From Gas to Solution: The Changing Neutral Structure of Proline upon Solvation
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39536145
PubMed Central
PMC11613541
DOI
10.1021/acs.jpca.4c05628
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Liquid-jet photoelectron spectroscopy (LJ-PES) and electronic-structure theory were employed to investigate the chemical and structural properties of the amino acid l-proline in aqueous solution for its three ionized states (protonated, zwitterionic, and deprotonated). This is the first PES study of this amino acid in its biologically relevant environment. Proline's structure in the aqueous phase under neutral conditions is zwitterionic, distinctly different from the nonionic neutral form in the gas phase. By analyzing the carbon 1s and nitrogen 1s core levels as well as the valence spectra of aqueous-phase proline, we found that the electronic structure is dominated by the protonation state of each constituent molecular site (the carboxyl and amine groups) with small yet noticeable interference across the molecule. The site-specific nature of the core-level spectra enables the probing of individual molecular constituents. The valence photoelectron spectra are more difficult to interpret because of the overlapping signals of proline with the solvent and pH-adjusting agents (HCl and NaOH). Yet, we are able to reveal subtle effects of specific (hydrogen-bonding) interaction with the solvent on the electronic structure. We also demonstrate that the relevant conformational space is much smaller for aqueous-phase proline than for its gas-phase analogue. This study suggests that caution must be taken when comparing photoelectron spectra for gaseous- and aqueous-phase molecules, particularly if those molecules are readily protonated/deprotonated in solution.
Zobrazit více v PubMed
Morris A. L.; MacArthur M. W.; Hutchinson E. G.; Thornton J. M. Stereochemical quality of protein structure coordinates. Proteins 1992, 12, 345–364. 10.1002/prot.340120407. PubMed DOI
Karna E.; Szoka L.; Huynh T. Y. L.; Palka J. A. Proline-dependent regulation of collagen metabolism. Cell. Mol. Life Sci. 2020, 77, 1911–1918. 10.1007/s00018-019-03363-3. PubMed DOI PMC
Patriarca E. J.; Cermola F.; D’Aniello C.; Fico A.; Guardiola O.; De Cesare D.; Minchiotti G. The multifaceted roles of proline in cell behavior. Front. Cell Dev. Biol. 2021, 9, 728576.10.3389/fcell.2021.728576. PubMed DOI PMC
Kavi Kishor P. B.; Suravajhala P.; Rathnagiri P.; Sreenivasulu N. Intriguing role of proline in redox potential conferring high temperature stress tolerance. Front. Plant Sci. 2022, 13, 867531.10.3389/fpls.2022.867531. PubMed DOI PMC
Liang X.; Zhang L.; Natarajan S. K.; Becker D. F. Proline mechanisms of stress survival. Antioxid. Redox Signaling 2013, 19, 998–1011. 10.1089/ars.2012.5074. PubMed DOI PMC
Li P.; Wu G. Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth. Amino Acids 2018, 50, 29–38. 10.1007/s00726-017-2490-6. PubMed DOI
Yang G.; Zhou L.; Chen Y. Stabilization of zwitterionic versus canonical proline by water molecules. SpringerPlus 2016, 5, 19.10.1186/s40064-015-1661-8. PubMed DOI PMC
Levy Y.; Onuchic J. N. Water Mediation in Protein Folding and Molecular Recognition. Annu. Rev. Biophys. Biomol. Struct. 2006, 35, 389–415. 10.1146/annurev.biophys.35.040405.102134. PubMed DOI
Biedermannová L.; Schneider B. Hydration of proteins and nucleic acids: Advances in experiment and theory. A review. Biochim. Biophys. Acta, Gen. Subj. 2016, 1860, 1821–1835. 10.1016/j.bbagen.2016.05.036. PubMed DOI
Vishveshwara S.; Pople J. A. Molecular orbital theory of the electronic structures of organic compounds. 32. Conformations of glycine and related systems. J. Am. Chem. Soc. 1977, 99, 2422–2426. 10.1021/ja00450a004. DOI
Ottosson N.; Børve K. J.; Spångberg D.; Bergersen H.; Sæthre L. J.; Faubel M.; Pokapanich W.; Öhrwall G.; Björneholm O.; Winter B. On The Origins of Core-Electron Chemical Shifts of Small Biomolecules in Aqueous Solution: Insights from Photoemission and Ab Initio Calculations of Glycineaq. J. Am. Chem. Soc. 2011, 133, 3120–3130. 10.1021/ja110321q. PubMed DOI
Belyakov A. V.; Gureev M. A.; Garabadzhiu A. V.; Losev V. A.; Rykov A. N. Determination of the molecular structure of gaseous proline by electron diffraction, supported by microwave and quantum chemical data. Struct. Chem. 2015, 26, 1489–1500. 10.1007/s11224-015-0589-5. DOI
Kim T.-Y.; Valentine S. J.; Clemmer D. E.; Reilly J. P. Gas-phase conformation-specific photofragmentation of proline-containing peptide ions. J. Am. Soc. Mass Spectrom. 2010, 21, 1455–1465. 10.1016/j.jasms.2010.04.007. PubMed DOI
Stepanian S. G.; Reva I. D.; Radchenko E. D.; Adamowicz L. Conformers of Nonionized Proline. Matrix-Isolation Infrared and Post-Hartree–Fock ab Initio Study. J. Phys. Chem. A 2001, 105, 10664–10672. 10.1021/jp011708i. DOI
Dehareng D.; Dive G. Vertical Ionization Energies of α-L-Amino Acids as a Function of Their Conformation: an Ab Initio Study. Int. J. Mol. Sci. 2004, 5, 301–332. 10.3390/i5110301. DOI
Plekan O.; Feyer V.; Richter R.; Coreno M.; de Simone M.; Prince K. C.; Carravetta V. Investigation of the Amino Acids Glycine, Proline, and Methionine by Photoemission Spectroscopy. J. Phys. Chem. A 2007, 111, 10998–11005. 10.1021/jp075384v. PubMed DOI
Plekan O.; Feyer V.; Richter R.; Coreno M.; de Simone M.; Prince K. C.; Carravetta V. Photoemission and the shape of amino acids. Chem. Phys. Lett. 2007, 442, 429–433. 10.1016/j.cplett.2007.05.110. PubMed DOI
Czinki E.; Császár A. G. Conformers of Gaseous Proline. Chem. Eur. J. 2003, 9, 1008–1019. 10.1002/chem.200390103. PubMed DOI
Smith P. K.; Gorham A. T.; Smith E. R. B. Substances: VII. The Ionization of some Hydroxyamino Acids and Proline in Aqueous Solution from One to Fifty Degrees. J. Biol. Chem. 1942, 144, 737–745. 10.1016/S0021-9258(18)72499-X. DOI
Meyer F.; Hauschild D.; Benkert A.; Blum M.; Yang W.; Reinert F.; Heske C.; Zharnikov M.; Weinhardt L. Resonant inelastic soft X-ray scattering and X-ray emission spectroscopy of solid proline and proline solutions. J. Phys. Chem. B 2022, 126, 10185–10193. 10.1021/acs.jpcb.2c06557. PubMed DOI PMC
Messer B. M.; Cappa C. D.; Smith J. D.; Drisdell W. S.; Schwartz C. P.; Cohen R. C.; Saykally R. J. Local hydration environments of amino acids and dipeptides studied by X-ray spectroscopy of liquid microjets. J. Phys. Chem. B 2005, 109, 21640–21646. 10.1021/jp053802v. PubMed DOI
Winter B.; Thürmer S.; Wilkinson I. Absolute Electronic Energetics and Quantitative Work Functions of Liquids from Photoelectron Spectroscopy. Acc. Chem. Res. 2023, 56, 77–85. 10.1021/acs.accounts.2c00548. PubMed DOI PMC
Mudryk K.; Lee C.; Tomaník L.; Malerz S.; Trinter F.; Hergenhahn U.; Neumark D. M.; Slavíček P.; Bradforth S.; Winter B. How Does Mg2+(aq) Interact with ATP(aq)? Biomolecular Structure through the Lens of Liquid-Jet Photoemission Spectroscopy. J. Am. Chem. Soc. 2024, 146, 16062–16075. 10.1021/jacs.4c03174. PubMed DOI PMC
Tomaník L.; Pugini M.; Mudryk K.; Thürmer S.; Stemer D.; Credidio B.; Trinter F.; Winter B.; Slavíček P. Liquid-jet photoemission spectroscopy as a structural tool: site-specific acid–base chemistry of vitamin C. Phys. Chem. Chem. Phys. 2024, 26, 19673–19684. 10.1039/D4CP01521E. PubMed DOI PMC
Winter B. Liquid microjet for photoelectron spectroscopy. Nucl. Instrum. Methods Phys. Res., Sect. A 2009, 601, 139–150. 10.1016/j.nima.2008.12.108. DOI
Viefhaus J.; Scholz F.; Deinert S.; Glaser L.; Ilchen M.; Seltmann J.; Walter P.; Siewert F. The Variable Polarization XUV Beamline P04 at PETRA III: Optics, mechanics and their performance. Nucl. Instrum. Methods Phys. Res., Sect. A 2013, 710, 151–154. 10.1016/j.nima.2012.10.110. DOI
Malerz S.; Haak H.; Trinter F.; Stephansen A. B.; Kolbeck C.; Pohl M.; Hergenhahn U.; Meijer G.; Winter B. A setup for studies of photoelectron circular dichroism from chiral molecules in aqueous solution. Rev. Sci. Instrum. 2022, 93, 015101.10.1063/5.0072346. PubMed DOI
Buck J.; Bagschik K.; Glaser L.; Scholz F.; Seltmann J.; Viefhaus J. Progress report on the XUV online diagnostic unit for the highly accurate determination of SR properties. AIP Conf. Proc. 2019, 2054, 060057.10.1063/1.5084688. DOI
The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals; Royal Society of Chemistry, 2013.
Thürmer S.; Malerz S.; Trinter F.; Hergenhahn U.; Lee C.; Neumark D. M.; Meijer G.; Winter B.; Wilkinson I. Accurate Vertical Ionization Energy and Work Function Determinations of Liquid Water and Aqueous Solutions. Chem. Sci. 2021, 12, 10558–10582. 10.1039/D1SC01908B. PubMed DOI PMC
Credidio B.; Pugini M.; Malerz S.; Trinter F.; Hergenhahn U.; Wilkinson I.; Thürmer S.; Winter B. Quantitative electronic structure and work-function changes of liquid water induced by solute. Phys. Chem. Chem. Phys. 2022, 24, 1310–1325. 10.1039/D1CP03165A. PubMed DOI PMC
Pugini M.; Credidio B.; Walter I.; Malerz S.; Trinter F.; Stemer D.; Hergenhahn U.; Meijer G.; Wilkinson I.; Winter B.; Thürmer S. How to measure work functions from aqueous solutions. Chem. Sci. 2023, 14, 9574–9588. 10.1039/D3SC01740K. PubMed DOI PMC
Saha A.; Mahali K.; Ganai S.; Mukherjee P.; Shrestha N. K.; Henaish A. M. A.; Ahmed J.; Kundu S.; Roy S. Solubility and the solution thermodynamics of l-proline in the aqueous binary mixture of NaCl and KCl solution. J. Mol. Liq. 2023, 391, 123352.10.1016/j.molliq.2023.123352. DOI
Chai J.-D.; Head-Gordon M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. 10.1039/b810189b. PubMed DOI
Mennucci B.; Tomasi J. Continuum solvation models: A new approach to the problem of solute’s charge distribution and cavity boundaries. J. Chem. Phys. 1997, 106, 5151–5158. 10.1063/1.473558. DOI
Cancès E.; Mennucci B.; Tomasi J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997, 107, 3032–3041. 10.1063/1.474659. DOI
Gilbert A. T. B.; Besley N. A.; Gill P. M. W. Self-consistent field calculations of excited states using the maximum overlap method (MOM). J. Phys. Chem. A 2008, 112, 13164–13171. 10.1021/jp801738f. PubMed DOI
Yanai T.; Tew D. P.; Handy N. C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. 10.1016/j.cplett.2004.06.011. DOI
Dunning T. H. Jr Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. 10.1063/1.456153. DOI
Kendall R. A.; Dunning T. H. Jr; Harrison R. J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96, 6796–6806. 10.1063/1.462569. DOI
Malerz S.; Mudryk K.; Tomaník L.; Stemer D.; Hergenhahn U.; Buttersack T.; Trinter F.; Seidel R.; Quevedo W.; Goy C.; Wilkinson I.; Thürmer S.; Slavíček P.; Winter B. Following in Emil Fischer’s Footsteps: A Site-Selective Probe of Glucose Acid–Base Chemistry. J. Phys. Chem. A 2021, 125, 6881–6892. 10.1021/acs.jpca.1c04695. PubMed DOI PMC
Pluhařová E.; Slavíček P.; Jungwirth P. Modeling Photoionization of Aqueous DNA and Its Components. Acc. Chem. Res. 2015, 48, 1209–1217. 10.1021/ar500366z. PubMed DOI
Jagoda-Cwiklik B.; Slavícek P.; Cwiklik L.; Nolting D.; Winter B.; Jungwirth P. Ionization of imidazole in the gas phase, microhydrated environments, and in aqueous solution. J. Phys. Chem. A 2008, 112, 3499–3505. 10.1021/jp711476g. PubMed DOI
Epifanovsky E.; Gilbert A. T. B.; Feng X.; Lee J.; Mao Y.; Mardirossian N.; Pokhilko P.; White A. F.; Coons M. P.; Dempwolff A. L.; Gan Z.; et al. Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. J. Chem. Phys. 2021, 155, 084801. PubMed PMC
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Mennucci B.; Petersson G. A., et al.Gaussian 09, Revision D.01. Gaussian, Inc.: Wallingford, CT, 2009.
Suzuki T. Ultrafast photoelectron spectroscopy of aqueous solutions. J. Chem. Phys. 2019, 151, 090901.10.1063/1.5098402. PubMed DOI
Pluhařová E.; Ončák M.; Seidel R.; Schroeder C.; Schroeder W.; Winter B.; Bradforth S. E.; Jungwirth P.; Slavíček P. Transforming Anion Instability into Stability: Contrasting Photoionization of Three Protonation Forms of the Phosphate Ion Upon Moving into Water. J. Phys. Chem. B 2012, 116, 13254–13264. 10.1021/jp306348b. PubMed DOI
Björneholm O.; Öhrwall G.; Naves de Brito A.; Ågren H.; Carravetta V. Superficial Tale of Two Functional Groups: On the Surface Propensity of Aqueous Carboxylic Acids, Alkyl Amines, and Amino Acids. Acc. Chem. Res. 2022, 55, 3285–3293. 10.1021/acs.accounts.2c00494. PubMed DOI PMC
Slavíček P.; Winter B.; Faubel M.; Bradforth S. E.; Jungwirth P. Ionization Energies of Aqueous Nucleic Acids: Photoelectron Spectroscopy of Pyrimidine Nucleosides and ab Initio Calculations. J. Am. Chem. Soc. 2009, 131, 6460–6467. 10.1021/ja8091246. PubMed DOI
Schroeder C. A.; Pluhařová E.; Seidel R.; Schroeder W. P.; Faubel M.; Slavíček P.; Winter B.; Jungwirth P.; Bradforth S. E. Oxidation Half-Reaction of Aqueous Nucleosides and Nucleotides via Photoelectron Spectroscopy Augmented by ab Initio Calculations. J. Am. Chem. Soc. 2015, 137, 201–209. 10.1021/ja508149e. PubMed DOI
Winter B.; Faubel M.; Hertel I. V.; Pettenkofer C.; Bradforth S. E.; Jagoda-Cwiklik B.; Cwiklik L.; Jungwirth P. Electron Binding Energies of Hydrated H3O+ and OH-: Photoelectron Spectroscopy of Aqueous Acid and Base Solutions Combined with Electronic Structure Calculations. J. Am. Chem. Soc. 2006, 128, 3864–3865. 10.1021/ja0579154. PubMed DOI
Winter B.; Weber R.; Hertel I. V.; Faubel M.; Jungwirth P.; Brown E. C.; Bradforth S. E. Electron binding energies of aqueous alkali and halide ions: EUV photoelectron spectroscopy of liquid solutions and combined ab initio and molecular dynamics calculations. J. Am. Chem. Soc. 2005, 127, 7203–7214. 10.1021/ja042908l. PubMed DOI
He L.; Tomaník L.; Malerz S.; Trinter F.; Trippel S.; Belina M.; Slavíček P.; Winter B.; Küpper J. Specific versus Nonspecific Solvent Interactions of a Biomolecule in Water. J. Phys. Chem. Lett. 2023, 14, 10499–10508. 10.1021/acs.jpclett.3c01763. PubMed DOI PMC