From Gas to Solution: The Changing Neutral Structure of Proline upon Solvation

. 2024 Nov 28 ; 128 (47) : 10202-10212. [epub] 20241113

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39536145

Liquid-jet photoelectron spectroscopy (LJ-PES) and electronic-structure theory were employed to investigate the chemical and structural properties of the amino acid l-proline in aqueous solution for its three ionized states (protonated, zwitterionic, and deprotonated). This is the first PES study of this amino acid in its biologically relevant environment. Proline's structure in the aqueous phase under neutral conditions is zwitterionic, distinctly different from the nonionic neutral form in the gas phase. By analyzing the carbon 1s and nitrogen 1s core levels as well as the valence spectra of aqueous-phase proline, we found that the electronic structure is dominated by the protonation state of each constituent molecular site (the carboxyl and amine groups) with small yet noticeable interference across the molecule. The site-specific nature of the core-level spectra enables the probing of individual molecular constituents. The valence photoelectron spectra are more difficult to interpret because of the overlapping signals of proline with the solvent and pH-adjusting agents (HCl and NaOH). Yet, we are able to reveal subtle effects of specific (hydrogen-bonding) interaction with the solvent on the electronic structure. We also demonstrate that the relevant conformational space is much smaller for aqueous-phase proline than for its gas-phase analogue. This study suggests that caution must be taken when comparing photoelectron spectra for gaseous- and aqueous-phase molecules, particularly if those molecules are readily protonated/deprotonated in solution.

Zobrazit více v PubMed

Morris A. L.; MacArthur M. W.; Hutchinson E. G.; Thornton J. M. Stereochemical quality of protein structure coordinates. Proteins 1992, 12, 345–364. 10.1002/prot.340120407. PubMed DOI

Karna E.; Szoka L.; Huynh T. Y. L.; Palka J. A. Proline-dependent regulation of collagen metabolism. Cell. Mol. Life Sci. 2020, 77, 1911–1918. 10.1007/s00018-019-03363-3. PubMed DOI PMC

Patriarca E. J.; Cermola F.; D’Aniello C.; Fico A.; Guardiola O.; De Cesare D.; Minchiotti G. The multifaceted roles of proline in cell behavior. Front. Cell Dev. Biol. 2021, 9, 728576.10.3389/fcell.2021.728576. PubMed DOI PMC

Kavi Kishor P. B.; Suravajhala P.; Rathnagiri P.; Sreenivasulu N. Intriguing role of proline in redox potential conferring high temperature stress tolerance. Front. Plant Sci. 2022, 13, 867531.10.3389/fpls.2022.867531. PubMed DOI PMC

Liang X.; Zhang L.; Natarajan S. K.; Becker D. F. Proline mechanisms of stress survival. Antioxid. Redox Signaling 2013, 19, 998–1011. 10.1089/ars.2012.5074. PubMed DOI PMC

Li P.; Wu G. Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth. Amino Acids 2018, 50, 29–38. 10.1007/s00726-017-2490-6. PubMed DOI

Yang G.; Zhou L.; Chen Y. Stabilization of zwitterionic versus canonical proline by water molecules. SpringerPlus 2016, 5, 19.10.1186/s40064-015-1661-8. PubMed DOI PMC

Levy Y.; Onuchic J. N. Water Mediation in Protein Folding and Molecular Recognition. Annu. Rev. Biophys. Biomol. Struct. 2006, 35, 389–415. 10.1146/annurev.biophys.35.040405.102134. PubMed DOI

Biedermannová L.; Schneider B. Hydration of proteins and nucleic acids: Advances in experiment and theory. A review. Biochim. Biophys. Acta, Gen. Subj. 2016, 1860, 1821–1835. 10.1016/j.bbagen.2016.05.036. PubMed DOI

Vishveshwara S.; Pople J. A. Molecular orbital theory of the electronic structures of organic compounds. 32. Conformations of glycine and related systems. J. Am. Chem. Soc. 1977, 99, 2422–2426. 10.1021/ja00450a004. DOI

Ottosson N.; Børve K. J.; Spångberg D.; Bergersen H.; Sæthre L. J.; Faubel M.; Pokapanich W.; Öhrwall G.; Björneholm O.; Winter B. On The Origins of Core-Electron Chemical Shifts of Small Biomolecules in Aqueous Solution: Insights from Photoemission and Ab Initio Calculations of Glycineaq. J. Am. Chem. Soc. 2011, 133, 3120–3130. 10.1021/ja110321q. PubMed DOI

Belyakov A. V.; Gureev M. A.; Garabadzhiu A. V.; Losev V. A.; Rykov A. N. Determination of the molecular structure of gaseous proline by electron diffraction, supported by microwave and quantum chemical data. Struct. Chem. 2015, 26, 1489–1500. 10.1007/s11224-015-0589-5. DOI

Kim T.-Y.; Valentine S. J.; Clemmer D. E.; Reilly J. P. Gas-phase conformation-specific photofragmentation of proline-containing peptide ions. J. Am. Soc. Mass Spectrom. 2010, 21, 1455–1465. 10.1016/j.jasms.2010.04.007. PubMed DOI

Stepanian S. G.; Reva I. D.; Radchenko E. D.; Adamowicz L. Conformers of Nonionized Proline. Matrix-Isolation Infrared and Post-Hartree–Fock ab Initio Study. J. Phys. Chem. A 2001, 105, 10664–10672. 10.1021/jp011708i. DOI

Dehareng D.; Dive G. Vertical Ionization Energies of α-L-Amino Acids as a Function of Their Conformation: an Ab Initio Study. Int. J. Mol. Sci. 2004, 5, 301–332. 10.3390/i5110301. DOI

Plekan O.; Feyer V.; Richter R.; Coreno M.; de Simone M.; Prince K. C.; Carravetta V. Investigation of the Amino Acids Glycine, Proline, and Methionine by Photoemission Spectroscopy. J. Phys. Chem. A 2007, 111, 10998–11005. 10.1021/jp075384v. PubMed DOI

Plekan O.; Feyer V.; Richter R.; Coreno M.; de Simone M.; Prince K. C.; Carravetta V. Photoemission and the shape of amino acids. Chem. Phys. Lett. 2007, 442, 429–433. 10.1016/j.cplett.2007.05.110. PubMed DOI

Czinki E.; Császár A. G. Conformers of Gaseous Proline. Chem. Eur. J. 2003, 9, 1008–1019. 10.1002/chem.200390103. PubMed DOI

Smith P. K.; Gorham A. T.; Smith E. R. B. Substances: VII. The Ionization of some Hydroxyamino Acids and Proline in Aqueous Solution from One to Fifty Degrees. J. Biol. Chem. 1942, 144, 737–745. 10.1016/S0021-9258(18)72499-X. DOI

Meyer F.; Hauschild D.; Benkert A.; Blum M.; Yang W.; Reinert F.; Heske C.; Zharnikov M.; Weinhardt L. Resonant inelastic soft X-ray scattering and X-ray emission spectroscopy of solid proline and proline solutions. J. Phys. Chem. B 2022, 126, 10185–10193. 10.1021/acs.jpcb.2c06557. PubMed DOI PMC

Messer B. M.; Cappa C. D.; Smith J. D.; Drisdell W. S.; Schwartz C. P.; Cohen R. C.; Saykally R. J. Local hydration environments of amino acids and dipeptides studied by X-ray spectroscopy of liquid microjets. J. Phys. Chem. B 2005, 109, 21640–21646. 10.1021/jp053802v. PubMed DOI

Winter B.; Thürmer S.; Wilkinson I. Absolute Electronic Energetics and Quantitative Work Functions of Liquids from Photoelectron Spectroscopy. Acc. Chem. Res. 2023, 56, 77–85. 10.1021/acs.accounts.2c00548. PubMed DOI PMC

Mudryk K.; Lee C.; Tomaník L.; Malerz S.; Trinter F.; Hergenhahn U.; Neumark D. M.; Slavíček P.; Bradforth S.; Winter B. How Does Mg2+(aq) Interact with ATP(aq)? Biomolecular Structure through the Lens of Liquid-Jet Photoemission Spectroscopy. J. Am. Chem. Soc. 2024, 146, 16062–16075. 10.1021/jacs.4c03174. PubMed DOI PMC

Tomaník L.; Pugini M.; Mudryk K.; Thürmer S.; Stemer D.; Credidio B.; Trinter F.; Winter B.; Slavíček P. Liquid-jet photoemission spectroscopy as a structural tool: site-specific acid–base chemistry of vitamin C. Phys. Chem. Chem. Phys. 2024, 26, 19673–19684. 10.1039/D4CP01521E. PubMed DOI PMC

Winter B. Liquid microjet for photoelectron spectroscopy. Nucl. Instrum. Methods Phys. Res., Sect. A 2009, 601, 139–150. 10.1016/j.nima.2008.12.108. DOI

Viefhaus J.; Scholz F.; Deinert S.; Glaser L.; Ilchen M.; Seltmann J.; Walter P.; Siewert F. The Variable Polarization XUV Beamline P04 at PETRA III: Optics, mechanics and their performance. Nucl. Instrum. Methods Phys. Res., Sect. A 2013, 710, 151–154. 10.1016/j.nima.2012.10.110. DOI

Malerz S.; Haak H.; Trinter F.; Stephansen A. B.; Kolbeck C.; Pohl M.; Hergenhahn U.; Meijer G.; Winter B. A setup for studies of photoelectron circular dichroism from chiral molecules in aqueous solution. Rev. Sci. Instrum. 2022, 93, 015101.10.1063/5.0072346. PubMed DOI

Buck J.; Bagschik K.; Glaser L.; Scholz F.; Seltmann J.; Viefhaus J. Progress report on the XUV online diagnostic unit for the highly accurate determination of SR properties. AIP Conf. Proc. 2019, 2054, 060057.10.1063/1.5084688. DOI

The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals; Royal Society of Chemistry, 2013.

Thürmer S.; Malerz S.; Trinter F.; Hergenhahn U.; Lee C.; Neumark D. M.; Meijer G.; Winter B.; Wilkinson I. Accurate Vertical Ionization Energy and Work Function Determinations of Liquid Water and Aqueous Solutions. Chem. Sci. 2021, 12, 10558–10582. 10.1039/D1SC01908B. PubMed DOI PMC

Credidio B.; Pugini M.; Malerz S.; Trinter F.; Hergenhahn U.; Wilkinson I.; Thürmer S.; Winter B. Quantitative electronic structure and work-function changes of liquid water induced by solute. Phys. Chem. Chem. Phys. 2022, 24, 1310–1325. 10.1039/D1CP03165A. PubMed DOI PMC

Pugini M.; Credidio B.; Walter I.; Malerz S.; Trinter F.; Stemer D.; Hergenhahn U.; Meijer G.; Wilkinson I.; Winter B.; Thürmer S. How to measure work functions from aqueous solutions. Chem. Sci. 2023, 14, 9574–9588. 10.1039/D3SC01740K. PubMed DOI PMC

Saha A.; Mahali K.; Ganai S.; Mukherjee P.; Shrestha N. K.; Henaish A. M. A.; Ahmed J.; Kundu S.; Roy S. Solubility and the solution thermodynamics of l-proline in the aqueous binary mixture of NaCl and KCl solution. J. Mol. Liq. 2023, 391, 123352.10.1016/j.molliq.2023.123352. DOI

Chai J.-D.; Head-Gordon M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. 10.1039/b810189b. PubMed DOI

Mennucci B.; Tomasi J. Continuum solvation models: A new approach to the problem of solute’s charge distribution and cavity boundaries. J. Chem. Phys. 1997, 106, 5151–5158. 10.1063/1.473558. DOI

Cancès E.; Mennucci B.; Tomasi J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997, 107, 3032–3041. 10.1063/1.474659. DOI

Gilbert A. T. B.; Besley N. A.; Gill P. M. W. Self-consistent field calculations of excited states using the maximum overlap method (MOM). J. Phys. Chem. A 2008, 112, 13164–13171. 10.1021/jp801738f. PubMed DOI

Yanai T.; Tew D. P.; Handy N. C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. 10.1016/j.cplett.2004.06.011. DOI

Dunning T. H. Jr Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. 10.1063/1.456153. DOI

Kendall R. A.; Dunning T. H. Jr; Harrison R. J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96, 6796–6806. 10.1063/1.462569. DOI

Malerz S.; Mudryk K.; Tomaník L.; Stemer D.; Hergenhahn U.; Buttersack T.; Trinter F.; Seidel R.; Quevedo W.; Goy C.; Wilkinson I.; Thürmer S.; Slavíček P.; Winter B. Following in Emil Fischer’s Footsteps: A Site-Selective Probe of Glucose Acid–Base Chemistry. J. Phys. Chem. A 2021, 125, 6881–6892. 10.1021/acs.jpca.1c04695. PubMed DOI PMC

Pluhařová E.; Slavíček P.; Jungwirth P. Modeling Photoionization of Aqueous DNA and Its Components. Acc. Chem. Res. 2015, 48, 1209–1217. 10.1021/ar500366z. PubMed DOI

Jagoda-Cwiklik B.; Slavícek P.; Cwiklik L.; Nolting D.; Winter B.; Jungwirth P. Ionization of imidazole in the gas phase, microhydrated environments, and in aqueous solution. J. Phys. Chem. A 2008, 112, 3499–3505. 10.1021/jp711476g. PubMed DOI

Epifanovsky E.; Gilbert A. T. B.; Feng X.; Lee J.; Mao Y.; Mardirossian N.; Pokhilko P.; White A. F.; Coons M. P.; Dempwolff A. L.; Gan Z.; et al. Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. J. Chem. Phys. 2021, 155, 084801. PubMed PMC

Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Mennucci B.; Petersson G. A., et al.Gaussian 09, Revision D.01. Gaussian, Inc.: Wallingford, CT, 2009.

Suzuki T. Ultrafast photoelectron spectroscopy of aqueous solutions. J. Chem. Phys. 2019, 151, 090901.10.1063/1.5098402. PubMed DOI

Pluhařová E.; Ončák M.; Seidel R.; Schroeder C.; Schroeder W.; Winter B.; Bradforth S. E.; Jungwirth P.; Slavíček P. Transforming Anion Instability into Stability: Contrasting Photoionization of Three Protonation Forms of the Phosphate Ion Upon Moving into Water. J. Phys. Chem. B 2012, 116, 13254–13264. 10.1021/jp306348b. PubMed DOI

Björneholm O.; Öhrwall G.; Naves de Brito A.; Ågren H.; Carravetta V. Superficial Tale of Two Functional Groups: On the Surface Propensity of Aqueous Carboxylic Acids, Alkyl Amines, and Amino Acids. Acc. Chem. Res. 2022, 55, 3285–3293. 10.1021/acs.accounts.2c00494. PubMed DOI PMC

Slavíček P.; Winter B.; Faubel M.; Bradforth S. E.; Jungwirth P. Ionization Energies of Aqueous Nucleic Acids: Photoelectron Spectroscopy of Pyrimidine Nucleosides and ab Initio Calculations. J. Am. Chem. Soc. 2009, 131, 6460–6467. 10.1021/ja8091246. PubMed DOI

Schroeder C. A.; Pluhařová E.; Seidel R.; Schroeder W. P.; Faubel M.; Slavíček P.; Winter B.; Jungwirth P.; Bradforth S. E. Oxidation Half-Reaction of Aqueous Nucleosides and Nucleotides via Photoelectron Spectroscopy Augmented by ab Initio Calculations. J. Am. Chem. Soc. 2015, 137, 201–209. 10.1021/ja508149e. PubMed DOI

Winter B.; Faubel M.; Hertel I. V.; Pettenkofer C.; Bradforth S. E.; Jagoda-Cwiklik B.; Cwiklik L.; Jungwirth P. Electron Binding Energies of Hydrated H3O+ and OH-: Photoelectron Spectroscopy of Aqueous Acid and Base Solutions Combined with Electronic Structure Calculations. J. Am. Chem. Soc. 2006, 128, 3864–3865. 10.1021/ja0579154. PubMed DOI

Winter B.; Weber R.; Hertel I. V.; Faubel M.; Jungwirth P.; Brown E. C.; Bradforth S. E. Electron binding energies of aqueous alkali and halide ions: EUV photoelectron spectroscopy of liquid solutions and combined ab initio and molecular dynamics calculations. J. Am. Chem. Soc. 2005, 127, 7203–7214. 10.1021/ja042908l. PubMed DOI

He L.; Tomaník L.; Malerz S.; Trinter F.; Trippel S.; Belina M.; Slavíček P.; Winter B.; Küpper J. Specific versus Nonspecific Solvent Interactions of a Biomolecule in Water. J. Phys. Chem. Lett. 2023, 14, 10499–10508. 10.1021/acs.jpclett.3c01763. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace