum of the gas-phase H9O4+ cluster. J. Phys. Chem. B. 2014;118:278–286. doi: 10.1021/jp410446d. PubMed DOI

Schnorr K, et al. Time-Resolved Measurement of Interatomic Coulombic Decay in Ne2. Phys. Rev. Lett. 2013;111:93402. doi: 10.1103/PhysRevLett.111.093402. PubMed DOI

Schnorr K, et al. Time-resolved study of ICD in Ne dimers using FEL radiation. J. Electron Spectros. Relat. Phenomena. 2015;204:245–256. doi: 10.1016/j.elspec.2015.07.009. DOI

Behrens C, et al. Few-femtosecond time-resolved measurements of X-ray free-electron lasers. Nat. Commun. 2014;5:3762. doi: 10.1038/ncomms4762. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...