How Does Mg2+(aq) Interact with ATP(aq)? Biomolecular Structure through the Lens of Liquid-Jet Photoemission Spectroscopy

. 2024 Jun 12 ; 146 (23) : 16062-16075. [epub] 20240527

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38802319

Liquid-jet photoemission spectroscopy (LJ-PES) allows for a direct probing of electronic structure in aqueous solutions. We show the applicability of the approach to biomolecules in a complex environment, exploring site-specific information on the interaction of adenosine triphosphate in the aqueous phase (ATP(aq)) with magnesium (Mg2+(aq)), highlighting the synergy brought about by the simultaneous analysis of different regions in the photoelectron spectrum. In particular, we demonstrate intermolecular Coulombic decay (ICD) spectroscopy as a new and powerful addition to the arsenal of techniques for biomolecular structure investigation. We apply LJ-PES assisted by electronic-structure calculations to study ATP(aq) solutions with and without dissolved Mg2+. Valence photoelectron data reveal spectral changes in the phosphate and adenine features of ATP(aq) due to interactions with the divalent cation. Chemical shifts in Mg 2p, Mg 2s, P 2p, and P 2s core-level spectra as a function of the Mg2+/ATP concentration ratio are correlated to the formation of [Mg(ATP) 2]6-(aq), [MgATP]2-(aq), and [Mg2ATP](aq) complexes, demonstrating the element sensitivity of the technique to Mg2+-phosphate interactions. The most direct probe of the intermolecular interactions between ATP(aq) and Mg2+(aq) is delivered by the emerging ICD electrons following ionization of Mg 1s electrons. ICD spectra are shown to sensitively probe ligand exchange in the Mg2+-ATP(aq) coordination environment. In addition, we report and compare P 2s data from ATP(aq) and adenosine mono- and diphosphate (AMP(aq) and ADP(aq), respectively) solutions, probing the electronic structure of the phosphate chain and the local environment of individual phosphate units in ATP(aq). Our results provide a comprehensive view of the electronic structure of ATP(aq) and Mg2+-ATP(aq) complexes relevant to phosphorylation and dephosphorylation reactions that are central to bioenergetics in living organisms.

Zobrazit více v PubMed

Reinert F.; Hüfner S. Photoemission spectroscopy—from early days to recent applications. New J. Phys. 2005, 7, 97.10.1088/1367-2630/7/1/097. DOI

Faubel M.; Schlemmer S.; Toennies J. P. A molecular beam study of the evaporation of water from a liquid jet. Z. Phys. D 1988, 10 (2−3), 269–277. 10.1007/BF01384861. DOI

Thürmer S.; et al. Accurate vertical ionization energy and work function determinations of liquid water and aqueous solutions. Chem. Sci. 2021, 12 (31), 10558–10582. 10.1039/D1SC01908B. PubMed DOI PMC

Winter B.; et al. Full Valence Band Photoemission from Liquid Water Using EUV Synchrotron Radiation. J. Phys. Chem. A 2004, 108 (14), 2625–2632. 10.1021/jp030263q. DOI

Mudryk K. D.; et al. The electronic structure of the aqueous permanganate ion: aqueous-phase energetics and molecular bonding studied using liquid jet photoelectron spectroscopy. Phys. Chem. Chem. Phys. 2020, 22 (36), 20311–20330. 10.1039/D0CP04033A. PubMed DOI

Pluhařová E.; et al. Transforming Anion Instability into Stability: Contrasting Photoionization of Three Protonation Forms of the Phosphate Ion upon Moving into Water. J. Phys. Chem. B 2012, 116 (44), 13254–13264. 10.1021/jp306348b. PubMed DOI

Malerz S.; et al. Following in Emil Fischer’s Footsteps: A Site-Selective Probe of Glucose Acid–Base Chemistry. J. Phys. Chem. A 2021, 125 (32), 6881–6892. 10.1021/acs.jpca.1c04695. PubMed DOI PMC

Schroeder C. A.; et al. Oxidation Half-Reaction of Aqueous Nucleosides and Nucleotides via Photoelectron Spectroscopy Augmented by ab Initio Calculations. J. Am. Chem. Soc. 2015, 137 (1), 201–209. 10.1021/ja508149e. PubMed DOI

Dupuy R.; et al. Core level photoelectron spectroscopy of heterogeneous reactions at liquid–vapor interfaces: Current status, challenges, and prospects. J. Chem. Phys. 2021, 154 (6), 060901.10.1063/5.0036178. PubMed DOI

Seidel R.; Winter B.; Bradforth S. E. Valence Electronic Structure of Aqueous Solutions: Insights from Photoelectron Spectroscopy. Annu. Rev. Phys. Chem. 2016, 67 (1), 283–305. 10.1146/annurev-physchem-040513-103715. PubMed DOI

Pohl M. N.; et al. Do water’s electrons care about electrolytes?. Chem. Sci. 2019, 10 (3), 848–865. 10.1039/C8SC03381A. PubMed DOI PMC

Cederbaum L. S.; Zobeley J.; Tarantelli F. Giant Intermolecular Decay and Fragmentation of Clusters. Phys. Rev. Lett. 1997, 79 (24), 4778.10.1103/PhysRevLett.79.4778. DOI

Gopakumar G.; et al. Probing aqueous ions with non-local Auger relaxation. Phys. Chem. Chem. Phys. 2022, 24 (15), 8661–8671. 10.1039/D2CP00227B. PubMed DOI PMC

Jahnke T.; et al. Interatomic and Intermolecular Coulombic Decay. Chem. Rev. 2020, 120 (20), 11295–11369. 10.1021/acs.chemrev.0c00106. PubMed DOI PMC

Langen P.; Hucho F. Karl Lohmann and the Discovery of ATP. Angew. Chem., Int. Ed. 2008, 47 (10), 1824–1827. 10.1002/anie.200702929. PubMed DOI

Boyer P. D.Energy, life, and ATP. Nobel Lecture, December 8, 1997. In Nobel Lectures Chemistry 1996 - 2000; Grenthe I., Ed.; World Scientific, 2003.

Kamerlin S. C. L.; et al. Why nature really chose phosphate. Q. Rev. Biophys. 2013, 46 (1), 1–132. 10.1017/S0033583512000157. PubMed DOI PMC

Müller W. E. G.; Schröder H. C.; Wang X. Inorganic Polyphosphates As Storage for and Generator of Metabolic Energy in the Extracellular Matrix. Chem. Rev. 2019, 119 (24), 12337–12374. 10.1021/acs.chemrev.9b00460. PubMed DOI PMC

Bonora M.; et al. ATP synthesis and storage. Purinergic Signal. 2012, 8 (3), 343–357. 10.1007/s11302-012-9305-8. PubMed DOI PMC

Zimmerman J. J.; von Saint A.-v. A.; McLaughlin J.. Chapter 74 - Cellular Respiration, in Pediatric Critical Care, 4th ed.; Fuhrman B.P., Zimmerman J.J., Eds.; Mosby: Saint Louis, 2011; pp 1058–1072.

Sigel H.; Griesser R. Nucleoside 5′-triphosphates: self-association, acid–base, and metal ion-binding properties in solution. Chem. Soc. Rev. 2005, 34 (10), 875–900. 10.1039/b505986k. PubMed DOI

Tribolet R.; Sigel H. Influence of the protonation degree on the self-association properties of adenosine 5′-triphosphate (ATP). Eur. J. Biochem. 1988, 170 (3), 617–626. 10.1111/j.1432-1033.1988.tb13742.x. PubMed DOI

Lightstone F. C.; et al. A first principles molecular dynamics simulation of the hydrated magnesium ion. Chem. Phys. Lett. 2001, 343 (5−6), 549–555. 10.1016/S0009-2614(01)00735-7. DOI

Glonek T. 31P NMR of Mg-ATP in dilute solutions: Complexation and exchange. Int. J. Biochem. 1992, 24 (10), 1533–1559. 10.1016/0020-711X(92)90171-V. PubMed DOI

Wilson J. E.; Chin A. Chelation of divalent cations by ATP, studied by titration calorimetry. Anal. Biochem. 1991, 193 (1), 16–19. 10.1016/0003-2697(91)90036-S. PubMed DOI

Buelens F. P.; et al. ATP–Magnesium Coordination: Protein Structure-Based Force Field Evaluation and Corrections. J. Chem. Theory Comput. 2021, 17 (3), 1922–1930. 10.1021/acs.jctc.0c01205. PubMed DOI PMC

Storer A. C.; Cornish-Bowden A. Concentration of MgATP2- and other ions in solution. Calculation of the true concentrations of species present in mixtures of associating ions. Biochem. J. 1976, 159 (1), 1–5. 10.1042/bj1590001. PubMed DOI PMC

Bock J. L.; et al. 25Mg NMR Studies of magnesium binding to erythrocyte constituents. J. Inorg. Biochem. 1991, 44 (2), 79–87. 10.1016/0162-0134(91)84020-A. PubMed DOI

Molla G. S.; et al. Mechanistic and kinetics elucidation of Mg2+/ATP molar ratio effect on glycerol kinase. Mol. Catal. 2018, 445, 36–42. 10.1016/j.mcat.2017.11.006. DOI

Szabó Z. Multinuclear NMR studies of the interaction of metal ions with adenine-nucleotides. Coord. Chem. Rev. 2008, 252 (21–22), 2362–2380. 10.1016/j.ccr.2008.03.002. DOI

Bishop E. O.; et al. A 31P-NMR study of mono- and dimagnesium complexes of adenosine 5′-triphosphate and model systems. Biochim. Biophys. Acta Bioenerg. 1981, 635 (1), 63–72. 10.1016/0005-2728(81)90007-4. PubMed DOI

Sari J. C.; et al. Microcalorimetric study of magnesium-adenosine triphosphate ternary complex. J. Bioenerg. Biomembr. 1982, 14 (3), 171–179. 10.1007/BF00745018. PubMed DOI

Sigel H. Isomeric equilibria in complexes of adenosine 5′-triphosphate with divalent metal ions. Eur. J. Biochem. 1987, 165 (1), 65–72. 10.1111/j.1432-1033.1987.tb11194.x. PubMed DOI

Sigel H.; Song B. Solution structures of nucleotide-metal ion complexes. Isomeric equilibria. Metal ions in biological systems 1996, 32, 135–135.

Frańska M.; et al. Gas-Phase Internal Ribose Residue Loss from Mg-ATP and Mg-ADP Complexes: Experimental and Theoretical Evidence for Phosphate-Mg-Adenine Interaction. J. Am. Soc. Mass Spectrom. 2022, 33 (8), 1474–1479. 10.1021/jasms.2c00071. PubMed DOI PMC

Matthies M.; Zundel G. Hydration and self-association of adenosine triphosphate, adenosine diphosphate, and their 1:1 complexes with magnesium(II) at various pH values: infrared investigations. J. Chem. Soc., Perkin Trans. 2 1977, (14), 1824–1830. 10.1039/p29770001824. DOI

Manchester K. L. Free energy ATP hydrolysis and phosphorylation potential. Biochem. Educ. 1980, 8 (3), 70–72. 10.1016/0307-4412(80)90043-6. DOI

Achbergerová L.; Nahálka J. Polyphosphate - an ancient energy source and active metabolic regulator. Microb. Cell Fact. 2011, 10 (1), 63.10.1186/1475-2859-10-63. PubMed DOI PMC

Harrison C. B.; Schulten K. Quantum and Classical Dynamics Simulations of ATP Hydrolysis in Solution. J. Chem. Theory Comput. 2012, 8 (7), 2328–2335. 10.1021/ct200886j. PubMed DOI PMC

Akola J.; Jones R. O. ATP Hydrolysis in Water – A Density Functional Study. J. Phys. Chem. B 2003, 107 (42), 11774–11783. 10.1021/jp035538g. DOI

Wang C.; Huang W.; Liao J.-L. QM/MM Investigation of ATP Hydrolysis in Aqueous Solution. J. Phys. Chem. B 2015, 119 (9), 3720–3726. 10.1021/jp512960e. PubMed DOI

Kamerlin S.; Warshel A. On the energetics of ATP hydrolysis in solution. J. Phys. Chem. B 2009, 113 (47), 15692–15698. 10.1021/jp907223t. PubMed DOI

Weber J.; Senior A. E. ATP synthase: what we know about ATP hydrolysis and what we do not know about ATP synthesis. Biochim. Biophys. Acta Bioenerg. 2000, 1458 (2−3), 300–309. 10.1016/S0005-2728(00)00082-7. PubMed DOI

Liao J. C.; et al. The conformational states of Mg.ATP in water. Eur. Biophys J. 2004, 33 (1), 29–37. 10.1007/s00249-003-0339-2. PubMed DOI

Huang S. L.; Tsai M. D. Does the magnesium(II) ion interact with the α-phosphate of ATP? An investigation by oxygen-17 nuclear magnetic resonance. Biochemistry 1982, 21 (5), 951–959. 10.1021/bi00534a021. PubMed DOI

Mildvan A. S. Role of magnesium and other divalent cations in ATP-utilizing enzymes. Magnesium 1987, 6 (1), 28–33. PubMed

Rajendran T. E.; Muthukumarasamy T. Thermodynamic calculations of biochemical reaction systems at specified pH, pMg, and change in binding of hydrogen and magnesium ions. Asia-Pac. J. Chem. Eng. 2018, 13 (4), e220510.1002/apj.2205. DOI

Starikov E. B.; Panas I.; Nordén B. Chemical-to-Mechanical Energy Conversion in Biomacromolecular Machines: A Plasmon and Optimum Control Theory for Directional Work. 1. General Considerations. J. Phys. Chem. B 2008, 112 (28), 8319–8329. 10.1021/jp801580d. PubMed DOI

George P.; et al. “Squiggle-H2O”. An enquiry into the importance of solvation effects in phosphate ester and anhydride reactions. Biochim. Biophys. Acta Bioenerg. 1970, 223 (1), 1–15. 10.1016/0005-2728(70)90126-X. PubMed DOI

Shikama K. Standard free energy maps for the hydrolysis of ATP as a function of pH, pMg and pCa. Arch. Biochem. Biophys. 1971, 147 (1), 311–317. 10.1016/0003-9861(71)90338-9. PubMed DOI

Holm N. G. The significance of Mg in prebiotic geochemistry. Geobiology 2012, 10, 269–79. 10.1111/j.1472-4669.2012.00323.x. PubMed DOI PMC

Admiraal S. J.; Herschlag D. Mapping the transition state for ATP hydrolysis: implications for enzymatic catalysis. Chem. Biol. 1995, 2 (11), 729–739. 10.1016/1074-5521(95)90101-9. PubMed DOI

Alberty R. A. Enzymes: Units of biological structure and function. J. Chem. Educ. 1957, 34 (1), A33.10.1021/ed034pA33. DOI

Sigel H. Interactions of metal ions with nucleotides and nucleic acids and their constituents. Chem. Soc. Rev. 1993, 22 (4), 255–267. 10.1039/cs9932200255. DOI

Winter B.; Faubel M. Photoemission from Liquid Aqueous Solutions. Chem. Rev. 2006, 106 (4), 1176–1211. 10.1021/cr040381p. PubMed DOI

Ottosson N.; et al. On the Origins of Core–Electron Chemical Shifts of Small Biomolecules in Aqueous Solution: Insights from Photoemission and ab Initio Calculations of Glycineaq. J. Am. Chem. Soc. 2011, 133 (9), 3120–3130. 10.1021/ja110321q. PubMed DOI

Nolting D.; et al. pH-Induced Protonation of Lysine in Aqueous Solution Causes Chemical Shifts in X-ray Photoelectron Spectroscopy. J. Am. Chem. Soc. 2007, 129 (45), 14068–14073. 10.1021/ja072971l. PubMed DOI

Bruce J. P.; Hemminger J. C. Characterization of Fe2+ Aqueous Solutions with Liquid Jet X-ray Photoelectron Spectroscopy: Chloride Depletion at the Liquid/Vapor Interface Due to Complexation with Fe2+. J. Phys. Chem. B 2019, 123 (39), 8285–8290. 10.1021/acs.jpcb.9b06515. PubMed DOI

Aziz E. F.; et al. Interaction between liquid water and hydroxide revealed by core-hole de-excitation. Nature 2008, 455 (7209), 89–91. 10.1038/nature07252. PubMed DOI

Skitnevskaya A. D.; et al. Two-Sided Impact of Water on the Relaxation of Inner-Valence Vacancies of Biologically Relevant Molecules. J. Phys. Chem. Lett. 2023, 14, 1418–1426. 10.1021/acs.jpclett.2c03654. PubMed DOI

Mathe Z.; et al. Phosphorus Kβ X-ray emission spectroscopy detects non-covalent interactions of phosphate biomolecules in situ. Chem. Sci. 2021, 12 (22), 7888–7901. 10.1039/D1SC01266E. PubMed DOI PMC

Lanir A.; Yu N.-T. A Raman spectroscopic study of the interaction of divalent metal ions with adenine moiety of adenosine 5′-triphosphate. J. Biol. Chem. 1979, 254 (13), 5882–5887. 10.1016/S0021-9258(18)50496-8. PubMed DOI

Cohn M.; Hughes T. R. Jr. Nuclear Magnetic Resonance Spectra of Adenosine Di- and Triphosphate: II. Effect of Complexing with Divalent Metal Ions. J. Biol. Chem. 1962, 237 (1), 176–181. 10.1016/S0021-9258(18)81382-5. PubMed DOI

McFadden R. M. L.; et al. Magnesium(II)-ATP Complexes in 1-Ethyl-3-Methylimidazolium Acetate Solutions Characterized by 31Mg β-Radiation-Detected NMR Spectroscopy. Angew. Chem., Int. Ed. 2022, 61 (35), e20220713710.1002/anie.202207137. PubMed DOI PMC

Castellani M. E.; Avagliano D.; Verlet J. R. R. Ultrafast Dynamics of the Isolated Adenosine-5′-triphosphate Dianion Probed by Time-Resolved Photoelectron Imaging. J. Phys. Chem. A 2021, 125 (17), 3646–3652. 10.1021/acs.jpca.1c01646. PubMed DOI

Shimada H.; et al. Structural changes of nucleic acid base in aqueous solution as observed in X-ray absorption near edge structure (XANES). Chem. Phys. Lett. 2014, 591, 137–141. 10.1016/j.cplett.2013.11.026. PubMed DOI

Kelly D. N.; et al. Communication: Near edge x-ray absorption fine structure spectroscopy of aqueous adenosine triphosphate at the carbon and nitrogen K-edges. J. Chem. Phys. 2010, 133 (10), 101103.10.1063/1.3478548. PubMed DOI

Wang P.; et al. Thermodynamic parameters for the interaction of adenosine 5′-diphosphate, and adenosine 5′-triphosphate with Mg2+ from 323.15 to 398.15 K. J. Solution Chem. 1995, 24 (10), 989–1012. 10.1007/BF00973517. DOI

Viefhaus J.; et al. The Variable Polarization XUV Beamline P04 at PETRA III: Optics, mechanics and their performance. Nucl. Instrum. Methods Phys. Res. A 2013, 710, 151–154. 10.1016/j.nima.2012.10.110. DOI

Malerz S.; et al. A setup for studies of photoelectron circular dichroism from chiral molecules in aqueous solution. Rev. Sci. Instrum. 2022, 93 (1), 015101.10.1063/5.0072346. PubMed DOI

Winter B. Liquid microjet for photoelectron spectroscopy. Nucl. Instrum. Methods Phys. Res. A 2009, 601 (1−2), 139–150. 10.1016/j.nima.2008.12.108. DOI

Gilbert A. T. B.; Besley N. A.; Gill P. M. W. Self-Consistent Field Calculations of Excited States Using the Maximum Overlap Method (MOM). J. Phys. Chem. A 2008, 112 (50), 13164–13171. 10.1021/jp801738f. PubMed DOI

Epifanovsky E.; et al. Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. J. Chem. Phys. 2021, 155 (8), 084801.10.1063/5.0055522. PubMed DOI PMC

Macetti G.; Genoni A. Initial Maximum Overlap Method for Large Systems by the Quantum Mechanics/Extremely Localized Molecular Orbital Embedding Technique. J. Chem. Theory Comput. 2021, 17 (7), 4169–4182. 10.1021/acs.jctc.1c00388. PubMed DOI

Mennucci B.; Tomasi J. Continuum solvation models: A new approach to the problem of solute’s charge distribution and cavity boundaries. J. Chem. Phys. 1997, 106 (12), 5151–5158. 10.1063/1.473558. DOI

Cancès E.; Mennucci B.; Tomasi J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997, 107 (8), 3032–3041. 10.1063/1.474659. DOI

Xu L.; Coote M. L. Improving the Accuracy of PCM-UAHF and PCM-UAKS Calculations Using Optimized Electrostatic Scaling Factors. J. Chem. Theory Comput. 2019, 15 (12), 6958–6967. 10.1021/acs.jctc.9b00888. PubMed DOI

Frisch M. J.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Mennucci B.; Petersson G. A.; Nakatsuji H.; Caricato M.; Li X.; Hratchian H. P.; Izmaylov A. F.; Bloino J.; Zheng G.; Sonnenberg J. L.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Montgomery J. A. Jr.; Peralta J. E.; Ogliaro F.; Bearpark M.; Heyd J. J.; Brothers E.; Kudin K. N.; Staroverov V. N.; Keith T.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Rega N.; Millam J. M.; Klene M.; Knox J. E.; Cross J. B.; Bakken V.; Adamo C.; Jaramillo J.; Gomperts R.; Stratmann R. E.; Yazyev O.; Austin A. J.; Cammi R.; Pomelli C.; Ochterski J. W.; Martin R. L.; Morokuma K.; Zakrzewski V. G.; Voth G. A.; Salvador P.; Dannenberg J. J.; Dapprich S.; Daniels A. D.; Farkas O.; Foresman J. B.; Ortiz J. V.; Cioslowski J.; Fox D. J.. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford CT, 2013.

Yanai T.; Tew D. P.; Handy N. C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393 (1−3), 51–57. 10.1016/j.cplett.2004.06.011. DOI

Pugini M.; et al. How to measure work functions from aqueous solutions. Chem. Sci. 2023, 14 (35), 9574–9588. 10.1039/D3SC01740K. PubMed DOI PMC

Trofimov A. B.; et al. Photoelectron spectra of the nucleobases cytosine, thymine and adenine. J. Phys. B: At. Mol. Opt. Phys. 2006, 39 (2), 305.10.1088/0953-4075/39/2/007. DOI

Sherwood P. M. A. Introduction to Studies of Phosphorus-Oxygen Compounds by XPS. Surf. Sci. Spectra 2002, 9 (1), 62–66. 10.1116/11.20030101. DOI

Öhrwall G.; et al. Charge Dependence of Solvent-Mediated Intermolecular Coster–Kronig Decay Dynamics of Aqueous Ions. J. Phys. Chem. B 2010, 114 (51), 17057–17061. 10.1021/jp108956v. PubMed DOI

Rizkalla E. N.; Antonious M. S.; Anis S. S. X-ray photoelectron and potentiometric studies of some calcium complexes. Inorg. Chim. Acta 1985, 96 (2), 171–178. 10.1016/S0020-1693(00)87577-5. DOI

Kumar G.; et al. The influence of aqueous solvent on the electronic structure and non-adiabatic dynamics of indole explored by liquid-jet photoelectron spectroscopy. Faraday Discuss. 2018, 212, 359–381. 10.1039/C8FD00123E. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...