Probing aqueous ions with non-local Auger relaxation
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic
Document type Journal Article
PubMed
35356960
PubMed Central
PMC9007223
DOI
10.1039/d2cp00227b
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Non-local analogues of Auger decay are increasingly recognized as important relaxation processes in the condensed phase. Here, we explore non-local autoionization, specifically Intermolecular Coulombic Decay (ICD), of a series of aqueous-phase isoelectronic cations following 1s core-level ionization. In particular, we focus on Na+, Mg2+, and Al3+ ions. We unambiguously identify the ICD contribution to the K-edge Auger spectrum. The different strength of the ion-water interactions is manifested by varying intensities of the respective signals: the ICD signal intensity is greatest for the Al3+ case, weaker for Mg2+, and absent for weakly-solvent-bound Na+. With the assistance of ab initio calculations and molecular dynamics simulations, we provide a microscopic understanding of the non-local decay processes. We assign the ICD signals to decay processes ending in two-hole states, delocalized between the central ion and neighbouring water. Importantly, these processes are shown to be highly selective with respect to the promoted water solvent ionization channels. Furthermore, using a core-hole-clock analysis, the associated ICD timescales are estimated to be around 76 fs for Mg2+ and 34 fs for Al3+. Building on these results, we argue that Auger and ICD spectroscopy represents a unique tool for the exploration of intra- and inter-molecular structure in the liquid phase, simultaneously providing both structural and electronic information.
Center for Free Electron Laser Science DESY Notkestraße 85 22607 Hamburg Germany
Department of Physics and Astronomy Uppsala University Box 516 SE 751 20 Uppsala Sweden
MAX 4 Laboratory Lund University Box 118 SE 22100 Lund Sweden
Synchrotron SOLEIL L'Orme des Merisiers Saint Aubin BP 48 91192 Gif sur Yvette Cedex Paris France
See more in PubMed
Jungwirth P. Tobias D. J. Chem. Rev. 2006;106:1259–1281. doi: 10.1021/cr0403741. PubMed DOI
van der Vegt N. F. A. Haldrup K. Roke S. Zheng J. Lund M. Bakker H. J. Chem. Rev. 2016;116:7626–7641. doi: 10.1021/acs.chemrev.5b00742. PubMed DOI
Björneholm O. Hansen M. H. Hodgson A. Liu L.-M. Limmer D. T. Michaelides A. Pedevilla P. Rossmeisl J. Shen H. Tocci G. Tyrode E. Walz M.-M. Werner J. Bluhm H. Chem. Rev. 2016;116:7698–7726. doi: 10.1021/acs.chemrev.6b00045. PubMed DOI
Cederbaum L. S. Zobeley J. Tarantelli F. Phys. Rev. Lett. 1997;79:4778. doi: 10.1103/PhysRevLett.79.4778. DOI
Marburger S. Kugeler O. Hergenhahn U. Möller T. Phys. Rev. Lett. 2003;90:203401. doi: 10.1103/PhysRevLett.90.203401. PubMed DOI
Jahnke T. Hergenhahn U. Winter B. Dörner R. Frühling U. Demekhin P. V. Gokhberg K. Cederbaum L. S. Ehresmann A. Knie A. Dreuw A. Chem. Rev. 2020;120:11295–11369. doi: 10.1021/acs.chemrev.0c00106. PubMed DOI PMC
Gokhberg K. Kolorenč P. Kuleff A. I. Cederbaum L. S. Nature. 2014;505:661–663. doi: 10.1038/nature12936. PubMed DOI
Trinter F. Schöffler M. S. Kim H.-K. Sturm F. P. Cole K. Neumann N. Vredenborg A. Williams J. Bocharova I. Guillemin R. Simon M. Belkacem A. Landers A. L. Weber T. Schmidt-Böcking H. Dörner R. Jahnke T. Nature. 2014;505:664–666. doi: 10.1038/nature12927. PubMed DOI
Slavíček P. Kryzhevoi N. V. Aziz E. F. Winter B. J. Phys. Chem. Lett. 2016;7:234–243. doi: 10.1021/acs.jpclett.5b02665. PubMed DOI
Thürmer S. Ončák M. Ottosson N. Seidel R. Hergenhahn U. Bradforth S. E. Slavíček P. Winter B. Nat. Chem. 2013;5:590–596. doi: 10.1038/nchem.1680. PubMed DOI
Unger I. Seidel R. Thürmer S. Pohl M. N. Aziz E. F. Cederbaum L. S. Muchová E. Slavíček P. Winter B. Kryzhevoi N. V. Nat. Chem. 2017;9:708–714. doi: 10.1038/nchem.2727. PubMed DOI
Pohl M. N. Richter C. Lugovoy E. Seidel R. Slavíček P. Aziz E. F. Abel B. Winter B. Hergenhahn U. J. Phys. Chem. B. 2017;121:7709–7714. doi: 10.1021/acs.jpcb.7b06061. PubMed DOI
Pokapanich W. Bergersen H. Bradeanu I. L. Marinho R. R. T. Lindblad A. Legendre S. Rosso A. Svensson S. Björneholm O. Tchaplyguine M. Öhrwall G. Kryzhevoi N. V. Cederbaum L. S. J. Am. Chem. Soc. 2009;131:7264–7271. doi: 10.1021/ja8096866. PubMed DOI
Ottosson N. Öhrwall G. Björneholm O. Chem. Phys. Lett. 2012;543:1–11. doi: 10.1016/j.cplett.2012.05.051. PubMed DOI
Barth S. Marburger S. Joshi S. Ulrich V. Kugeler O. Hergenhahn U. Phys. Chem. Chem. Phys. 2006;8:3218–3222. doi: 10.1039/B602019D. PubMed DOI
Fasshauer E. Förstel M. Pallmann S. Pernpointner M. Hergenhahn U. New J. Phys. 2014;16:103026. doi: 10.1088/1367-2630/16/10/103026. DOI
Chialvo A. A. Vlcek L. Fluid Phase Equilib. 2016;407:84–104. doi: 10.1016/j.fluid.2015.05.014. DOI
Winter B. Faubel M. Chem. Rev. 2006;106:1176–1211. doi: 10.1021/cr040381p. PubMed DOI
Winter B. Weber R. Hertel I. V. Faubel M. Jungwirth P. Brown E. C. Bradforth S. E. J. Am. Chem. Soc. 2005;127:7203–7214. doi: 10.1021/ja042908l. PubMed DOI
Ghosh D. Roy A. Seidel R. Winter B. Bradforth S. Krylov A. I. J. Phys. Chem. B. 2012;116:7269–7280. doi: 10.1021/jp301925k. PubMed DOI PMC
Gaiduk A. P. Govoni M. Seidel R. Skone J. H. Winter B. Galli G. J. Am. Chem. Soc. 2016;138:6912–6915. doi: 10.1021/jacs.6b00225. PubMed DOI
Pham T. A. Govoni M. Seidel R. Bradforth S. E. Schwegler E. Galli G. Sci. Adv. 2017;3:e1603210. doi: 10.1126/sciadv.1603210. PubMed DOI PMC
Pohl M. N. Muchová E. Seidel R. Ali H. Sršeň Š. Wilkinson I. Winter B. Slavíček P. Chem. Sci. 2019;10:848–865. doi: 10.1039/C8SC03381A. PubMed DOI PMC
Öhrwall G. Ottosson N. Pokapanich W. Legendre S. Svensson S. Björneholm O. J. Phys. Chem. B. 2010;114:17057–17061. doi: 10.1021/jp108956v. PubMed DOI
Malerz S. Haak H. Trinter F. Stephansen A. B. Kolbeck C. Pohl M. Hergenhahn U. Meijer G. Winter B. Rev. Sci. Instrum. 2022;93:015101. doi: 10.1063/5.0072346. PubMed DOI
Viefhaus J. Scholz F. Deinert S. Glaser L. Ilchen M. Seltmann J. Walter P. Siewert F. Nucl. Instrum. Methods Phys. Res., Sect. A. 2013;710:151–154. doi: 10.1016/j.nima.2012.10.110. DOI
P04 beamline parameters, https://photon-science.desy.de/facilities/petra_iii/beamlines/p04_xuv_beamline/beamline_parameters/index_eng.html, Accessed: 2021-09-23
Seidel R. Pohl M. N. Ali H. Winter B. Aziz E. F. Rev. Sci. Instrum. 2017;88:073107. doi: 10.1063/1.4990797. PubMed DOI
Duan J. Gregory J. Adv. Colloid Interface Sci. 2003;100–102:475–502. doi: 10.1016/S0001-8686(02)00067-2. DOI
Helmholtz-Zentrum Berlin für Materialien und Energie Journal of Large-Scale Research Facilities. 2016;2:A72. doi: 10.17815/jlsrf-2-75. DOI
Kukk E., Spectrum Analysis by Curve Fitting (SPANCF) macro package for Igor Pro, 2012
Winter B. Weber R. Widdra W. Dittmar M. Faubel M. Hertel I. V. J. Phys. Chem. A. 2004;108:2625–2632. doi: 10.1021/jp030263q. DOI
Loco D. Polack É. Caprasecca S. Lagardère L. Lipparini F. Piquemal J.-P. Mennucci B. J. Chem. Theory Comput. 2016;12:3654–3661. doi: 10.1021/acs.jctc.6b00385. PubMed DOI
Bondanza M. Nottoli M. Cupellini L. Lipparini F. Mennucci B. Phys. Chem. Chem. Phys. 2020;22:14433–14448. doi: 10.1039/D0CP02119A. PubMed DOI
Ponder J. W. Wu C. Ren P. Pande V. S. Chodera J. D. Schnieders M. J. Haque I. Mobley D. L. Lambrecht D. S. DiStasio, Jr. R. A. Head-Gordon M. Clark G. N. I. Johnson M. E. Head-Gordon T. J. Phys. Chem. B. 2010;114:2549–2564. doi: 10.1021/jp910674d. PubMed DOI PMC
Ren P. Ponder J. W. J. Phys. Chem. B. 2003;107:5933–5947. doi: 10.1021/jp027815+. DOI
Lipparini F. Lagardère L. Raynaud C. Stamm B. Cancès E. Mennucci B. Schnieders M. Ren P. Maday Y. Piquemal J.-P. J. Chem. Theory Comput. 2015;11:623–634. doi: 10.1021/ct500998q. PubMed DOI PMC
Lipparini F. J. Chem. Theory Comput. 2019;15:4312–4317. doi: 10.1021/acs.jctc.9b00585. PubMed DOI
Greengard L. Rokhlin V. J. Comput. Phys. 1987;73:325–348. doi: 10.1016/0021-9991(87)90140-9. DOI
Duboué-Dijon E. Mason P. E. Fischer H. E. Jungwirth P. J. Phys. Chem. B. 2018;122:3296–3306. doi: 10.1021/acs.jpcb.7b09612. PubMed DOI
Cauët E. Bogatko S. A. Bylaska E. J. Weare J. H. Inorg. Chem. 2012;51:10856–10869. doi: 10.1021/ic301346k. PubMed DOI
Hofer T. S. Randolf B. R. Rode B. M. J. Phys. Chem. B. 2008;112:11726–11733. doi: 10.1021/jp802663h. PubMed DOI
Joung I. S. Cheatham T. E. J. Phys. Chem. B. 2008;112:9020–9041. doi: 10.1021/jp8001614. PubMed DOI PMC
Lamoureux G. Roux B. J. Phys. Chem. B. 2006;110:3308–3322. doi: 10.1021/jp056043p. PubMed DOI
Yu H. Whitfield T. W. Harder E. Lamoureux G. Vorobyov I. Anisimov V. M. MacKerell, Jr. A. D. Roux B. J. Chem. Theory Comput. 2010;6:774–786. doi: 10.1021/ct900576a. PubMed DOI PMC
Marcus Y. Chem. Rev. 1988;88:1475–1498. doi: 10.1021/cr00090a003. DOI
Gilbert A. T. B. Besley N. A. Gill P. M. W. J. Phys. Chem. A. 2008;112:13164–13171. doi: 10.1021/jp801738f. PubMed DOI
Rubešová M. Muchová E. Slavíček P. J. Chem. Theory Comput. 2017;13:4972–4983. doi: 10.1021/acs.jctc.7b00675. PubMed DOI
Muchová E. Slavíček P. J. Phys.: Condens. Matter. 2019;31:043001. doi: 10.1088/1361-648X/aaf130. PubMed DOI
Stanton J. F. Gauss J. J. Chem. Phys. 1999;111:8785–8788. doi: 10.1063/1.479673. DOI
Coriani S. Koch H. J. Chem. Phys. 2015;143:181103. doi: 10.1063/1.4935712. PubMed DOI
Neese F. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018;8:e1327.
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery, Jr. J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B. and Fox D. J., Gaussian Development Version Revision J.06+, Gaussian Inc., Wallingford CT, 2020
Abraham M. J. Murtola T. Schulz R. Páll S. Smith J. C. Hess B. Lindahl E. SoftwareX. 2015;1-2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI
Pronk S. Páll S. Schulz R. Larsson P. Bjelkmar P. Apostolov R. Shirts M. R. Smith J. C. Kasson P. M. van der Spoel D. Hess B. Lindahl E. Bioinformatics. 2013;29:845–854. doi: 10.1093/bioinformatics/btt055. PubMed DOI PMC
Friesen S. Hefter G. Buchner R. J. Phys. Chem. B. 2019;123:891–900. doi: 10.1021/acs.jpcb.8b11131. PubMed DOI
Callahan K. M. Casillas-Ituarte N. N. Roeselová M. Allen H. C. Tobias D. J. J. Phys. Chem. A. 2010;114:5141–5148. doi: 10.1021/jp909132a. PubMed DOI
Bruni F. Imberti S. Mancinelli R. Ricci M. A. J. Chem. Phys. 2012;136:064520. doi: 10.1063/1.3684633. PubMed DOI
Campbell J. Papp T. At. Data Nucl. Data Tables. 2001;77:1–56. doi: 10.1006/adnd.2000.0848. DOI
Björneholm O. Nilsson A. Sandell A. Hernnäs B. Mårtensson N. Phys. Rev. Lett. 1992;68:1892–1895. doi: 10.1103/PhysRevLett.68.1892. PubMed DOI
Wurth W. Menzel D. Chem. Phys. 2000;251:141–149. doi: 10.1016/S0301-0104(99)00305-5. DOI
Brühwiler P. A. Karis O. Mårtensson N. Rev. Mod. Phys. 2002;74:703–740. doi: 10.1103/RevModPhys.74.703. DOI
Föhlisch A. Feulner P. Hennies F. Fink A. Menzel D. Sanchez-Portal D. Echenique P. M. Wurth W. Nature. 2005;436:373–376. doi: 10.1038/nature03833. PubMed DOI
Chen M. H. Larkins F. P. Crasemann B. At. Data Nucl. Data Tables. 1990;45:1–205. doi: 10.1016/0092-640X(90)90023-D. DOI
Fano U. Phys. Rev. 1961;124:1866–1878. doi: 10.1103/PhysRev.124.1866. DOI
Feshbach H. Rev. Mod. Phys. 1964;36:1076–1078. doi: 10.1103/RevModPhys.36.1076. DOI
Löwdin P.-O. J. Chem. Phys. 1950;18:365–375. doi: 10.1063/1.1747632. DOI
Averbukh V. Müller I. B. Cederbaum L. S. Phys. Rev. Lett. 2004;93:263002. doi: 10.1103/PhysRevLett.93.263002. PubMed DOI
Thomas T. D. Miron C. Wiesner K. Morin P. Carroll T. X. Saethre L. J. Phys. Rev. Lett. 2002;89:223001. doi: 10.1103/PhysRevLett.89.223001. PubMed DOI
Gottfried F. O. Cederbaum L. S. Tarantelli F. J. Chem. Phys. 1996;104:9754–9767. doi: 10.1063/1.471737. DOI
Thürmer S. Malerz S. Trinter F. Hergenhahn U. Lee C. Neumark D. M. Meijer G. Winter B. Wilkinson I. Chem. Sci. 2021;12:10558–10582. doi: 10.1039/D1SC01908B. PubMed DOI PMC
Credidio B. Pugini M. Malerz S. Trinter F. Hergenhahn U. Wilkinson I. Thürmer S. Winter B. Phys. Chem. Chem. Phys. 2022;24:1310–1325. doi: 10.1039/D1CP03165A. PubMed DOI PMC
Waluyo I. Huang C. Nordlund D. Bergmann U. Weiss T. M. Pettersson L. G. M. Nilsson A. J. Chem. Phys. 2011;134:064513. doi: 10.1063/1.3533958. PubMed DOI PMC
Stumpf V. Gokhberg K. Cederbaum L. S. Nat. Chem. 2016;8:237–241. doi: 10.1038/nchem.2429. PubMed DOI
Hans A. Küstner-Wetekam C. Schmidt P. Ozga C. Holzapfel X. Otto H. Zindel C. Richter C. Cederbaum L. S. Ehresmann A. Hergenhahn U. Kryzhevoi N. V. Knie A. Phys. Rev. Res. 2020;2:012022(R). doi: 10.1103/PhysRevResearch.2.012022. DOI
Wiegandt F. Trinter F. Henrichs K. Metz D. Pitzer M. Waitz M. Jabbour al Maalouf E. Janke C. Rist J. Wechselberger N. Miteva T. Kazandjian S. Schöffler M. Sisourat N. Jahnke T. Dörner R. Phys. Rev. A. 2019;100:022707. doi: 10.1103/PhysRevA.100.022707. DOI
Loh Z.-H. Doumy G. Arnold C. Kjellsson L. Southworth S. H. Al Haddad A. Kumagai Y. Tu M.-F. Ho P. J. March A. M. Schaller R. D. Bin Mohd Yusof M. S. Debnath T. Simon M. Welsch R. Inhester L. Khalili K. Nanda K. Krylov A. I. Moeller S. Coslovich G. Koralek J. Minitti M. P. Schlotter W. F. Rubensson J.-E. Santra R. Young L. Science. 2020;367:179–182. doi: 10.1126/science.aaz4740. PubMed DOI