• This record comes from PubMed

Probing aqueous ions with non-local Auger relaxation

. 2022 Apr 13 ; 24 (15) : 8661-8671. [epub] 20220413

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic

Document type Journal Article

Non-local analogues of Auger decay are increasingly recognized as important relaxation processes in the condensed phase. Here, we explore non-local autoionization, specifically Intermolecular Coulombic Decay (ICD), of a series of aqueous-phase isoelectronic cations following 1s core-level ionization. In particular, we focus on Na+, Mg2+, and Al3+ ions. We unambiguously identify the ICD contribution to the K-edge Auger spectrum. The different strength of the ion-water interactions is manifested by varying intensities of the respective signals: the ICD signal intensity is greatest for the Al3+ case, weaker for Mg2+, and absent for weakly-solvent-bound Na+. With the assistance of ab initio calculations and molecular dynamics simulations, we provide a microscopic understanding of the non-local decay processes. We assign the ICD signals to decay processes ending in two-hole states, delocalized between the central ion and neighbouring water. Importantly, these processes are shown to be highly selective with respect to the promoted water solvent ionization channels. Furthermore, using a core-hole-clock analysis, the associated ICD timescales are estimated to be around 76 fs for Mg2+ and 34 fs for Al3+. Building on these results, we argue that Auger and ICD spectroscopy represents a unique tool for the exploration of intra- and inter-molecular structure in the liquid phase, simultaneously providing both structural and electronic information.

See more in PubMed

Jungwirth P. Tobias D. J. Chem. Rev. 2006;106:1259–1281. doi: 10.1021/cr0403741. PubMed DOI

van der Vegt N. F. A. Haldrup K. Roke S. Zheng J. Lund M. Bakker H. J. Chem. Rev. 2016;116:7626–7641. doi: 10.1021/acs.chemrev.5b00742. PubMed DOI

Björneholm O. Hansen M. H. Hodgson A. Liu L.-M. Limmer D. T. Michaelides A. Pedevilla P. Rossmeisl J. Shen H. Tocci G. Tyrode E. Walz M.-M. Werner J. Bluhm H. Chem. Rev. 2016;116:7698–7726. doi: 10.1021/acs.chemrev.6b00045. PubMed DOI

Cederbaum L. S. Zobeley J. Tarantelli F. Phys. Rev. Lett. 1997;79:4778. doi: 10.1103/PhysRevLett.79.4778. DOI

Marburger S. Kugeler O. Hergenhahn U. Möller T. Phys. Rev. Lett. 2003;90:203401. doi: 10.1103/PhysRevLett.90.203401. PubMed DOI

Jahnke T. Hergenhahn U. Winter B. Dörner R. Frühling U. Demekhin P. V. Gokhberg K. Cederbaum L. S. Ehresmann A. Knie A. Dreuw A. Chem. Rev. 2020;120:11295–11369. doi: 10.1021/acs.chemrev.0c00106. PubMed DOI PMC

Gokhberg K. Kolorenč P. Kuleff A. I. Cederbaum L. S. Nature. 2014;505:661–663. doi: 10.1038/nature12936. PubMed DOI

Trinter F. Schöffler M. S. Kim H.-K. Sturm F. P. Cole K. Neumann N. Vredenborg A. Williams J. Bocharova I. Guillemin R. Simon M. Belkacem A. Landers A. L. Weber T. Schmidt-Böcking H. Dörner R. Jahnke T. Nature. 2014;505:664–666. doi: 10.1038/nature12927. PubMed DOI

Slavíček P. Kryzhevoi N. V. Aziz E. F. Winter B. J. Phys. Chem. Lett. 2016;7:234–243. doi: 10.1021/acs.jpclett.5b02665. PubMed DOI

Thürmer S. Ončák M. Ottosson N. Seidel R. Hergenhahn U. Bradforth S. E. Slavíček P. Winter B. Nat. Chem. 2013;5:590–596. doi: 10.1038/nchem.1680. PubMed DOI

Unger I. Seidel R. Thürmer S. Pohl M. N. Aziz E. F. Cederbaum L. S. Muchová E. Slavíček P. Winter B. Kryzhevoi N. V. Nat. Chem. 2017;9:708–714. doi: 10.1038/nchem.2727. PubMed DOI

Pohl M. N. Richter C. Lugovoy E. Seidel R. Slavíček P. Aziz E. F. Abel B. Winter B. Hergenhahn U. J. Phys. Chem. B. 2017;121:7709–7714. doi: 10.1021/acs.jpcb.7b06061. PubMed DOI

Pokapanich W. Bergersen H. Bradeanu I. L. Marinho R. R. T. Lindblad A. Legendre S. Rosso A. Svensson S. Björneholm O. Tchaplyguine M. Öhrwall G. Kryzhevoi N. V. Cederbaum L. S. J. Am. Chem. Soc. 2009;131:7264–7271. doi: 10.1021/ja8096866. PubMed DOI

Ottosson N. Öhrwall G. Björneholm O. Chem. Phys. Lett. 2012;543:1–11. doi: 10.1016/j.cplett.2012.05.051. PubMed DOI

Barth S. Marburger S. Joshi S. Ulrich V. Kugeler O. Hergenhahn U. Phys. Chem. Chem. Phys. 2006;8:3218–3222. doi: 10.1039/B602019D. PubMed DOI

Fasshauer E. Förstel M. Pallmann S. Pernpointner M. Hergenhahn U. New J. Phys. 2014;16:103026. doi: 10.1088/1367-2630/16/10/103026. DOI

Chialvo A. A. Vlcek L. Fluid Phase Equilib. 2016;407:84–104. doi: 10.1016/j.fluid.2015.05.014. DOI

Winter B. Faubel M. Chem. Rev. 2006;106:1176–1211. doi: 10.1021/cr040381p. PubMed DOI

Winter B. Weber R. Hertel I. V. Faubel M. Jungwirth P. Brown E. C. Bradforth S. E. J. Am. Chem. Soc. 2005;127:7203–7214. doi: 10.1021/ja042908l. PubMed DOI

Ghosh D. Roy A. Seidel R. Winter B. Bradforth S. Krylov A. I. J. Phys. Chem. B. 2012;116:7269–7280. doi: 10.1021/jp301925k. PubMed DOI PMC

Gaiduk A. P. Govoni M. Seidel R. Skone J. H. Winter B. Galli G. J. Am. Chem. Soc. 2016;138:6912–6915. doi: 10.1021/jacs.6b00225. PubMed DOI

Pham T. A. Govoni M. Seidel R. Bradforth S. E. Schwegler E. Galli G. Sci. Adv. 2017;3:e1603210. doi: 10.1126/sciadv.1603210. PubMed DOI PMC

Pohl M. N. Muchová E. Seidel R. Ali H. Sršeň Š. Wilkinson I. Winter B. Slavíček P. Chem. Sci. 2019;10:848–865. doi: 10.1039/C8SC03381A. PubMed DOI PMC

Öhrwall G. Ottosson N. Pokapanich W. Legendre S. Svensson S. Björneholm O. J. Phys. Chem. B. 2010;114:17057–17061. doi: 10.1021/jp108956v. PubMed DOI

Malerz S. Haak H. Trinter F. Stephansen A. B. Kolbeck C. Pohl M. Hergenhahn U. Meijer G. Winter B. Rev. Sci. Instrum. 2022;93:015101. doi: 10.1063/5.0072346. PubMed DOI

Viefhaus J. Scholz F. Deinert S. Glaser L. Ilchen M. Seltmann J. Walter P. Siewert F. Nucl. Instrum. Methods Phys. Res., Sect. A. 2013;710:151–154. doi: 10.1016/j.nima.2012.10.110. DOI

P04 beamline parameters, https://photon-science.desy.de/facilities/petra_iii/beamlines/p04_xuv_beamline/beamline_parameters/index_eng.html, Accessed: 2021-09-23

Seidel R. Pohl M. N. Ali H. Winter B. Aziz E. F. Rev. Sci. Instrum. 2017;88:073107. doi: 10.1063/1.4990797. PubMed DOI

Duan J. Gregory J. Adv. Colloid Interface Sci. 2003;100–102:475–502. doi: 10.1016/S0001-8686(02)00067-2. DOI

Helmholtz-Zentrum Berlin für Materialien und Energie Journal of Large-Scale Research Facilities. 2016;2:A72. doi: 10.17815/jlsrf-2-75. DOI

Kukk E., Spectrum Analysis by Curve Fitting (SPANCF) macro package for Igor Pro, 2012

Winter B. Weber R. Widdra W. Dittmar M. Faubel M. Hertel I. V. J. Phys. Chem. A. 2004;108:2625–2632. doi: 10.1021/jp030263q. DOI

Loco D. Polack É. Caprasecca S. Lagardère L. Lipparini F. Piquemal J.-P. Mennucci B. J. Chem. Theory Comput. 2016;12:3654–3661. doi: 10.1021/acs.jctc.6b00385. PubMed DOI

Bondanza M. Nottoli M. Cupellini L. Lipparini F. Mennucci B. Phys. Chem. Chem. Phys. 2020;22:14433–14448. doi: 10.1039/D0CP02119A. PubMed DOI

Ponder J. W. Wu C. Ren P. Pande V. S. Chodera J. D. Schnieders M. J. Haque I. Mobley D. L. Lambrecht D. S. DiStasio, Jr. R. A. Head-Gordon M. Clark G. N. I. Johnson M. E. Head-Gordon T. J. Phys. Chem. B. 2010;114:2549–2564. doi: 10.1021/jp910674d. PubMed DOI PMC

Ren P. Ponder J. W. J. Phys. Chem. B. 2003;107:5933–5947. doi: 10.1021/jp027815+. DOI

Lipparini F. Lagardère L. Raynaud C. Stamm B. Cancès E. Mennucci B. Schnieders M. Ren P. Maday Y. Piquemal J.-P. J. Chem. Theory Comput. 2015;11:623–634. doi: 10.1021/ct500998q. PubMed DOI PMC

Lipparini F. J. Chem. Theory Comput. 2019;15:4312–4317. doi: 10.1021/acs.jctc.9b00585. PubMed DOI

Greengard L. Rokhlin V. J. Comput. Phys. 1987;73:325–348. doi: 10.1016/0021-9991(87)90140-9. DOI

Duboué-Dijon E. Mason P. E. Fischer H. E. Jungwirth P. J. Phys. Chem. B. 2018;122:3296–3306. doi: 10.1021/acs.jpcb.7b09612. PubMed DOI

Cauët E. Bogatko S. A. Bylaska E. J. Weare J. H. Inorg. Chem. 2012;51:10856–10869. doi: 10.1021/ic301346k. PubMed DOI

Hofer T. S. Randolf B. R. Rode B. M. J. Phys. Chem. B. 2008;112:11726–11733. doi: 10.1021/jp802663h. PubMed DOI

Joung I. S. Cheatham T. E. J. Phys. Chem. B. 2008;112:9020–9041. doi: 10.1021/jp8001614. PubMed DOI PMC

Lamoureux G. Roux B. J. Phys. Chem. B. 2006;110:3308–3322. doi: 10.1021/jp056043p. PubMed DOI

Yu H. Whitfield T. W. Harder E. Lamoureux G. Vorobyov I. Anisimov V. M. MacKerell, Jr. A. D. Roux B. J. Chem. Theory Comput. 2010;6:774–786. doi: 10.1021/ct900576a. PubMed DOI PMC

Marcus Y. Chem. Rev. 1988;88:1475–1498. doi: 10.1021/cr00090a003. DOI

Gilbert A. T. B. Besley N. A. Gill P. M. W. J. Phys. Chem. A. 2008;112:13164–13171. doi: 10.1021/jp801738f. PubMed DOI

Rubešová M. Muchová E. Slavíček P. J. Chem. Theory Comput. 2017;13:4972–4983. doi: 10.1021/acs.jctc.7b00675. PubMed DOI

Muchová E. Slavíček P. J. Phys.: Condens. Matter. 2019;31:043001. doi: 10.1088/1361-648X/aaf130. PubMed DOI

Stanton J. F. Gauss J. J. Chem. Phys. 1999;111:8785–8788. doi: 10.1063/1.479673. DOI

Coriani S. Koch H. J. Chem. Phys. 2015;143:181103. doi: 10.1063/1.4935712. PubMed DOI

Neese F. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018;8:e1327.

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery, Jr. J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B. and Fox D. J., Gaussian Development Version Revision J.06+, Gaussian Inc., Wallingford CT, 2020

Abraham M. J. Murtola T. Schulz R. Páll S. Smith J. C. Hess B. Lindahl E. SoftwareX. 2015;1-2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI

Pronk S. Páll S. Schulz R. Larsson P. Bjelkmar P. Apostolov R. Shirts M. R. Smith J. C. Kasson P. M. van der Spoel D. Hess B. Lindahl E. Bioinformatics. 2013;29:845–854. doi: 10.1093/bioinformatics/btt055. PubMed DOI PMC

Friesen S. Hefter G. Buchner R. J. Phys. Chem. B. 2019;123:891–900. doi: 10.1021/acs.jpcb.8b11131. PubMed DOI

Callahan K. M. Casillas-Ituarte N. N. Roeselová M. Allen H. C. Tobias D. J. J. Phys. Chem. A. 2010;114:5141–5148. doi: 10.1021/jp909132a. PubMed DOI

Bruni F. Imberti S. Mancinelli R. Ricci M. A. J. Chem. Phys. 2012;136:064520. doi: 10.1063/1.3684633. PubMed DOI

Campbell J. Papp T. At. Data Nucl. Data Tables. 2001;77:1–56. doi: 10.1006/adnd.2000.0848. DOI

Björneholm O. Nilsson A. Sandell A. Hernnäs B. Mårtensson N. Phys. Rev. Lett. 1992;68:1892–1895. doi: 10.1103/PhysRevLett.68.1892. PubMed DOI

Wurth W. Menzel D. Chem. Phys. 2000;251:141–149. doi: 10.1016/S0301-0104(99)00305-5. DOI

Brühwiler P. A. Karis O. Mårtensson N. Rev. Mod. Phys. 2002;74:703–740. doi: 10.1103/RevModPhys.74.703. DOI

Föhlisch A. Feulner P. Hennies F. Fink A. Menzel D. Sanchez-Portal D. Echenique P. M. Wurth W. Nature. 2005;436:373–376. doi: 10.1038/nature03833. PubMed DOI

Chen M. H. Larkins F. P. Crasemann B. At. Data Nucl. Data Tables. 1990;45:1–205. doi: 10.1016/0092-640X(90)90023-D. DOI

Fano U. Phys. Rev. 1961;124:1866–1878. doi: 10.1103/PhysRev.124.1866. DOI

Feshbach H. Rev. Mod. Phys. 1964;36:1076–1078. doi: 10.1103/RevModPhys.36.1076. DOI

Löwdin P.-O. J. Chem. Phys. 1950;18:365–375. doi: 10.1063/1.1747632. DOI

Averbukh V. Müller I. B. Cederbaum L. S. Phys. Rev. Lett. 2004;93:263002. doi: 10.1103/PhysRevLett.93.263002. PubMed DOI

Thomas T. D. Miron C. Wiesner K. Morin P. Carroll T. X. Saethre L. J. Phys. Rev. Lett. 2002;89:223001. doi: 10.1103/PhysRevLett.89.223001. PubMed DOI

Gottfried F. O. Cederbaum L. S. Tarantelli F. J. Chem. Phys. 1996;104:9754–9767. doi: 10.1063/1.471737. DOI

Thürmer S. Malerz S. Trinter F. Hergenhahn U. Lee C. Neumark D. M. Meijer G. Winter B. Wilkinson I. Chem. Sci. 2021;12:10558–10582. doi: 10.1039/D1SC01908B. PubMed DOI PMC

Credidio B. Pugini M. Malerz S. Trinter F. Hergenhahn U. Wilkinson I. Thürmer S. Winter B. Phys. Chem. Chem. Phys. 2022;24:1310–1325. doi: 10.1039/D1CP03165A. PubMed DOI PMC

Waluyo I. Huang C. Nordlund D. Bergmann U. Weiss T. M. Pettersson L. G. M. Nilsson A. J. Chem. Phys. 2011;134:064513. doi: 10.1063/1.3533958. PubMed DOI PMC

Stumpf V. Gokhberg K. Cederbaum L. S. Nat. Chem. 2016;8:237–241. doi: 10.1038/nchem.2429. PubMed DOI

Hans A. Küstner-Wetekam C. Schmidt P. Ozga C. Holzapfel X. Otto H. Zindel C. Richter C. Cederbaum L. S. Ehresmann A. Hergenhahn U. Kryzhevoi N. V. Knie A. Phys. Rev. Res. 2020;2:012022(R). doi: 10.1103/PhysRevResearch.2.012022. DOI

Wiegandt F. Trinter F. Henrichs K. Metz D. Pitzer M. Waitz M. Jabbour al Maalouf E. Janke C. Rist J. Wechselberger N. Miteva T. Kazandjian S. Schöffler M. Sisourat N. Jahnke T. Dörner R. Phys. Rev. A. 2019;100:022707. doi: 10.1103/PhysRevA.100.022707. DOI

Loh Z.-H. Doumy G. Arnold C. Kjellsson L. Southworth S. H. Al Haddad A. Kumagai Y. Tu M.-F. Ho P. J. March A. M. Schaller R. D. Bin Mohd Yusof M. S. Debnath T. Simon M. Welsch R. Inhester L. Khalili K. Nanda K. Krylov A. I. Moeller S. Coslovich G. Koralek J. Minitti M. P. Schlotter W. F. Rubensson J.-E. Santra R. Young L. Science. 2020;367:179–182. doi: 10.1126/science.aaz4740. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...