Following in Emil Fischer's Footsteps: A Site-Selective Probe of Glucose Acid-Base Chemistry

. 2021 Aug 19 ; 125 (32) : 6881-6892. [epub] 20210730

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34328745

Liquid-jet photoelectron spectroscopy was applied to determine the first acid dissociation constant (pKa) of aqueous-phase glucose while simultaneously identifying the spectroscopic signature of the respective deprotonation site. Valence spectra from solutions at pH values below and above the first pKa reveal a change in glucose's lowest ionization energy upon the deprotonation of neutral glucose and the subsequent emergence of its anionic counterpart. Site-specific insights into the solution-pH-dependent molecular structure changes are also shown to be accessible via C 1s photoelectron spectroscopy. The spectra reveal a considerably lower C 1s binding energy of the carbon site associated with the deprotonated hydroxyl group. The occurrence of photoelectron spectral fingerprints of cyclic and linear glucose prior to and upon deprotonation are also discussed. The experimental data are interpreted with the aid of electronic structure calculations. Our findings highlight the potential of liquid-jet photoelectron spectroscopy to act as a site-selective probe of the molecular structures that underpin the acid-base chemistry of polyprotic systems with relevance to environmental chemistry and biochemistry.

Zobrazit více v PubMed

Seeberger P. H.Monosaccharide Diversity. In Essentials of Glycobiology, 3rd ed.; Varki A., Cummings R., Esko J., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, 2017.

Varki A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 1993, 3 (2), 97–130. 10.1093/glycob/3.2.97. PubMed DOI PMC

Krauss G.Biochemistry of Signal Transduction and Regulation; 5th ed.; Wiley-VCH: 2014.

Hon D. N. S. Cellulose: a random walk along its historical path. Cellulose 1994, 1 (1), 1–25. 10.1007/BF00818796. DOI

McNeil M.; Darvill A. G.; Fry S. C.; Albersheim P. Structure and function of the primary cell walls of plants. Annu. Rev. Biochem. 1984, 53 (1), 625–663. 10.1146/annurev.bi.53.070184.003205. PubMed DOI

Marszalek P. E.; Oberhauser A. F.; Pang Y.-P.; Fernandez J. M. Polysaccharide elasticity governed by chair–boat transitions of the glucopyranose ring. Nature 1998, 396 (6712), 661–664. 10.1038/25322. PubMed DOI

Beck E.; Ziegler P. Biosynthesis and Degradation of Starch in Higher Plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1989, 40 (1), 95–117. 10.1146/annurev.pp.40.060189.000523. DOI

Smith A. M.; Zeeman S. C.; Smith S. M. Starch degradation. Annu. Rev. Plant Biol. 2005, 56 (1), 73–98. 10.1146/annurev.arplant.56.032604.144257. PubMed DOI

Adeva-Andany M. M.; González-Lucán M.; Donapetry-García C.; Fernández-Fernández C.; Ameneiros-Rodríguez E. Glycogen metabolism in humans. BBA clinical 2016, 5, 85–100. 10.1016/j.bbacli.2016.02.001. PubMed DOI PMC

Adeva-Andany M. M.; Pérez-Felpete N.; Fernández-Fernández C.; Donapetry-García C.; Pazos-García C. Liver glucose metabolism in humans. Biosci. Rep. 2016, 36 (6), e00416.10.1042/BSR20160385. PubMed DOI PMC

Leegood R. C.Photosynthesis. In Encyclopedia of Biological Chemistry, 2nd ed.; Lennarz W. J., Lane M. D., Eds.; Academic Press: Waltham, MA, 2013; pp 492–496.

Bassham J. A. Energy capture and conversion by photosynthesis. J. Theor. Biol. 1963, 4 (1), 52–72. 10.1016/0022-5193(63)90100-0. PubMed DOI

Pischetsrieder M. Chemistry of Glucose and Biochemical Pathways of Biological Interest. Peritoneal Dial. Int. 2000, 20 (2_suppl), 26–30. 10.1177/089686080002002S06. PubMed DOI

Chen J.; Zhao C. X.; Zhi M. M.; Wang K.; Deng L.; Xu G. Alkaline direct oxidation glucose fuel cell system using silver/nickel foams as electrodes. Electrochim. Acta 2012, 66, 133–138. 10.1016/j.electacta.2012.01.071. DOI

Zhao C. X.; Wang K.; Yan H.; Xu G. Output Current Increase in Alkaline Glucose Fuel Cells. J. Electrochem. Soc. 2011, 158 (9), B1055.10.1149/1.3596019. DOI

Hudson C. S. Emil Fischer’s discovery of the configuration of glucose. A semicentennial retrospect. J. Chem. Educ. 1941, 18 (8), 353.10.1021/ed018p353. DOI

Lichtenthaler F. W. Emil Fischer’s Proof of the Configuration of Sugars: A Centennial Tribute. Angew. Chem., Int. Ed. Engl. 1992, 31 (12), 1541–1556. 10.1002/anie.199215413. DOI

Marianski M.; Supady A.; Ingram T.; Schneider M.; Baldauf C. Assessing the Accuracy of Across-the-Scale Methods for Predicting Carbohydrate Conformational Energies for the Examples of Glucose and α-Maltose. J. Chem. Theory Comput. 2016, 12 (12), 6157–6168. 10.1021/acs.jctc.6b00876. PubMed DOI

Delbianco M.; Kononov A.; Poveda A.; Yu Y.; Diercks T.; Jiménez-Barbero J.; Seeberger P. H. Well-Defined Oligo- and Polysaccharides as Ideal Probes for Structural Studies. J. Am. Chem. Soc. 2018, 140 (16), 5421–5426. 10.1021/jacs.8b00254. PubMed DOI

Hofmann J.; Hahm H. S.; Seeberger P. H.; Pagel K. Identification of carbohydrate anomers using ion mobility–mass spectrometry. Nature 2015, 526 (7572), 241–244. 10.1038/nature15388. PubMed DOI

Liu J.; Cukier R. I.; Bu Y.; Shang Y. Glucose-Promoted Localization Dynamics of Excess Electrons in Aqueous Glucose Solution Revealed by Ab Initio Molecular Dynamics Simulation. J. Chem. Theory Comput. 2014, 10 (10), 4189–4197. 10.1021/ct500238k. PubMed DOI

Seidel R.; Winter B.; Bradforth S. E. Valence Electronic Structure of Aqueous Solutions: Insights from Photoelectron Spectroscopy. Annu. Rev. Phys. Chem. 2016, 67 (1), 283–305. 10.1146/annurev-physchem-040513-103715. PubMed DOI

Williams H. L.; Erickson B. A.; Neumark D. M. Time-resolved photoelectron spectroscopy of adenosine and adenosine monophosphate photodeactivation dynamics in water microjets. J. Chem. Phys. 2018, 148 (19), 194303.10.1063/1.5027258. PubMed DOI

Erickson B. A.; Heim Z. N.; Pieri E.; Liu E.; Martinez T. J.; Neumark D. M. Relaxation Dynamics of Hydrated Thymine, Thymidine, and Thymidine Monophosphate Probed by Liquid Jet Time-Resolved Photoelectron Spectroscopy. J. Phys. Chem. A 2019, 123 (50), 10676–10684. 10.1021/acs.jpca.9b08258. PubMed DOI

Ramasesha K.; Leone S. R.; Neumark D. M. Real-Time Probing of Electron Dynamics Using Attosecond Time-Resolved Spectroscopy. Annu. Rev. Phys. Chem. 2016, 67 (1), 41–63. 10.1146/annurev-physchem-040215-112025. PubMed DOI

Angyal S. J. The Composition and Conformation of Sugars in Solution. Angew. Chem., Int. Ed. Engl. 1969, 8 (3), 157–166. 10.1002/anie.196901571. DOI

Zhu Y.; Zajicek J.; Serianni A. S. Acyclic Forms of [1–13C]Aldohexoses in Aqueous Solution: Quantitation by 13C NMR and Deuterium Isotope Effects on Tautomeric Equilibria. J. Org. Chem. 2001, 66 (19), 6244–6251. 10.1021/jo010541m. PubMed DOI

Bonner W. A. The origin and amplification of biomolecular chirality. Origins Life Evol. Biospheres 1991, 21 (2), 59–111. 10.1007/BF01809580. PubMed DOI

Cintas P.; Viedma C. On the physical basis of asymmetry and homochirality. Chirality 2012, 24 (11), 894–908. 10.1002/chir.22028. PubMed DOI

Brönsted J. N.; Guggenheim E. A. Contribution to the theory of acid and basic catalysis. The mutarotation of glucose. J. Am. Chem. Soc. 1927, 49 (10), 2554–2584. 10.1021/ja01409a031. DOI

Cui S. W.Food Carbohydrates: Chemistry, Physical Properties, and Applications; Taylor & Francis Group: 2005.

Sugiyama H.; Usui T. The Anomeric Equilibrium of Glucose in Acidic and Basic Media. Agric. Biol. Chem. 1980, 44 (12), 3001–3002. 10.1080/00021369.1980.10864445. DOI

Mayes H. B.; Tian J.; Nolte M. W.; Shanks B. H.; Beckham G. T.; Gnanakaran S.; Broadbelt L. J. Sodium Ion Interactions with Aqueous Glucose: Insights from Quantum Mechanics, Molecular Dynamics, and Experiment. J. Phys. Chem. B 2013, 118 (8), 1990–2000. 10.1021/jp409481f. PubMed DOI

Zhao S.; Guo X.; Bai P.; Lv L. Chemical Isomerization of Glucose to Fructose Production. Asian J. Chem. 2014, 26, 4537–4543. 10.14233/ajchem.2014.16232. DOI

Climent M. J.; Corma A.; Iborra S. Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chem. 2014, 16 (2), 516–547. 10.1039/c3gc41492b. DOI

Urban F.; Shaffer P. A. The acidic property of sugars. J. Biol. Chem. 1932, 94 (3), 697–715. 10.1016/S0021-9258(18)76394-1. DOI

Urban F.; Williams R. D. The acidic property of sugars II. J. Biol. Chem. 1933, 100 (1), 237–241. 10.1016/S0021-9258(18)75998-X. DOI

Shaffer P. A.; Friedemann T. E. Sugar activation by alkali: I. Formation of lactic and saccharinic acids. J. Biol. Chem. 1930, 86 (1), 345–374. 10.1016/S0021-9258(18)76931-7. DOI

Lewis B. E.; Schramm V. L. Isotope Effect-Mapping of the Ionization of Glucose Demonstrates Unusual Charge Sharing. J. Am. Chem. Soc. 2003, 125 (26), 7872–7877. 10.1021/ja034983m. PubMed DOI

Beenackers J. A. W. M. B.; Kuster B. F. M.; van der Baan H. S. Ionisation and solvation of d-glucose. Carbohydr. Res. 1985, 140 (2), 169–183. 10.1016/0008-6215(85)85121-1. DOI

Degani C. Ionization constants of sugars: a predominant factor in the cyanogen-induced phosphorylation of sugars. Carbohydr. Res. 1971, 18 (2), 329–332. 10.1016/S0008-6215(00)80358-4. DOI

de Wit G.; Kieboom A. P. G.; van Bekkum H. Ionization and mutarotation of hexoses in aqueous alkaline solution as studied by 13C-NMR spectroscopy. Tetrahedron Lett. 1975, 16 (45), 3943–3946. 10.1016/S0040-4039(00)91260-7. DOI

Stevens J. S.; Schroeder S. L. M. Quantitative analysis of saccharides by X-ray photoelectron spectroscopy. Surf. Interface Anal. 2009, 41 (6), 453–462. 10.1002/sia.3047. DOI

Li M.; Li W.; Liu S. Hydrothermal synthesis, characterization, and KOH activation of carbon spheres from glucose. Carbohydr. Res. 2011, 346 (8), 999–1004. 10.1016/j.carres.2011.03.020. PubMed DOI

Qiao H.; Xiao L.; Zheng Z.; Liu H.; Jia F.; Zhang L. One-pot synthesis of CoO/C hybrid microspheres as anode materials for lithium-ion batteries. J. Power Sources 2008, 185 (1), 486–491. 10.1016/j.jpowsour.2008.06.096. DOI

El Khadem H. S.; Ennifar S.; Isbell H. S. Evidence of stable hydrogen-bonded ions during isomerization of hexoses in alkali. Carbohydr. Res. 1989, 185 (1), 51–59. 10.1016/0008-6215(89)84020-0. DOI

Winter B.; Faubel M. Photoemission from Liquid Aqueous Solutions. Chem. Rev. 2006, 106 (4), 1176–1211. 10.1021/cr040381p. PubMed DOI

Nolting D.; Aziz E. F.; Ottosson N.; Faubel M.; Hertel I. V.; Winter B. pH-Induced Protonation of Lysine in Aqueous Solution Causes Chemical Shifts in X-ray Photoelectron Spectroscopy. J. Am. Chem. Soc. 2007, 129 (45), 14068–14073. 10.1021/ja072971l. PubMed DOI

Ottosson N.; Børve K. J.; Spångberg D.; Bergersen H.; Sæthre L. J.; Faubel M.; Pokapanich W.; Öhrwall G.; Björneholm O.; Winter B. On the Origins of Core–Electron Chemical Shifts of Small Biomolecules in Aqueous Solution: Insights from Photoemission and ab Initio Calculations of Glycineaq. J. Am. Chem. Soc. 2011, 133 (9), 3120–3130. 10.1021/ja110321q. PubMed DOI

Kurahashi N.; Karashima S.; Tang Y.; Horio T.; Abulimiti B.; Suzuki Y.; Ogi Y.; Oura M.; Suzuki T. Photoelectron spectroscopy of aqueous solutions: streaming potentials of NaX (X = Cl, Br, and I) solutions and electron binding energies of liquid water and X. J. Chem. Phys. 2014, 140 (17), 174506.10.1063/1.4871877. PubMed DOI

Kachel T. The plane grating monochromator beamline U49/2 PGM1 at BESSY II. Journal of Large-Scale Research Facilities 2016, 2, A72.10.17815/jlsrf-2-75. DOI

Seidel R.; Pohl M. N.; Ali H.; Winter B.; Aziz E. F. Advances in liquid phase soft-x-ray photoemission spectroscopy: A new experimental setup at BESSY II. Rev. Sci. Instrum. 2017, 88 (7), 073107.10.1063/1.4990797. PubMed DOI

Viefhaus J.; Scholz F.; Deinert S.; Glaser L.; Ilchen M.; Seltmann J.; Walter P.; Siewert F. The Variable Polarization XUV Beamline P04 at PETRA III: Optics, mechanics and their performance. Nucl. Instrum. Methods Phys. Res., Sect. A 2013, 710, 151–154. 10.1016/j.nima.2012.10.110. DOI

EASI Liquid-Jet PES Instrument Website. Fritz-Haber-Institut, Max-Planck-Gesellschaft, Berlin. https://www.fhi.mpg.de/236287/experimental-methods (accessed May 28, 2021).

Winter B. Liquid microjet for photoelectron spectroscopy. Nucl. Instrum. Methods Phys. Res., Sect. A 2009, 601 (1–2), 139–150. 10.1016/j.nima.2008.12.108. DOI

Thürmer S.; Seidel R.; Faubel M.; Eberhardt W.; Hemminger J. C.; Bradforth S. E.; Winter B. Photoelectron Angular Distributions from Liquid Water: Effects of Electron Scattering. Phys. Rev. Lett. 2013, 111 (17), 173005.10.1103/PhysRevLett.111.173005. PubMed DOI

Yanai T.; Tew D. P.; Handy N. C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393 (1), 51–57. 10.1016/j.cplett.2004.06.011. DOI

Mennucci B.; Tomasi J. Continuum solvation models: A new approach to the problem of solute’s charge distribution and cavity boundaries. J. Chem. Phys. 1997, 106 (12), 5151–5158. 10.1063/1.473558. DOI

Cancès E.; Mennucci B.; Tomasi J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997, 107 (8), 3032–3041. 10.1063/1.474659. DOI

Muchová E.; Slavíček P. Beyond Koopmans’ theorem: electron binding energies in disordered materials. J. Phys.: Condens. Matter 2019, 31 (4), 043001.10.1088/1361-648X/aaf130. PubMed DOI

Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; et al.Gaussian 09, revision D.01; Gaussian, Inc.: Wallingford, CT, 2016.

Pluhařová E.; Slavíček P.; Jungwirth P. Modeling Photoionization of Aqueous DNA and Its Components. Acc. Chem. Res. 2015, 48 (5), 1209–1217. 10.1021/ar500366z. PubMed DOI

Gilbert A. T. B.; Besley N. A.; Gill P. M. W. Self-Consistent Field Calculations of Excited States Using the Maximum Overlap Method (MOM). J. Phys. Chem. A 2008, 112 (50), 13164–13171. 10.1021/jp801738f. PubMed DOI

Shao Y.; Gan Z.; Epifanovsky E.; Gilbert A. T. B.; Wormit M.; Kussmann J.; Lange A. W.; Behn A.; Deng J.; Feng X.; et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys. 2015, 113 (2), 184–215. 10.1080/00268976.2014.952696. DOI

Hollas D.; Pohl M. N.; Seidel R.; Aziz E. F.; Slavíček P.; Winter B. Aqueous Solution Chemistry of Ammonium Cation in the Auger Time Window. Sci. Rep. 2017, 7 (1), 756.10.1038/s41598-017-00756-x. PubMed DOI PMC

Rappe A. K.; Casewit C. J.; Colwell K. S.; Goddard W. A.; Skiff W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 1992, 114 (25), 10024–10035. 10.1021/ja00051a040. DOI

Schroeder C. A.; Pluhařová E.; Seidel R.; Schroeder W. P.; Faubel M.; Slavíček P.; Winter B.; Jungwirth P.; Bradforth S. E. Oxidation Half-Reaction of Aqueous Nucleosides and Nucleotides via Photoelectron Spectroscopy Augmented by ab Initio Calculations. J. Am. Chem. Soc. 2015, 137 (1), 201–209. 10.1021/ja508149e. PubMed DOI

Marenich A. V.; Ho J.; Coote M. L.; Cramer C. J.; Truhlar D. G. Computational electrochemistry: prediction of liquid-phase reduction potentials. Phys. Chem. Chem. Phys. 2014, 16 (29), 15068–15106. 10.1039/C4CP01572J. PubMed DOI

Thapa B.; Schlegel H. B. Density Functional Theory Calculation of pKa’s of Thiols in Aqueous Solution Using Explicit Water Molecules and the Polarizable Continuum Model. J. Phys. Chem. A 2016, 120 (28), 5726–5735. 10.1021/acs.jpca.6b05040. PubMed DOI

Chai J.-D.; Head-Gordon M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10 (44), 6615–6620. 10.1039/b810189b. PubMed DOI

Marenich A. V.; Cramer C. J.; Truhlar D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113 (18), 6378–6396. 10.1021/jp810292n. PubMed DOI

Winter B.; Weber R.; Widdra W.; Dittmar M.; Faubel M.; Hertel I. V. Full Valence Band Photoemission from Liquid Water Using EUV Synchrotron Radiation. J. Phys. Chem. A 2004, 108 (14), 2625–2632. 10.1021/jp030263q. DOI

Jagoda-Cwiklik B.; Slavíček P.; Cwiklik L.; Nolting D.; Winter B.; Jungwirth P. Ionization of Imidazole in the Gas Phase, Microhydrated Environments, and in Aqueous Solution. J. Phys. Chem. A 2008, 112 (16), 3499–3505. 10.1021/jp711476g. PubMed DOI

Jagoda-Cwiklik B.; Slavíček P.; Nolting D.; Winter B.; Jungwirth P. Ionization of Aqueous Cations: Photoelectron Spectroscopy and ab Initio Calculations of Protonated Imidazole. J. Phys. Chem. B 2008, 112 (25), 7355–7358. 10.1021/jp802454s. PubMed DOI

Pluhařová E.; Ončák M.; Seidel R.; Schroeder C.; Schroeder W.; Winter B.; Bradforth S. E.; Jungwirth P.; Slavíček P. Transforming Anion Instability into Stability: Contrasting Photoionization of Three Protonation Forms of the Phosphate Ion upon Moving into Water. J. Phys. Chem. B 2012, 116 (44), 13254–13264. 10.1021/jp306348b. PubMed DOI

Ghosh D.; Roy A.; Seidel R.; Winter B.; Bradforth S.; Krylov A. I. First-Principle Protocol for Calculating Ionization Energies and Redox Potentials of Solvated Molecules and Ions: Theory and Application to Aqueous Phenol and Phenolate. J. Phys. Chem. B 2012, 116 (24), 7269–7280. 10.1021/jp301925k. PubMed DOI PMC

Winter B.; Faubel M.; Hertel I. V.; Pettenkofer C.; Bradforth S. E.; Jagoda-Cwiklik B.; Cwiklik L.; Jungwirth P. Electron Binding Energies of Hydrated H3O+ and OH–: Photoelectron Spectroscopy of Aqueous Acid and Base Solutions Combined with Electronic Structure Calculations. J. Am. Chem. Soc. 2006, 128 (12), 3864–3865. 10.1021/ja0579154. PubMed DOI

Pohl M. N.; Muchová E.; Seidel R.; Ali H.; Sršeň Š.; Wilkinson I.; Winter B.; Slavíček P. Do water’s electrons care about electrolytes?. Chemical Science 2019, 10 (3), 848–865. 10.1039/C8SC03381A. PubMed DOI PMC

Cramer C. J.; Truhlar D. G. Quantum chemical conformational analysis of glucose in aqueous solution. J. Am. Chem. Soc. 1993, 115 (13), 5745–5753. 10.1021/ja00066a046. DOI

Alonso J. L.; Lozoya M. A.; Peña I.; López J. C.; Cabezas C.; Mata S.; Blanco S. The conformational behaviour of free d-glucose—at last. Chemical Science 2014, 5 (2), 515–522. 10.1039/C3SC52559G. DOI

Tomaník L.; Muchová E.; Slavíček P. Solvation energies of ions with ensemble cluster-continuum approach. Phys. Chem. Chem. Phys. 2020, 22 (39), 22357–22368. 10.1039/D0CP02768E. PubMed DOI

Winter B.; Aziz E. F.; Hergenhahn U.; Faubel M.; Hertel I. V. Hydrogen bonds in liquid water studied by photoelectron spectroscopy. J. Chem. Phys. 2007, 126 (12), 124504.10.1063/1.2710792. PubMed DOI

Campbell J. L.; Papp T. Widths of the atomic K–N7 levels. At. Data Nucl. Data Tables 2001, 77 (1), 1–56. 10.1006/adnd.2000.0848. DOI

Hasselbalch K. A. Die Berechnung der Wasserstoffzahl des Blutes aus der freien und gebundenen Kohlensäure desselben, und die Sauerstoffbindung des Blutes als Funktion der Wasserstoffzahl. Biochemische Zeitschrift 1917, 78, 112–144.

Feng S.; Bagia C.; Mpourmpakis G. Determination of Proton Affinities and Acidity Constants of Sugars. J. Phys. Chem. A 2013, 117 (24), 5211–5219. 10.1021/jp403355e. PubMed DOI

Molteni C.; Parrinello M. Glucose in Aqueous Solution by First Principles Molecular Dynamics. J. Am. Chem. Soc. 1998, 120 (9), 2168–2171. 10.1021/ja973008q. DOI

Çarçabal P.; Jockusch R. A.; Hünig I.; Snoek L. C.; Kroemer R. T.; Davis B. G.; Gamblin D. P.; Compagnon I.; Oomens J.; Simons J. P. Hydrogen Bonding and Cooperativity in Isolated and Hydrated Sugars: Mannose, Galactose, Glucose, and Lactose. J. Am. Chem. Soc. 2005, 127 (32), 11414–11425. 10.1021/ja0518575. PubMed DOI

Suzuki T. The hydration of glucose: the local configurations in sugar–water hydrogen bonds. Phys. Chem. Chem. Phys. 2008, 10 (1), 96–105. 10.1039/B708719E. PubMed DOI

Thürmer S.; Malerz S.; Trinter F.; Hergenhahn U.; Lee C.; Neumark D. M.; Meijer G.; Winter B.; Wilkinson I. Accurate Vertical Ionization Energy and Work Function Determinations of Liquid Water and Aqueous Solutions. Chem. Sci. 2021, 10.1039/D1SC01908B. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...