Attosecond formation of charge-transfer-to-solvent states of aqueous ions probed using the core-hole-clock technique

. 2024 Oct 16 ; 15 (1) : 8903. [epub] 20241016

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39406706
Odkazy

PubMed 39406706
PubMed Central PMC11480494
DOI 10.1038/s41467-024-52740-5
PII: 10.1038/s41467-024-52740-5
Knihovny.cz E-zdroje

Charge transfer between molecules lies at the heart of many chemical processes. Here, we focus on the ultrafast electron dynamics associated with the formation of charge-transfer-to-solvent (CTTS) states following X-ray absorption in aqueous solutions of Na+, Mg2+, and Al3+ ions. To explore the formation of such states in the aqueous phase, liquid-jet photoemission spectroscopy is employed. Using the core-hole-clock method, based on Auger-Meitner (AM) decay upon 1s excitation or ionization of the respective ions, upper limits are estimated for the metal-atom electron delocalization times to the neighboring water molecules. These delocalization processes represent the first steps in the formation of hydrated electrons, which are determined to take place on a timescale ranging from several hundred attoseconds (as) below the 1s ionization threshold to only 20 as far above the 1s ionization threshold. The decrease in the delocalization times as a function of the photon energy is continuous. This indicates that the excited electrons remain in the vicinity of the studied ions even above the ionization threshold, i.e., metal-ion electronic resonances associated with the CTTS state manifolds are formed. The three studied isoelectronic ions exhibit quantitative differences in their electron energetics and delocalization times, which are linked to the character of the respective excited states.

Zobrazit více v PubMed

Garrett, B. C. et al. Role of water in electron-initiated processes and radical chemistry: issues and scientific advances. Chem. Rev.105, 355–390 (2005). PubMed

Rabinowitch, E. Electron transfer spectra and their photochemical effects. Rev. Mod. Phys.14, 112 (1942).

Blandamer, M. J. & Fox, M. F. Theory and applications of charge-transfer-to-solvent spectra. Chem. Rev.70, 59–93 (1970).

Chen, X. & Bradforth, S. E. The ultrafast dynamics of photodetachment. Annu. Rev. Phys. Chem.59, 203–231 (2008). PubMed

Lübcke, A., Buchner, F., Heine, N., Hertel, I. V. & Schultz, T. Time-resolved photoelectron spectroscopy of solvated electrons in aqueous NaI solution. Phys. Chem. Chem. Phys.12, 14629–14634 (2010). PubMed

Suzuki, Y.-I. et al. Isotope effect on ultrafast charge-transfer-to-solvent reaction from I− to water in aqueous NaI solution. Chem. Sci.2, 1094–1102 (2011).

Messina, F., Bräm, O., Cannizzo, A. & Chergui, M. Real-time observation of the charge transfer to solvent dynamics. Nat. Commun.4, 2119 (2013). PubMed

Elkins, M. H., Williams, H. L., Shreve, A. T. & Neumark, D. M. Relaxation mechanism of the hydrated electron. Science342, 1496–1499 (2013). PubMed

Karashima, S., Yamamoto, Y.-i & Suzuki, T. Ultrafast internal conversion and solvation of electrons in water, methanol, and ethanol. J. Phys. Chem. Lett.10, 4499–4504 (2019). PubMed

Carter-Fenk, K., Johnson, B. A., Herbert, J. M., Schenter, G. K. & Mundy, C. J. Birth of the hydrated electron via charge-transfer-to-solvent excitation of aqueous iodide. J. Phys. Chem. Lett.14, 870–878 (2023). PubMed

Lan, J., Chergui, M. & Pasquarello, A. Dynamics of the charge transfer to solvent process in aqueous iodide. Nat. Commun.15, 2544 (2024). PubMed PMC

Siefermann, K. R. et al. Binding energies, lifetimes and implications of bulk and interface solvated electrons in water. Nat. Chem.2, 274–279 (2010). PubMed

Nisoli, M., Decleva, P., Calegari, F., Palacios, A. & Martín, F. Attosecond electron dynamics in molecules. Chem. Rev.117, 10760–10825 (2017). PubMed

Merritt, I. C. D., Jacquemin, D. & Vacher, M. Attochemistry: is controlling electrons the future of photochemistry? J. Phys. Chem. Lett.12, 8404–8415 (2021). PubMed

Calegari, F. & Martin, F. Open questions in attochemistry. Commun. Chem.6, 184 (2023). PubMed PMC

Borrego-Varillas, R., Lucchini, M. & Nisoli, M. Attosecond spectroscopy for the investigation of ultrafast dynamics in atomic, molecular and solid-state physics. Rep. Prog. Phys.85, 066401 (2022). PubMed

Li, S. et al. Attosecond coherent electron motion in Auger–Meitner decay. Science375, 285–290 (2022). PubMed

Li, S. et al. Attosecond-pump attosecond-probe x-ray spectroscopy of liquid water. Science383, 1118–1122 (2024). PubMed

Bello, R. Y. et al. Reconstruction of the time-dependent electronic wave packet arising from molecular autoionization. Sci. Adv.4, eaat3962 (2018). PubMed PMC

Grundmann, S. et al. Zeptosecond birth time delay in molecular photoionization. Science370, 339–341 (2020). PubMed

Rist, J. et al. Measuring the photoelectron emission delay in the molecular frame. Nat. Commun.12, 6657 (2021). PubMed PMC

Holzmeier, F. et al. Influence of shape resonances on the angular dependence of molecular photoionization delays. Nat. Commun.12, 7343 (2021). PubMed PMC

Björneholm, O., Nilsson, A., Sandell, A., Hernnäs, B. & Mårtensson, N. Determination of time scales for charge-transfer screening in physisorbed molecules. Phys. Rev. Lett.68, 1892 (1992). PubMed

Wurth, W. & Menzel, D. Ultrafast electron dynamics at surfaces probed by resonant Auger spectroscopy. Chem. Phys.251, 141–149 (2000).

Brühwiler, P. A., Karis, O. & Mårtensson, N. Charge-transfer dynamics studied using resonant core spectroscopies. Rev. Mod. Phys.74, 703 (2002).

Föhlisch, A. et al. Direct observation of electron dynamics in the attosecond domain. Nature436, 373–376 (2005). PubMed

Aksela, H. Resonant Auger spectroscopy of atoms and molecules. J. Electron Spectrosc. Relat. Phenom72, 235–242 (1995).

Johansson, F. O. L. et al. Resonant Auger spectroscopy on solid xenon on gold, silver, and copper substrates. Phys. Rev. A107, 032802 (2023).

Fink, R. F., Kivilompolo, M., Aksela, H. & Aksela, S. Spin–orbit interaction and molecular-field effects in the L2,3VV Auger-electron spectra of HCl. Phys. Rev. A58, 1988 (1998).

Winter, B. et al. Electron dynamics in charge-transfer-to-solvent states of aqueous chloride revealed by Cl− 2p resonant auger-electron spectroscopy. J. Am. Chem. Soc.130, 7130–7138 (2008). PubMed

Nordlund, D. et al. Probing the electron delocalization in liquid water and ice at attosecond time scales. Phys. Rev. Lett.99, 217406 (2007). PubMed

Ottosson, N. et al. Cations strongly reduce electron-hopping rates in aqueous solutions. J. Am. Chem. Soc.133, 13489–13495 (2011). PubMed

Jahnke, T. et al. Interatomic and intermolecular Coulombic decay. Chem. Rev.120, 11295–11369 (2020). PubMed PMC

Öhrwall, G. et al. Charge dependence of solvent-mediated intermolecular Coster–Kronig decay dynamics of aqueous ions. J. Phys. Chem. B114, 17057–17061 (2010). PubMed

Pokapanich, W. et al. Ionic-charge dependence of the intermolecular Coulombic decay time scale for aqueous ions probed by the core-hole-clock. J. Am. Chem. Soc.133, 13430–13436 (2011). PubMed

Gopakumar, G. et al. Probing aqueous ions with non-local Auger relaxation. Phys. Chem. Chem. Phys.24, 8661–8671 (2022). PubMed PMC

Miteva, T. et al. The all-seeing eye of resonant Auger electron spectroscopy: a study on aqueous solution using tender X-rays. J. Phys. Chem. Lett.9, 4457–4462 (2018). PubMed

Hollas, D. et al. Aqueous solution chemistry of ammonium cation in the Auger time window. Sci. Rep.7, 756 (2017). PubMed PMC

Campbell, J. L. & Papp, T. Widths of the atomic K-N7 levels. At. Data Nucl. Data Tables77, 1–56 (2001).

Sánchez-Portal, D., Menzel, D. & Echenique, P. M. First-principles calculation of charge transfer at surfaces: the case of core-excited [Image: see text] on Ru(0001). Phys. Rev. B76, 235406 (2007).

Forbes, R. G. & Deane, J. H. B. Transmission coefficients for the exact triangular barrier: an exact general analytical theory that can replace Fowler & Nordheim’s 1928 theory. Proc. Math. Phys. Eng. Sci.467, 2927–2947 (2011).

Cabral do Couto, P., Estácio, S. G. & Costa Cabral, B. J. The Kohn–Sham density of states and band gap of water: from small clusters to liquid water. J. Chem. Phys.123, 054510 (2005). PubMed

Prendergast, D., Grossman, J. C. & Galli, G. The electronic structure of liquid water within density-functional theory. J. Chem. Phys.123, 014501 (2005). PubMed

Fang, C. et al. The accurate calculation of the band gap of liquid water by means of GW corrections applied to plane-wave density functional theory molecular dynamics simulations. Phys. Chem. Chem. Phys.17, 365–375 (2015). PubMed

Bischoff, T., Reshetnyak, I. & Pasquarello, A. Band gaps of liquid water and hexagonal ice through advanced electronic-structure calculations. Phys. Rev. Res.3, 023182 (2021).

Fransson, T. et al. X-ray and electron spectroscopy of water. Chem. Rev.116, 7551–7569 (2016). PubMed

Nandi, S. et al. Attosecond timing of electron emission from a molecular shape resonance. Sci. Adv.6, eaba7762 (2020). PubMed PMC

Kaldun, A. et al. Observing the ultrafast buildup of a Fano resonance in the time domain. Science354, 738–741 (2016). PubMed

Gruson, V. et al. Attosecond dynamics through a Fano resonance: monitoring the birth of a photoelectron. Science354, 734–738 (2016). PubMed

Viefhaus, J. et al. The variable polarization XUV beamline P04 at PETRA III: optics, mechanics and their performance. Nucl. Instrum. Methods Phys. Res. Sect. A710, 151–154 (2013).

Malerz, S. et al. A setup for studies of photoelectron circular dichroism from chiral molecules in aqueous solution. Rev. Sci. Instrum.93, 015101 (2022). PubMed

Zhu, S. et al. HIPPIE: a new platform for ambient-pressure X-ray photoelectron spectroscopy at the MAX IV Laboratory. J. Synchrotron Radiat.28, 624–636 (2021). PubMed PMC

Seidel, R., Atak, K., Thürmer, S., Aziz, E. F. & Winter, B. Ti3+ aqueous solution: hybridization and electronic relaxation probed by state-dependent electron spectroscopy. J. Phys. Chem. B119, 10607–10615 (2015). PubMed

Blum, M. et al. Ultrafast proton dynamics in aqueous amino acid solutions studied by resonant inelastic soft x-ray scattering. J. Phys. Chem. B116, 13757–13764 (2012). PubMed

Kukk, E. SPANCF—Spectrum Analysis by Curve Fitting—Macro Package for Igor Prohttps://www.geocities.ws/ekukk/intro.htm#:~:text=In%20this%20approach%2C%20called%20%22curve,to%20the%20spectrum%20is%20obtained (2012).

Gopakumar, G. et al. Radiation damage by extensive local water ionization from two-step electron-transfer-mediated decay of solvated ions. Nat. Chem.15, 1408–1414 (2023). PubMed PMC

Besley, N. A., Peach, M. J. G. & Tozer, D. J. Time-dependent density functional theory calculations of near-edge X-ray absorption fine structure with short-range corrected functionals. Phys. Chem. Chem. Phys.11, 10350–10358 (2009). PubMed

Herbert, J. M., Zhu, Y., Alam, B. & Ojha, A. K. Time-dependent density functional theory for x-ray absorption spectra: comparing the real-time approach to linear response. J. Chem. Theory Comput.19, 6745–6760 (2023). PubMed

Peterson, K. A. & Dunning, Jr, T. H. Accurate correlation consistent basis sets for molecular core-valence correlation effects: the second row atoms Al–Ar, and the first row atoms B–Ne revisited. J. Chem. Phys.117, 10548–10560 (2002).

Epifanovsky, E. et al. Software for the frontiers of quantum chemistry: an overview of developments in the Q-Chem 5 package. J. Chem. Phys.155, 084801 (2021). PubMed PMC

Bäppler, S. A., Plasser, F., Wormit, M. & Dreuw, A. Exciton analysis of many-body wave functions: bridging the gap between the quasiparticle and molecular orbital pictures. Phys. Rev. A90, 052521 (2014).

Plasser, F. et al. Statistical analysis of electronic excitation processes: spatial location, compactness, charge transfer, and electron–hole correlation. J. Comp. Chem.36, 1609–1620 (2015). PubMed

Mewes, S. A., Mewes, J.-M., Dreuw, A. & Plasser, F. Excitons in poly(para phenylene vinylene): a quantum-chemical perspective based on high-level ab initio calculations. Phys. Chem. Chem. Phys.18, 2548–2563 (2016). PubMed

Plasser, F. TheoDORE: a toolbox for a detailed and automated analysis of electronic excited state computations. J. Chem. Phys.152, 084108 (2020). PubMed

Gilbert, A. T. B., Besley, N. A. & Gill, P. M. W. Self-consistent field calculations of excited states using the maximum overlap method (MOM). J. Phys. Chem. A112, 13164–13171 (2008). PubMed

Jana, S. & Herbert, J. M. Slater transition methods for core-level electron binding energies. J. Chem. Phys.158, 094111 (2023). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...