How Does Mg2+(aq) Interact with ATP(aq)? Biomolecular Structure through the Lens of Liquid-Jet Photoemission Spectroscopy
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38802319
PubMed Central
PMC11177255
DOI
10.1021/jacs.4c03174
Knihovny.cz E-zdroje
- MeSH
- adenosintrifosfát * chemie MeSH
- fotoelektronová spektroskopie * MeSH
- hořčík * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenosintrifosfát * MeSH
- hořčík * MeSH
Liquid-jet photoemission spectroscopy (LJ-PES) allows for a direct probing of electronic structure in aqueous solutions. We show the applicability of the approach to biomolecules in a complex environment, exploring site-specific information on the interaction of adenosine triphosphate in the aqueous phase (ATP(aq)) with magnesium (Mg2+(aq)), highlighting the synergy brought about by the simultaneous analysis of different regions in the photoelectron spectrum. In particular, we demonstrate intermolecular Coulombic decay (ICD) spectroscopy as a new and powerful addition to the arsenal of techniques for biomolecular structure investigation. We apply LJ-PES assisted by electronic-structure calculations to study ATP(aq) solutions with and without dissolved Mg2+. Valence photoelectron data reveal spectral changes in the phosphate and adenine features of ATP(aq) due to interactions with the divalent cation. Chemical shifts in Mg 2p, Mg 2s, P 2p, and P 2s core-level spectra as a function of the Mg2+/ATP concentration ratio are correlated to the formation of [Mg(ATP) 2]6-(aq), [MgATP]2-(aq), and [Mg2ATP](aq) complexes, demonstrating the element sensitivity of the technique to Mg2+-phosphate interactions. The most direct probe of the intermolecular interactions between ATP(aq) and Mg2+(aq) is delivered by the emerging ICD electrons following ionization of Mg 1s electrons. ICD spectra are shown to sensitively probe ligand exchange in the Mg2+-ATP(aq) coordination environment. In addition, we report and compare P 2s data from ATP(aq) and adenosine mono- and diphosphate (AMP(aq) and ADP(aq), respectively) solutions, probing the electronic structure of the phosphate chain and the local environment of individual phosphate units in ATP(aq). Our results provide a comprehensive view of the electronic structure of ATP(aq) and Mg2+-ATP(aq) complexes relevant to phosphorylation and dephosphorylation reactions that are central to bioenergetics in living organisms.
Department of Chemistry University of California Berkeley California 94720 United States
Department of Chemistry University of Southern California Los Angeles California 90089 United States
Fritz Haber Institut der Max Planck Gesellschaft Faradayweg 4 6 14195 Berlin Germany
Zobrazit více v PubMed
Reinert F.; Hüfner S. Photoemission spectroscopy—from early days to recent applications. New J. Phys. 2005, 7, 97.10.1088/1367-2630/7/1/097. DOI
Faubel M.; Schlemmer S.; Toennies J. P. A molecular beam study of the evaporation of water from a liquid jet. Z. Phys. D 1988, 10 (2−3), 269–277. 10.1007/BF01384861. DOI
Thürmer S.; et al. Accurate vertical ionization energy and work function determinations of liquid water and aqueous solutions. Chem. Sci. 2021, 12 (31), 10558–10582. 10.1039/D1SC01908B. PubMed DOI PMC
Winter B.; et al. Full Valence Band Photoemission from Liquid Water Using EUV Synchrotron Radiation. J. Phys. Chem. A 2004, 108 (14), 2625–2632. 10.1021/jp030263q. DOI
Mudryk K. D.; et al. The electronic structure of the aqueous permanganate ion: aqueous-phase energetics and molecular bonding studied using liquid jet photoelectron spectroscopy. Phys. Chem. Chem. Phys. 2020, 22 (36), 20311–20330. 10.1039/D0CP04033A. PubMed DOI
Pluhařová E.; et al. Transforming Anion Instability into Stability: Contrasting Photoionization of Three Protonation Forms of the Phosphate Ion upon Moving into Water. J. Phys. Chem. B 2012, 116 (44), 13254–13264. 10.1021/jp306348b. PubMed DOI
Malerz S.; et al. Following in Emil Fischer’s Footsteps: A Site-Selective Probe of Glucose Acid–Base Chemistry. J. Phys. Chem. A 2021, 125 (32), 6881–6892. 10.1021/acs.jpca.1c04695. PubMed DOI PMC
Schroeder C. A.; et al. Oxidation Half-Reaction of Aqueous Nucleosides and Nucleotides via Photoelectron Spectroscopy Augmented by ab Initio Calculations. J. Am. Chem. Soc. 2015, 137 (1), 201–209. 10.1021/ja508149e. PubMed DOI
Dupuy R.; et al. Core level photoelectron spectroscopy of heterogeneous reactions at liquid–vapor interfaces: Current status, challenges, and prospects. J. Chem. Phys. 2021, 154 (6), 060901.10.1063/5.0036178. PubMed DOI
Seidel R.; Winter B.; Bradforth S. E. Valence Electronic Structure of Aqueous Solutions: Insights from Photoelectron Spectroscopy. Annu. Rev. Phys. Chem. 2016, 67 (1), 283–305. 10.1146/annurev-physchem-040513-103715. PubMed DOI
Pohl M. N.; et al. Do water’s electrons care about electrolytes?. Chem. Sci. 2019, 10 (3), 848–865. 10.1039/C8SC03381A. PubMed DOI PMC
Cederbaum L. S.; Zobeley J.; Tarantelli F. Giant Intermolecular Decay and Fragmentation of Clusters. Phys. Rev. Lett. 1997, 79 (24), 4778.10.1103/PhysRevLett.79.4778. DOI
Gopakumar G.; et al. Probing aqueous ions with non-local Auger relaxation. Phys. Chem. Chem. Phys. 2022, 24 (15), 8661–8671. 10.1039/D2CP00227B. PubMed DOI PMC
Jahnke T.; et al. Interatomic and Intermolecular Coulombic Decay. Chem. Rev. 2020, 120 (20), 11295–11369. 10.1021/acs.chemrev.0c00106. PubMed DOI PMC
Langen P.; Hucho F. Karl Lohmann and the Discovery of ATP. Angew. Chem., Int. Ed. 2008, 47 (10), 1824–1827. 10.1002/anie.200702929. PubMed DOI
Boyer P. D.Energy, life, and ATP. Nobel Lecture, December 8, 1997. In Nobel Lectures Chemistry 1996 - 2000; Grenthe I., Ed.; World Scientific, 2003.
Kamerlin S. C. L.; et al. Why nature really chose phosphate. Q. Rev. Biophys. 2013, 46 (1), 1–132. 10.1017/S0033583512000157. PubMed DOI PMC
Müller W. E. G.; Schröder H. C.; Wang X. Inorganic Polyphosphates As Storage for and Generator of Metabolic Energy in the Extracellular Matrix. Chem. Rev. 2019, 119 (24), 12337–12374. 10.1021/acs.chemrev.9b00460. PubMed DOI PMC
Bonora M.; et al. ATP synthesis and storage. Purinergic Signal. 2012, 8 (3), 343–357. 10.1007/s11302-012-9305-8. PubMed DOI PMC
Zimmerman J. J.; von Saint A.-v. A.; McLaughlin J.. Chapter 74 - Cellular Respiration, in Pediatric Critical Care, 4th ed.; Fuhrman B.P., Zimmerman J.J., Eds.; Mosby: Saint Louis, 2011; pp 1058–1072.
Sigel H.; Griesser R. Nucleoside 5′-triphosphates: self-association, acid–base, and metal ion-binding properties in solution. Chem. Soc. Rev. 2005, 34 (10), 875–900. 10.1039/b505986k. PubMed DOI
Tribolet R.; Sigel H. Influence of the protonation degree on the self-association properties of adenosine 5′-triphosphate (ATP). Eur. J. Biochem. 1988, 170 (3), 617–626. 10.1111/j.1432-1033.1988.tb13742.x. PubMed DOI
Lightstone F. C.; et al. A first principles molecular dynamics simulation of the hydrated magnesium ion. Chem. Phys. Lett. 2001, 343 (5−6), 549–555. 10.1016/S0009-2614(01)00735-7. DOI
Glonek T. 31P NMR of Mg-ATP in dilute solutions: Complexation and exchange. Int. J. Biochem. 1992, 24 (10), 1533–1559. 10.1016/0020-711X(92)90171-V. PubMed DOI
Wilson J. E.; Chin A. Chelation of divalent cations by ATP, studied by titration calorimetry. Anal. Biochem. 1991, 193 (1), 16–19. 10.1016/0003-2697(91)90036-S. PubMed DOI
Buelens F. P.; et al. ATP–Magnesium Coordination: Protein Structure-Based Force Field Evaluation and Corrections. J. Chem. Theory Comput. 2021, 17 (3), 1922–1930. 10.1021/acs.jctc.0c01205. PubMed DOI PMC
Storer A. C.; Cornish-Bowden A. Concentration of MgATP2- and other ions in solution. Calculation of the true concentrations of species present in mixtures of associating ions. Biochem. J. 1976, 159 (1), 1–5. 10.1042/bj1590001. PubMed DOI PMC
Bock J. L.; et al. 25Mg NMR Studies of magnesium binding to erythrocyte constituents. J. Inorg. Biochem. 1991, 44 (2), 79–87. 10.1016/0162-0134(91)84020-A. PubMed DOI
Molla G. S.; et al. Mechanistic and kinetics elucidation of Mg2+/ATP molar ratio effect on glycerol kinase. Mol. Catal. 2018, 445, 36–42. 10.1016/j.mcat.2017.11.006. DOI
Szabó Z. Multinuclear NMR studies of the interaction of metal ions with adenine-nucleotides. Coord. Chem. Rev. 2008, 252 (21–22), 2362–2380. 10.1016/j.ccr.2008.03.002. DOI
Bishop E. O.; et al. A 31P-NMR study of mono- and dimagnesium complexes of adenosine 5′-triphosphate and model systems. Biochim. Biophys. Acta Bioenerg. 1981, 635 (1), 63–72. 10.1016/0005-2728(81)90007-4. PubMed DOI
Sari J. C.; et al. Microcalorimetric study of magnesium-adenosine triphosphate ternary complex. J. Bioenerg. Biomembr. 1982, 14 (3), 171–179. 10.1007/BF00745018. PubMed DOI
Sigel H. Isomeric equilibria in complexes of adenosine 5′-triphosphate with divalent metal ions. Eur. J. Biochem. 1987, 165 (1), 65–72. 10.1111/j.1432-1033.1987.tb11194.x. PubMed DOI
Sigel H.; Song B. Solution structures of nucleotide-metal ion complexes. Isomeric equilibria. Metal ions in biological systems 1996, 32, 135–135.
Frańska M.; et al. Gas-Phase Internal Ribose Residue Loss from Mg-ATP and Mg-ADP Complexes: Experimental and Theoretical Evidence for Phosphate-Mg-Adenine Interaction. J. Am. Soc. Mass Spectrom. 2022, 33 (8), 1474–1479. 10.1021/jasms.2c00071. PubMed DOI PMC
Matthies M.; Zundel G. Hydration and self-association of adenosine triphosphate, adenosine diphosphate, and their 1:1 complexes with magnesium(II) at various pH values: infrared investigations. J. Chem. Soc., Perkin Trans. 2 1977, (14), 1824–1830. 10.1039/p29770001824. DOI
Manchester K. L. Free energy ATP hydrolysis and phosphorylation potential. Biochem. Educ. 1980, 8 (3), 70–72. 10.1016/0307-4412(80)90043-6. DOI
Achbergerová L.; Nahálka J. Polyphosphate - an ancient energy source and active metabolic regulator. Microb. Cell Fact. 2011, 10 (1), 63.10.1186/1475-2859-10-63. PubMed DOI PMC
Harrison C. B.; Schulten K. Quantum and Classical Dynamics Simulations of ATP Hydrolysis in Solution. J. Chem. Theory Comput. 2012, 8 (7), 2328–2335. 10.1021/ct200886j. PubMed DOI PMC
Akola J.; Jones R. O. ATP Hydrolysis in Water – A Density Functional Study. J. Phys. Chem. B 2003, 107 (42), 11774–11783. 10.1021/jp035538g. DOI
Wang C.; Huang W.; Liao J.-L. QM/MM Investigation of ATP Hydrolysis in Aqueous Solution. J. Phys. Chem. B 2015, 119 (9), 3720–3726. 10.1021/jp512960e. PubMed DOI
Kamerlin S.; Warshel A. On the energetics of ATP hydrolysis in solution. J. Phys. Chem. B 2009, 113 (47), 15692–15698. 10.1021/jp907223t. PubMed DOI
Weber J.; Senior A. E. ATP synthase: what we know about ATP hydrolysis and what we do not know about ATP synthesis. Biochim. Biophys. Acta Bioenerg. 2000, 1458 (2−3), 300–309. 10.1016/S0005-2728(00)00082-7. PubMed DOI
Liao J. C.; et al. The conformational states of Mg.ATP in water. Eur. Biophys J. 2004, 33 (1), 29–37. 10.1007/s00249-003-0339-2. PubMed DOI
Huang S. L.; Tsai M. D. Does the magnesium(II) ion interact with the α-phosphate of ATP? An investigation by oxygen-17 nuclear magnetic resonance. Biochemistry 1982, 21 (5), 951–959. 10.1021/bi00534a021. PubMed DOI
Mildvan A. S. Role of magnesium and other divalent cations in ATP-utilizing enzymes. Magnesium 1987, 6 (1), 28–33. PubMed
Rajendran T. E.; Muthukumarasamy T. Thermodynamic calculations of biochemical reaction systems at specified pH, pMg, and change in binding of hydrogen and magnesium ions. Asia-Pac. J. Chem. Eng. 2018, 13 (4), e220510.1002/apj.2205. DOI
Starikov E. B.; Panas I.; Nordén B. Chemical-to-Mechanical Energy Conversion in Biomacromolecular Machines: A Plasmon and Optimum Control Theory for Directional Work. 1. General Considerations. J. Phys. Chem. B 2008, 112 (28), 8319–8329. 10.1021/jp801580d. PubMed DOI
George P.; et al. “Squiggle-H2O”. An enquiry into the importance of solvation effects in phosphate ester and anhydride reactions. Biochim. Biophys. Acta Bioenerg. 1970, 223 (1), 1–15. 10.1016/0005-2728(70)90126-X. PubMed DOI
Shikama K. Standard free energy maps for the hydrolysis of ATP as a function of pH, pMg and pCa. Arch. Biochem. Biophys. 1971, 147 (1), 311–317. 10.1016/0003-9861(71)90338-9. PubMed DOI
Holm N. G. The significance of Mg in prebiotic geochemistry. Geobiology 2012, 10, 269–79. 10.1111/j.1472-4669.2012.00323.x. PubMed DOI PMC
Admiraal S. J.; Herschlag D. Mapping the transition state for ATP hydrolysis: implications for enzymatic catalysis. Chem. Biol. 1995, 2 (11), 729–739. 10.1016/1074-5521(95)90101-9. PubMed DOI
Alberty R. A. Enzymes: Units of biological structure and function. J. Chem. Educ. 1957, 34 (1), A33.10.1021/ed034pA33. DOI
Sigel H. Interactions of metal ions with nucleotides and nucleic acids and their constituents. Chem. Soc. Rev. 1993, 22 (4), 255–267. 10.1039/cs9932200255. DOI
Winter B.; Faubel M. Photoemission from Liquid Aqueous Solutions. Chem. Rev. 2006, 106 (4), 1176–1211. 10.1021/cr040381p. PubMed DOI
Ottosson N.; et al. On the Origins of Core–Electron Chemical Shifts of Small Biomolecules in Aqueous Solution: Insights from Photoemission and ab Initio Calculations of Glycineaq. J. Am. Chem. Soc. 2011, 133 (9), 3120–3130. 10.1021/ja110321q. PubMed DOI
Nolting D.; et al. pH-Induced Protonation of Lysine in Aqueous Solution Causes Chemical Shifts in X-ray Photoelectron Spectroscopy. J. Am. Chem. Soc. 2007, 129 (45), 14068–14073. 10.1021/ja072971l. PubMed DOI
Bruce J. P.; Hemminger J. C. Characterization of Fe2+ Aqueous Solutions with Liquid Jet X-ray Photoelectron Spectroscopy: Chloride Depletion at the Liquid/Vapor Interface Due to Complexation with Fe2+. J. Phys. Chem. B 2019, 123 (39), 8285–8290. 10.1021/acs.jpcb.9b06515. PubMed DOI
Aziz E. F.; et al. Interaction between liquid water and hydroxide revealed by core-hole de-excitation. Nature 2008, 455 (7209), 89–91. 10.1038/nature07252. PubMed DOI
Skitnevskaya A. D.; et al. Two-Sided Impact of Water on the Relaxation of Inner-Valence Vacancies of Biologically Relevant Molecules. J. Phys. Chem. Lett. 2023, 14, 1418–1426. 10.1021/acs.jpclett.2c03654. PubMed DOI
Mathe Z.; et al. Phosphorus Kβ X-ray emission spectroscopy detects non-covalent interactions of phosphate biomolecules in situ. Chem. Sci. 2021, 12 (22), 7888–7901. 10.1039/D1SC01266E. PubMed DOI PMC
Lanir A.; Yu N.-T. A Raman spectroscopic study of the interaction of divalent metal ions with adenine moiety of adenosine 5′-triphosphate. J. Biol. Chem. 1979, 254 (13), 5882–5887. 10.1016/S0021-9258(18)50496-8. PubMed DOI
Cohn M.; Hughes T. R. Jr. Nuclear Magnetic Resonance Spectra of Adenosine Di- and Triphosphate: II. Effect of Complexing with Divalent Metal Ions. J. Biol. Chem. 1962, 237 (1), 176–181. 10.1016/S0021-9258(18)81382-5. PubMed DOI
McFadden R. M. L.; et al. Magnesium(II)-ATP Complexes in 1-Ethyl-3-Methylimidazolium Acetate Solutions Characterized by 31Mg β-Radiation-Detected NMR Spectroscopy. Angew. Chem., Int. Ed. 2022, 61 (35), e20220713710.1002/anie.202207137. PubMed DOI PMC
Castellani M. E.; Avagliano D.; Verlet J. R. R. Ultrafast Dynamics of the Isolated Adenosine-5′-triphosphate Dianion Probed by Time-Resolved Photoelectron Imaging. J. Phys. Chem. A 2021, 125 (17), 3646–3652. 10.1021/acs.jpca.1c01646. PubMed DOI
Shimada H.; et al. Structural changes of nucleic acid base in aqueous solution as observed in X-ray absorption near edge structure (XANES). Chem. Phys. Lett. 2014, 591, 137–141. 10.1016/j.cplett.2013.11.026. PubMed DOI
Kelly D. N.; et al. Communication: Near edge x-ray absorption fine structure spectroscopy of aqueous adenosine triphosphate at the carbon and nitrogen K-edges. J. Chem. Phys. 2010, 133 (10), 101103.10.1063/1.3478548. PubMed DOI
Wang P.; et al. Thermodynamic parameters for the interaction of adenosine 5′-diphosphate, and adenosine 5′-triphosphate with Mg2+ from 323.15 to 398.15 K. J. Solution Chem. 1995, 24 (10), 989–1012. 10.1007/BF00973517. DOI
Viefhaus J.; et al. The Variable Polarization XUV Beamline P04 at PETRA III: Optics, mechanics and their performance. Nucl. Instrum. Methods Phys. Res. A 2013, 710, 151–154. 10.1016/j.nima.2012.10.110. DOI
Malerz S.; et al. A setup for studies of photoelectron circular dichroism from chiral molecules in aqueous solution. Rev. Sci. Instrum. 2022, 93 (1), 015101.10.1063/5.0072346. PubMed DOI
Winter B. Liquid microjet for photoelectron spectroscopy. Nucl. Instrum. Methods Phys. Res. A 2009, 601 (1−2), 139–150. 10.1016/j.nima.2008.12.108. DOI
Gilbert A. T. B.; Besley N. A.; Gill P. M. W. Self-Consistent Field Calculations of Excited States Using the Maximum Overlap Method (MOM). J. Phys. Chem. A 2008, 112 (50), 13164–13171. 10.1021/jp801738f. PubMed DOI
Epifanovsky E.; et al. Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. J. Chem. Phys. 2021, 155 (8), 084801.10.1063/5.0055522. PubMed DOI PMC
Macetti G.; Genoni A. Initial Maximum Overlap Method for Large Systems by the Quantum Mechanics/Extremely Localized Molecular Orbital Embedding Technique. J. Chem. Theory Comput. 2021, 17 (7), 4169–4182. 10.1021/acs.jctc.1c00388. PubMed DOI
Mennucci B.; Tomasi J. Continuum solvation models: A new approach to the problem of solute’s charge distribution and cavity boundaries. J. Chem. Phys. 1997, 106 (12), 5151–5158. 10.1063/1.473558. DOI
Cancès E.; Mennucci B.; Tomasi J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997, 107 (8), 3032–3041. 10.1063/1.474659. DOI
Xu L.; Coote M. L. Improving the Accuracy of PCM-UAHF and PCM-UAKS Calculations Using Optimized Electrostatic Scaling Factors. J. Chem. Theory Comput. 2019, 15 (12), 6958–6967. 10.1021/acs.jctc.9b00888. PubMed DOI
Frisch M. J.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Mennucci B.; Petersson G. A.; Nakatsuji H.; Caricato M.; Li X.; Hratchian H. P.; Izmaylov A. F.; Bloino J.; Zheng G.; Sonnenberg J. L.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Montgomery J. A. Jr.; Peralta J. E.; Ogliaro F.; Bearpark M.; Heyd J. J.; Brothers E.; Kudin K. N.; Staroverov V. N.; Keith T.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Rega N.; Millam J. M.; Klene M.; Knox J. E.; Cross J. B.; Bakken V.; Adamo C.; Jaramillo J.; Gomperts R.; Stratmann R. E.; Yazyev O.; Austin A. J.; Cammi R.; Pomelli C.; Ochterski J. W.; Martin R. L.; Morokuma K.; Zakrzewski V. G.; Voth G. A.; Salvador P.; Dannenberg J. J.; Dapprich S.; Daniels A. D.; Farkas O.; Foresman J. B.; Ortiz J. V.; Cioslowski J.; Fox D. J.. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford CT, 2013.
Yanai T.; Tew D. P.; Handy N. C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393 (1−3), 51–57. 10.1016/j.cplett.2004.06.011. DOI
Pugini M.; et al. How to measure work functions from aqueous solutions. Chem. Sci. 2023, 14 (35), 9574–9588. 10.1039/D3SC01740K. PubMed DOI PMC
Trofimov A. B.; et al. Photoelectron spectra of the nucleobases cytosine, thymine and adenine. J. Phys. B: At. Mol. Opt. Phys. 2006, 39 (2), 305.10.1088/0953-4075/39/2/007. DOI
Sherwood P. M. A. Introduction to Studies of Phosphorus-Oxygen Compounds by XPS. Surf. Sci. Spectra 2002, 9 (1), 62–66. 10.1116/11.20030101. DOI
Öhrwall G.; et al. Charge Dependence of Solvent-Mediated Intermolecular Coster–Kronig Decay Dynamics of Aqueous Ions. J. Phys. Chem. B 2010, 114 (51), 17057–17061. 10.1021/jp108956v. PubMed DOI
Rizkalla E. N.; Antonious M. S.; Anis S. S. X-ray photoelectron and potentiometric studies of some calcium complexes. Inorg. Chim. Acta 1985, 96 (2), 171–178. 10.1016/S0020-1693(00)87577-5. DOI
Kumar G.; et al. The influence of aqueous solvent on the electronic structure and non-adiabatic dynamics of indole explored by liquid-jet photoelectron spectroscopy. Faraday Discuss. 2018, 212, 359–381. 10.1039/C8FD00123E. PubMed DOI
From Gas to Solution: The Changing Neutral Structure of Proline upon Solvation