Attosecond formation of charge-transfer-to-solvent states of aqueous ions probed using the core-hole-clock technique
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
39406706
PubMed Central
PMC11480494
DOI
10.1038/s41467-024-52740-5
PII: 10.1038/s41467-024-52740-5
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Charge transfer between molecules lies at the heart of many chemical processes. Here, we focus on the ultrafast electron dynamics associated with the formation of charge-transfer-to-solvent (CTTS) states following X-ray absorption in aqueous solutions of Na+, Mg2+, and Al3+ ions. To explore the formation of such states in the aqueous phase, liquid-jet photoemission spectroscopy is employed. Using the core-hole-clock method, based on Auger-Meitner (AM) decay upon 1s excitation or ionization of the respective ions, upper limits are estimated for the metal-atom electron delocalization times to the neighboring water molecules. These delocalization processes represent the first steps in the formation of hydrated electrons, which are determined to take place on a timescale ranging from several hundred attoseconds (as) below the 1s ionization threshold to only 20 as far above the 1s ionization threshold. The decrease in the delocalization times as a function of the photon energy is continuous. This indicates that the excited electrons remain in the vicinity of the studied ions even above the ionization threshold, i.e., metal-ion electronic resonances associated with the CTTS state manifolds are formed. The three studied isoelectronic ions exhibit quantitative differences in their electron energetics and delocalization times, which are linked to the character of the respective excited states.
Center for Free Electron Laser Science DESY Notkestr 85 22607 Hamburg Germany
Department of Physics and Astronomy Uppsala University Box 516 SE 751 20 Uppsala Sweden
Fritz Haber Institut der Max Planck Gesellschaft Faradayweg 4 6 14195 Berlin Germany
MAX 4 Laboratory Lund University Box 118 SE 22100 Lund Sweden
Synchrotron SOLEIL L'Orme des Merisiers Saint Aubin BP 48 91192 Gif sur Yvette Cedex Paris France
Zobrazit více v PubMed
Garrett, B. C. et al. Role of water in electron-initiated processes and radical chemistry: issues and scientific advances. Chem. Rev.105, 355–390 (2005). PubMed
Rabinowitch, E. Electron transfer spectra and their photochemical effects. Rev. Mod. Phys.14, 112 (1942).
Blandamer, M. J. & Fox, M. F. Theory and applications of charge-transfer-to-solvent spectra. Chem. Rev.70, 59–93 (1970).
Chen, X. & Bradforth, S. E. The ultrafast dynamics of photodetachment. Annu. Rev. Phys. Chem.59, 203–231 (2008). PubMed
Lübcke, A., Buchner, F., Heine, N., Hertel, I. V. & Schultz, T. Time-resolved photoelectron spectroscopy of solvated electrons in aqueous NaI solution. Phys. Chem. Chem. Phys.12, 14629–14634 (2010). PubMed
Suzuki, Y.-I. et al. Isotope effect on ultrafast charge-transfer-to-solvent reaction from I− to water in aqueous NaI solution. Chem. Sci.2, 1094–1102 (2011).
Messina, F., Bräm, O., Cannizzo, A. & Chergui, M. Real-time observation of the charge transfer to solvent dynamics. Nat. Commun.4, 2119 (2013). PubMed
Elkins, M. H., Williams, H. L., Shreve, A. T. & Neumark, D. M. Relaxation mechanism of the hydrated electron. Science342, 1496–1499 (2013). PubMed
Karashima, S., Yamamoto, Y.-i & Suzuki, T. Ultrafast internal conversion and solvation of electrons in water, methanol, and ethanol. J. Phys. Chem. Lett.10, 4499–4504 (2019). PubMed
Carter-Fenk, K., Johnson, B. A., Herbert, J. M., Schenter, G. K. & Mundy, C. J. Birth of the hydrated electron via charge-transfer-to-solvent excitation of aqueous iodide. J. Phys. Chem. Lett.14, 870–878 (2023). PubMed
Lan, J., Chergui, M. & Pasquarello, A. Dynamics of the charge transfer to solvent process in aqueous iodide. Nat. Commun.15, 2544 (2024). PubMed PMC
Siefermann, K. R. et al. Binding energies, lifetimes and implications of bulk and interface solvated electrons in water. Nat. Chem.2, 274–279 (2010). PubMed
Nisoli, M., Decleva, P., Calegari, F., Palacios, A. & Martín, F. Attosecond electron dynamics in molecules. Chem. Rev.117, 10760–10825 (2017). PubMed
Merritt, I. C. D., Jacquemin, D. & Vacher, M. Attochemistry: is controlling electrons the future of photochemistry? J. Phys. Chem. Lett.12, 8404–8415 (2021). PubMed
Calegari, F. & Martin, F. Open questions in attochemistry. Commun. Chem.6, 184 (2023). PubMed PMC
Borrego-Varillas, R., Lucchini, M. & Nisoli, M. Attosecond spectroscopy for the investigation of ultrafast dynamics in atomic, molecular and solid-state physics. Rep. Prog. Phys.85, 066401 (2022). PubMed
Li, S. et al. Attosecond coherent electron motion in Auger–Meitner decay. Science375, 285–290 (2022). PubMed
Li, S. et al. Attosecond-pump attosecond-probe x-ray spectroscopy of liquid water. Science383, 1118–1122 (2024). PubMed
Bello, R. Y. et al. Reconstruction of the time-dependent electronic wave packet arising from molecular autoionization. Sci. Adv.4, eaat3962 (2018). PubMed PMC
Grundmann, S. et al. Zeptosecond birth time delay in molecular photoionization. Science370, 339–341 (2020). PubMed
Rist, J. et al. Measuring the photoelectron emission delay in the molecular frame. Nat. Commun.12, 6657 (2021). PubMed PMC
Holzmeier, F. et al. Influence of shape resonances on the angular dependence of molecular photoionization delays. Nat. Commun.12, 7343 (2021). PubMed PMC
Björneholm, O., Nilsson, A., Sandell, A., Hernnäs, B. & Mårtensson, N. Determination of time scales for charge-transfer screening in physisorbed molecules. Phys. Rev. Lett.68, 1892 (1992). PubMed
Wurth, W. & Menzel, D. Ultrafast electron dynamics at surfaces probed by resonant Auger spectroscopy. Chem. Phys.251, 141–149 (2000).
Brühwiler, P. A., Karis, O. & Mårtensson, N. Charge-transfer dynamics studied using resonant core spectroscopies. Rev. Mod. Phys.74, 703 (2002).
Föhlisch, A. et al. Direct observation of electron dynamics in the attosecond domain. Nature436, 373–376 (2005). PubMed
Aksela, H. Resonant Auger spectroscopy of atoms and molecules. J. Electron Spectrosc. Relat. Phenom72, 235–242 (1995).
Johansson, F. O. L. et al. Resonant Auger spectroscopy on solid xenon on gold, silver, and copper substrates. Phys. Rev. A107, 032802 (2023).
Fink, R. F., Kivilompolo, M., Aksela, H. & Aksela, S. Spin–orbit interaction and molecular-field effects in the L2,3VV Auger-electron spectra of HCl. Phys. Rev. A58, 1988 (1998).
Winter, B. et al. Electron dynamics in charge-transfer-to-solvent states of aqueous chloride revealed by Cl− 2p resonant auger-electron spectroscopy. J. Am. Chem. Soc.130, 7130–7138 (2008). PubMed
Nordlund, D. et al. Probing the electron delocalization in liquid water and ice at attosecond time scales. Phys. Rev. Lett.99, 217406 (2007). PubMed
Ottosson, N. et al. Cations strongly reduce electron-hopping rates in aqueous solutions. J. Am. Chem. Soc.133, 13489–13495 (2011). PubMed
Jahnke, T. et al. Interatomic and intermolecular Coulombic decay. Chem. Rev.120, 11295–11369 (2020). PubMed PMC
Öhrwall, G. et al. Charge dependence of solvent-mediated intermolecular Coster–Kronig decay dynamics of aqueous ions. J. Phys. Chem. B114, 17057–17061 (2010). PubMed
Pokapanich, W. et al. Ionic-charge dependence of the intermolecular Coulombic decay time scale for aqueous ions probed by the core-hole-clock. J. Am. Chem. Soc.133, 13430–13436 (2011). PubMed
Gopakumar, G. et al. Probing aqueous ions with non-local Auger relaxation. Phys. Chem. Chem. Phys.24, 8661–8671 (2022). PubMed PMC
Miteva, T. et al. The all-seeing eye of resonant Auger electron spectroscopy: a study on aqueous solution using tender X-rays. J. Phys. Chem. Lett.9, 4457–4462 (2018). PubMed
Hollas, D. et al. Aqueous solution chemistry of ammonium cation in the Auger time window. Sci. Rep.7, 756 (2017). PubMed PMC
Campbell, J. L. & Papp, T. Widths of the atomic K-N7 levels. At. Data Nucl. Data Tables77, 1–56 (2001).
Sánchez-Portal, D., Menzel, D. & Echenique, P. M. First-principles calculation of charge transfer at surfaces: the case of core-excited [Image: see text] on Ru(0001). Phys. Rev. B76, 235406 (2007).
Forbes, R. G. & Deane, J. H. B. Transmission coefficients for the exact triangular barrier: an exact general analytical theory that can replace Fowler & Nordheim’s 1928 theory. Proc. Math. Phys. Eng. Sci.467, 2927–2947 (2011).
Cabral do Couto, P., Estácio, S. G. & Costa Cabral, B. J. The Kohn–Sham density of states and band gap of water: from small clusters to liquid water. J. Chem. Phys.123, 054510 (2005). PubMed
Prendergast, D., Grossman, J. C. & Galli, G. The electronic structure of liquid water within density-functional theory. J. Chem. Phys.123, 014501 (2005). PubMed
Fang, C. et al. The accurate calculation of the band gap of liquid water by means of GW corrections applied to plane-wave density functional theory molecular dynamics simulations. Phys. Chem. Chem. Phys.17, 365–375 (2015). PubMed
Bischoff, T., Reshetnyak, I. & Pasquarello, A. Band gaps of liquid water and hexagonal ice through advanced electronic-structure calculations. Phys. Rev. Res.3, 023182 (2021).
Fransson, T. et al. X-ray and electron spectroscopy of water. Chem. Rev.116, 7551–7569 (2016). PubMed
Nandi, S. et al. Attosecond timing of electron emission from a molecular shape resonance. Sci. Adv.6, eaba7762 (2020). PubMed PMC
Kaldun, A. et al. Observing the ultrafast buildup of a Fano resonance in the time domain. Science354, 738–741 (2016). PubMed
Gruson, V. et al. Attosecond dynamics through a Fano resonance: monitoring the birth of a photoelectron. Science354, 734–738 (2016). PubMed
Viefhaus, J. et al. The variable polarization XUV beamline P04 at PETRA III: optics, mechanics and their performance. Nucl. Instrum. Methods Phys. Res. Sect. A710, 151–154 (2013).
Malerz, S. et al. A setup for studies of photoelectron circular dichroism from chiral molecules in aqueous solution. Rev. Sci. Instrum.93, 015101 (2022). PubMed
Zhu, S. et al. HIPPIE: a new platform for ambient-pressure X-ray photoelectron spectroscopy at the MAX IV Laboratory. J. Synchrotron Radiat.28, 624–636 (2021). PubMed PMC
Seidel, R., Atak, K., Thürmer, S., Aziz, E. F. & Winter, B. Ti3+ aqueous solution: hybridization and electronic relaxation probed by state-dependent electron spectroscopy. J. Phys. Chem. B119, 10607–10615 (2015). PubMed
Blum, M. et al. Ultrafast proton dynamics in aqueous amino acid solutions studied by resonant inelastic soft x-ray scattering. J. Phys. Chem. B116, 13757–13764 (2012). PubMed
Kukk, E. SPANCF—Spectrum Analysis by Curve Fitting—Macro Package for Igor Prohttps://www.geocities.ws/ekukk/intro.htm#:~:text=In%20this%20approach%2C%20called%20%22curve,to%20the%20spectrum%20is%20obtained (2012).
Gopakumar, G. et al. Radiation damage by extensive local water ionization from two-step electron-transfer-mediated decay of solvated ions. Nat. Chem.15, 1408–1414 (2023). PubMed PMC
Besley, N. A., Peach, M. J. G. & Tozer, D. J. Time-dependent density functional theory calculations of near-edge X-ray absorption fine structure with short-range corrected functionals. Phys. Chem. Chem. Phys.11, 10350–10358 (2009). PubMed
Herbert, J. M., Zhu, Y., Alam, B. & Ojha, A. K. Time-dependent density functional theory for x-ray absorption spectra: comparing the real-time approach to linear response. J. Chem. Theory Comput.19, 6745–6760 (2023). PubMed
Peterson, K. A. & Dunning, Jr, T. H. Accurate correlation consistent basis sets for molecular core-valence correlation effects: the second row atoms Al–Ar, and the first row atoms B–Ne revisited. J. Chem. Phys.117, 10548–10560 (2002).
Epifanovsky, E. et al. Software for the frontiers of quantum chemistry: an overview of developments in the Q-Chem 5 package. J. Chem. Phys.155, 084801 (2021). PubMed PMC
Bäppler, S. A., Plasser, F., Wormit, M. & Dreuw, A. Exciton analysis of many-body wave functions: bridging the gap between the quasiparticle and molecular orbital pictures. Phys. Rev. A90, 052521 (2014).
Plasser, F. et al. Statistical analysis of electronic excitation processes: spatial location, compactness, charge transfer, and electron–hole correlation. J. Comp. Chem.36, 1609–1620 (2015). PubMed
Mewes, S. A., Mewes, J.-M., Dreuw, A. & Plasser, F. Excitons in poly(para phenylene vinylene): a quantum-chemical perspective based on high-level ab initio calculations. Phys. Chem. Chem. Phys.18, 2548–2563 (2016). PubMed
Plasser, F. TheoDORE: a toolbox for a detailed and automated analysis of electronic excited state computations. J. Chem. Phys.152, 084108 (2020). PubMed
Gilbert, A. T. B., Besley, N. A. & Gill, P. M. W. Self-consistent field calculations of excited states using the maximum overlap method (MOM). J. Phys. Chem. A112, 13164–13171 (2008). PubMed
Jana, S. & Herbert, J. M. Slater transition methods for core-level electron binding energies. J. Chem. Phys.158, 094111 (2023). PubMed