Advances in the Determination of Anabolic-Androgenic Steroids: From Standard Practices to Tailor-Designed Multidisciplinary Approaches
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
35009549
PubMed Central
PMC8747103
DOI
10.3390/s22010004
PII: s22010004
Knihovny.cz E-zdroje
- Klíčová slova
- anabolic-androgenic steroids, antibodies, biosensors, chemically designed sensors, chromatographic detection, fluorescent sensors, immunoassays, immunosensors, oligonucleotide-based approach, specific detection,
- MeSH
- anabolika * MeSH
- androgeny MeSH
- doping ve sportu * MeSH
- kongenery testosteronu MeSH
- lidé MeSH
- sportovci MeSH
- steroidy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- anabolika * MeSH
- androgeny MeSH
- kongenery testosteronu MeSH
- steroidy MeSH
Anabolic-androgenic steroids (AASs), a group of compounds frequently misused by athletes and, unfortunately, also by the general population, have lately attracted global attention; thus, significant demands for more precise, facile, and rapid AAS detection have arisen. The standard methods ordinarily used for AAS determination include liquid and gas chromatography coupled with mass spectrometry. However, good knowledge of steroid metabolism, pretreatment of samples (such as derivatization), and well-trained operators of the instruments are required, making this procedure expensive, complicated, and not routinely applicable. In the drive to meet current AAS detection demands, the scientific focus has shifted to developing novel, tailor-made approaches leading to time- and cost-effective, routine, and field-portable methods for AAS determination in various matrices, such as biological fluids, food supplements, meat, water, or other environmental components. Therefore, herein, we present a comprehensive review article covering recent advances in AAS determination, with a strong emphasis on the increasingly important role of chemically designed artificial sensors, biosensors, and antibody- and fluorescence-based methods.
Zobrazit více v PubMed
de Ronde W., Smit D.L. Anabolic androgenic steroid abuse in young males. Endocr. Connect. 2020;9:R102–R111. doi: 10.1530/EC-19-0557. PubMed DOI PMC
Kicman A.T. Pharmacology of anabolic steroids. Br. J. Pharmacol. 2008;154:502–521. doi: 10.1038/bjp.2008.165. PubMed DOI PMC
Venturella F., Cancellieri G., Giammanco M., Di Marco P., Catania F., Liga A.V. Amateur doping: A survey on Sicilian population. J. Biol. Res. 2019;92 doi: 10.4081/jbr.2019.8238. DOI
Börjesson A., Lehtihet M., Andersson A., Dahl M., Vicente V., Ericsson M., Ekström L. Studies of athlete biological passport biomarkers and clinical parameters in male and female users of anabolic androgenic steroids and other doping agents. Drug Test. Anal. 2020;12:514–523. doi: 10.1002/dta.2763. PubMed DOI
Lood Y., Eklund A., Garle M., Ahlner J. Anabolic androgenic steroids in police cases in Sweden 1999–2009. Forensic Sci. Int. 2012;219:199–204. doi: 10.1016/j.forsciint.2012.01.004. PubMed DOI
Amaral J.M., Padilha M.C., Chagas S.V., Baker J.S., Mullen C., Neto L.V., Neto F.R.A., Cruz M.S. Effective treatment and prevention of attempted suicide, anxiety, and aggressiveness with fluoxetine, despite proven use of androgenic anabolic steroids. Drug Test. Anal. 2020;13:197–202. doi: 10.1002/dta.2912. PubMed DOI
Oberlander J.G., Henderson L.P. The Sturm und Drang of anabolic steroid use: Angst, anxiety, and aggression. Trends Neurosci. 2012;35:382–392. doi: 10.1016/j.tins.2012.03.001. PubMed DOI PMC
Bond P., Llewellyn W., Van Mol P. Anabolic androgenic steroid-induced hepatotoxicity. Med. Hypotheses. 2016;93:150–153. doi: 10.1016/j.mehy.2016.06.004. PubMed DOI
Montisci M., El Mazloum R., Cecchetto G., Terranova C., Ferrara S.D., Thiene G., Basso C. Anabolic androgenic steroids abuse and cardiac death in athletes: Morphological and toxicological findings in four fatal cases. Forensic Sci. Int. 2012;217:e13–e18. doi: 10.1016/j.forsciint.2011.10.032. PubMed DOI
Rahnema C.D., Lipshultz L.I., Crosnoe L.E., Kovac J.R., Kim E.D. Anabolic steroid–induced hypogonadism: Diagnosis and treatment. Fertil. Steril. 2014;101:1271–1279. doi: 10.1016/j.fertnstert.2014.02.002. PubMed DOI
De Souza G.L., Hallak J. Anabolic steroids and male infertility: A comprehensive review. BJU Int. 2011;108:1860–1865. doi: 10.1111/j.1464-410X.2011.10131.x. PubMed DOI
Turillazzi E., Perilli G., Di Paolo M., Neri M., Riezzo I., Fineschi V. Side effects of AAS abuse: An overview. Mini-Rev. Med. Chem. 2011;11:374–389. doi: 10.2174/138955711795445925. PubMed DOI
Christoffersen T., Andersen J.T., Dalhoff K.P., Horwitz H. Anabolic-androgenic steroids and the risk of imprisonment. Drug Alcohol Depend. 2019;203:92–97. doi: 10.1016/j.drugalcdep.2019.04.041. PubMed DOI
Pope H.G., Wood R.I., Rogol A., Nyberg F., Bowers L., Bhasin S. Adverse Health Consequences of Performance-Enhancing Drugs: An Endocrine Society Scientific Statement. Endocr. Rev. 2013;35:341–375. doi: 10.1210/er.2013-1058. PubMed DOI PMC
Horwitz H., Andersen J.T., Dalhoff K.P. Health consequences of androgenic anabolic steroid use. J. Intern. Med. 2018;285:333–340. doi: 10.1111/joim.12850. PubMed DOI
Rasmussen J.J., Selmer C., Østergren P.B., Pedersen K.B., Schou M., Gustafsson F., Faber J., Juul A., Kistorp C. Former Abusers of Anabolic Androgenic Steroids Exhibit Decreased Testosterone Levels and Hypogonadal Symptoms Years after Cessation: A Case-Control Study. PLoS ONE. 2016;11:e0161208. doi: 10.1371/journal.pone.0161208. PubMed DOI PMC
Davani-Davari D., Karimzadeh I., Khalili H. The potential effects of anabolic-androgenic steroids and growth hormone as commonly used sport supplements on the kidney: A systematic review. BMC Nephrol. 2019;20:198. doi: 10.1186/s12882-019-1384-0. PubMed DOI PMC
Salerno M., Cascio O., Bertozzi G., Sessa F., Messina A., Monda V., Cipolloni L., Biondi A., Daniele A., Pomara C. Anabolic androgenic steroids and carcinogenicity focusing on Leydig cell: A literature review. Oncotarget. 2018;9:19415–19426. doi: 10.18632/oncotarget.24767. PubMed DOI PMC
Torrisi M., Pennisi G., Russo I., Amico F., Esposito M., Liberto A., Cocimano G., Salerno M., Rosi G.L., Di Nunno N., et al. Sudden Cardiac Death in Anabolic-Androgenic Steroid Users: A Literature Review. Medicina. 2020;56:587. doi: 10.3390/medicina56110587. PubMed DOI PMC
Hernández-Guerra A.I., Tapia J., Menéndez-Quintanal L.M., Lucena J.S. Sudden cardiac death in anabolic androgenic steroids abuse: Case report and literature review. Forensic Sci. Res. 2019;4:267–273. doi: 10.1080/20961790.2019.1595350. PubMed DOI PMC
Lehmann S., Thomas A., Schiwy-Bochat K.-H., Geyer H., Thevis M., Glenewinkel F., Rothschild M.A., Andresen-Streichert H., Juebner M. Death after misuse of anabolic substances (clenbuterol, stanozolol and metandienone) Forensic Sci. Int. 2019;303:109925. doi: 10.1016/j.forsciint.2019.109925. PubMed DOI
Frati P., Busardo F., Cipolloni L., Dominicis E., Fineschi V. Anabolic Androgenic Steroid (AAS) Related Deaths: Autoptic, Histopathological and Toxicological Findings. Curr. Neuropharmacol. 2015;13:146–159. doi: 10.2174/1570159X13666141210225414. PubMed DOI PMC
Tauchen J., Jurášek M., Huml L., Rimpelová S. Medicinal Use of Testosterone and Related Steroids Revisited. Molecules. 2021;26:1032. doi: 10.3390/molecules26041032. PubMed DOI PMC
World Anti-Doping Agency 2018 Anti-Doping Testing Figures. [(accessed on 15 January 2021)]. Available online: https://www.wada-ama.org/sites/default/files/resources/files/2018_testing_figures_report.pdf.
Alquraini H., Auchus R.J. Strategies that athletes use to avoid detection of androgenic-anabolic steroid doping and sanctions. Mol. Cell. Endocrinol. 2018;464:28–33. doi: 10.1016/j.mce.2017.01.028. PubMed DOI
Pope H.G., Kanayama G., Athey A., Ryan E., Hudson J.I., Baggish A. The lifetime prevalence of anabolic-androgenic steroid use and dependence in Americans: Current best estimates. Am. J. Addict. 2013;23:371–377. doi: 10.1111/j.1521-0391.2013.12118.x. PubMed DOI PMC
Abrahin O.S.C., De Sousa E.C., Santos A.M. Prevalence of the Use of Anabolic-Androgenic Steroids in Brazil: A Systematic Review. Subst. Use Misuse. 2014;49:1156–1162. doi: 10.3109/10826084.2014.903750. PubMed DOI
Rachoń D., Pokrywka L., Suchecka-Rachoń K. Prevalence and risk factors of anabolic-androgenic steroids (AAS) abuse among adolescents and young adults in Poland. Int. J. Public Health. 2006;51:392–398. doi: 10.1007/s00038-006-6018-1. PubMed DOI
Teck J.T.W., McCann M. Tracking internet interest in anabolic-androgenic steroids using Google Trends. Int. J. Drug Policy. 2017;51:52–55. doi: 10.1016/j.drugpo.2017.11.001. PubMed DOI PMC
Hullstein I.R., Malerod-Fjeld H., Dehnes Y., Hemmersbach P. Black market products confiscated in Norway 2011–2014 compared to analytical findings in urine samples. Drug Test. Anal. 2015;7:1025–1029. doi: 10.1002/dta.1900. PubMed DOI
Prokudina E., Prchalová J., Vyšatová E., Kuchař M., Rajchl A., Lapcik O. Analysis of anabolic androgenic steroids by direct analysis in real time ionization with time-of-flight mass spectrometry. Int. J. Mass Spectrom. 2015;392:28–33. doi: 10.1016/j.ijms.2015.08.022. DOI
Weber C., Krug O., Kamber M., Thevis M. Qualitative and Semiquantitative Analysis of Doping Products Seized at the Swiss Border. Subst. Use Misuse. 2017;52:742–753. doi: 10.1080/10826084.2016.1263665. PubMed DOI
Walpurgis K., Thomas A., Geyer H., Mareck U., Thevis M. Dietary Supplement and Food Contaminations and Their Implications for Doping Controls. Foods. 2020;9:1012. doi: 10.3390/foods9081012. PubMed DOI PMC
Martínez-Sanz J.M., Sospedra I., Ortiz C.M., Baladia E., Gil-Izquierdo A., Ortiz-Moncada R. Intended or Unintended Doping? A Review of the Presence of Doping Substances in Dietary Supplements Used in Sports. Nutrients. 2017;9:1093. doi: 10.3390/nu9101093. PubMed DOI PMC
Odoardi S., Castrignanò E., Martello S., Chiarotti M., Strano-Rossi S. Determination of anabolic agents in dietary supplements by liquid chromatography-high-resolution mass spectrometry. Food Addit. Contam. Part A. 2015;32:635–647. doi: 10.1080/19440049.2015.1014868. PubMed DOI
Jurášek M., Göselová S., Mikšátková P., Holubová B., Vyšatová E., Kuchař M., Fukal L., Lapcik O., Drašar P. Highly sensitive avidin-biotin ELISA for detection of nandrolone and testosterone in dietary supplements. Drug Test. Anal. 2016;9:553–560. doi: 10.1002/dta.2005. PubMed DOI
Fojtíková L., Fukal L., Blažková M., Sýkorová S., Kuchař M., Mikšátková P., Lapčík O., Holubová B. Development of Enzyme-Linked Immunosorbent Assay for Determination of Boldenone in Dietary Supplements. Food Anal. Methods. 2016;9:3179–3186. doi: 10.1007/s12161-016-0511-9. DOI
Sýkorová S., Fojtíková L., Kuchař M., Mikšátková P., Karamonová L., Fukal L., Lapčík O., Holubová B. Sensitive enzyme immunoassay for screening methandienone in dietary supplements. Food Addit. Contam. Part. A. 2018;35:1653–1661. doi: 10.1080/19440049.2018.1459876. PubMed DOI
Holubová B., Göselová S., Sevcikova L., Vlach M., Blažková M., Lapcik O., Fukal L. Rapid immunoassays for detection of anabolic nortestosterone in dietary supplements. Czech. J. Food Sci. 2013;31:514–519. doi: 10.17221/507/2012-CJFS. DOI
Huml L., Havlová D., Longin O., Staňková E., Holubová B., Kuchař M., Prokudina E., Rottnerová Z., Zimmermann T., Drašar P., et al. Stanazolol derived ELISA as a sensitive forensic tool for the detection of multiple 17α-methylated anabolics. Steroids. 2019;155:108550. doi: 10.1016/j.steroids.2019.108550. PubMed DOI
Holubová B., Kubešová P., Huml L., Vlach M., Lapčík O., Jurášek M., Fukal L. Tailor-Made Immunochromatographic Test for the Detection of Multiple 17α-Methylated Anabolics in Dietary Supplements. Foods. 2021;10:741. doi: 10.3390/foods10040741. PubMed DOI PMC
Geyer H., Parr M.K., Koehler K., Mareck U., Schänzer W., Thevis M. Nutritional supplements cross-contaminated and faked with doping substances. J. Mass Spectrom. 2008;43:892–902. doi: 10.1002/jms.1452. PubMed DOI
Czech Agriculture and Food Inspection Authority V Přípravku Creatine Pyruvate byly Prokázány Nepovolené Anabolické Steroidy. [(accessed on 6 July 2021)]; Available online: https://www.szpi.gov.cz/clanek/v-pripravku-creatine-pyruvate-byly-prokazany-nepovolene-anabolicke-steroidy.aspx.
Czech Agriculture and Food Inspection Authority Potravinářská Inspekce Zjistila Doplněk Stravy Škodlivý pro Lidské Zdraví s Množstvím Anabolických Steroidů a Dalších Nepovolených Látek. [(accessed on 6 July 2021)]; Available online: https://www.szpi.gov.cz/clanek/potravinarska-inspekce-zjistila-doplnek-stravy-skodlivy-pro-lidske-zdravi-s-mnozstvim-anabolickych-steroidu-a-dalsich-nepovolenych-latek.aspx?q=JmNobnVtPTEmaGw9d2FycmlvciBsYWJz.
Stárka L., Dušková M., Kolátorová L., Lapčík O. Anabolic steroid induced hypogonadism in men: Overview and case report. Vnitrni Lek. 2017;63:598–603. doi: 10.36290/vnl.2017.119. PubMed DOI
The United States Food and Drug Administration. [(accessed on 15 January 2021)]; Available online: https://www.fda.gov/consumers/consumer-updates/caution-bodybuilding-products-can-be-risky.
Tschmelak J., Kumpf M., Kappel N., Proll G., Gauglitz G. Total internal reflectance fluorescence (TIRF) biosensor for environmental monitoring of testosterone with commercially available immunochemistry: Antibody characterization, assay development and real sample measurements. Talanta. 2006;69:343–350. doi: 10.1016/j.talanta.2005.09.048. PubMed DOI
Tan Y., Jing L., Ding Y., Wei T. A novel double-layer molecularly imprinted polymer film based surface plasmon resonance for determination of testosterone in aqueous media. Appl. Surf. Sci. 2015;342:84–91. doi: 10.1016/j.apsusc.2015.03.031. DOI
Büttler R.M., Martens F., Kushnir M.M., Ackermans M.T., Blankenstein M., Heijboer A.C. Simultaneous measurement of testosterone, androstenedione and dehydroepiandrosterone (DHEA) in serum and plasma using Isotope-Dilution 2-Dimension Ultra High Performance Liquid-Chromatography Tandem Mass Spectrometry (ID-LC–MS/MS) Clin. Chim. Acta. 2015;438:157–159. doi: 10.1016/j.cca.2014.08.023. PubMed DOI
Hirpessa B.B., Ulusoy B.H., Hecer C. Hormones and Hormonal Anabolics: Residues in Animal Source Food, Potential Public Health Impacts, and Methods of Analysis. J. Food Qual. 2020;2020:5065386. doi: 10.1155/2020/5065386. DOI
Yuan H., Liu M., Huang S., Zhao J., Tao J. Classification and detection of testosterone propionate and nandrolone residues in duck meat using surface-enhanced Raman spectroscopy coupled with multivariate analysis. Poult. Sci. 2020;100:296–301. doi: 10.1016/j.psj.2020.10.018. PubMed DOI PMC
Kayani M., Parry J.M. The detection and assessment of the aneugenic potential of selected oestrogens, progestins and androgens using the in vitro cytokinesis blocked micronucleus assay. Mutat. Res. Toxicol. Environ. Mutagen. 2008;651:40–45. doi: 10.1016/j.mrgentox.2007.10.007. PubMed DOI
Chen L., Jiang X., Feng H., Shi H., Sun L., Tao W., Xie Q., Wang D. Simultaneous exposure to estrogen and androgen resulted in feminization and endocrine disruption. J. Endocrinol. 2016;228:205–218. doi: 10.1530/JOE-15-0432. PubMed DOI
Orlando E.F., Kolok A.S., Binzcik G.A., Gates J.L., Horton M.K., Lambright C.S., Gray L.E., Soto A.M., Guillette L.J. Endocrine-disrupting effects of cattle feedlot effluent on an aquatic sentinel species, the fathead minnow. Environ. Health Perspect. 2004;112:353–358. doi: 10.1289/ehp.6591. PubMed DOI PMC
Pozo O.J., De Brabanter N., Fabregat A., Segura J., Ventura R., Van Eenoo P., Deventer K. Current status and bioanalytical challenges in the detection of unknown anabolic androgenic steroids in doping control analysis. Bioanalysis. 2013;5:2661–2677. doi: 10.4155/bio.13.242. PubMed DOI
Anawalt B.D. Detection of anabolic androgenic steroid use by elite athletes and by members of the general public. Mol. Cell. Endocrinol. 2018;464:21–27. doi: 10.1016/j.mce.2017.09.027. PubMed DOI
Hampl R., Putz Z., Bičíková M., Stárka L. Advances in Steroid Analysis ’84. Elsevier; Amsterdam, The Netherlands: 1985. Advances in immunoassay of anabolic steroids.
Sancho M., Arnal J.M., Verdú-Martín G., Trull-Hernandis C., García-Fayos B. Management of hospital radioactive liquid waste: Treatment proposal for radioimmunoassay wastes. AIMS Environ. Sci. 2021;8:449–464. doi: 10.3934/environsci.2021029. DOI
Kim J.-H., Lee S.-Y., Lee S.-K. Development of novel lab-on-a-chip platform for high-throughput radioimmunoassay. Appl. Radiat. Isot. 2020;168:109526. doi: 10.1016/j.apradiso.2020.109526. PubMed DOI
Clarke W. Handbook of Analytical Separations. Volume 7. Elsevier; Amsterdam, The Netherlands: 2020. Immunoassays for therapeutic drug monitoring and clinical toxicology; pp. 97–114. DOI
O’Kennedy R., Murphy C. Immunoassays: Development, Applications and Future Trends. Pan Stanford Publishing Pte. Ltd.; Singapore: 2017.
Pereira H.M.G., Sardela V.F., Padilha M.C., Mirotti L., Casilli A., De Oliveira F.A., Cavalcanti G.D.A., Rodrigues L.M.L., De Araujo A.L.D., Levy R.S., et al. Doping control analysis at the Rio 2016 Olympic and Paralympic Games. Drug Test. Anal. 2017;9:1658–1672. doi: 10.1002/dta.2329. PubMed DOI
Bailey K., Yazdi T., Masharani U., Tyrrell B., Butch A., Schaufele F. Advantages and Limitations of Androgen Receptor-Based Methods for Detecting Anabolic Androgenic Steroid Abuse as Performance Enhancing Drugs. PLoS ONE. 2016;11:e0151860. doi: 10.1371/journal.pone.0151860. PubMed DOI PMC
Thieme D., Hemmersbach P. Doping in Sports. Volume 195 Springer; Heidelberg, Germany: 2009.
Makin H.L., Gower D. Steroid Analysis. Springer Science+Business Media B.V.; Dordrecht, The Netherlands: 2010.
Kirsch J., Siltanen C., Zhou Q., Revzin A., Simonian A., Katz E., Katz E., Wang J., Bocharova V., Wang J., et al. Biosensor technology: Recent advances in threat agent detection and medicine. Chem. Soc. Rev. 2013;42:8733. doi: 10.1039/c3cs60141b. PubMed DOI
Nawrot W., Drzozga K., Baluta S., Cabaj J., Malecha K. A Fluorescent Biosensors for Detection Vital Body Fluids’ Agents. Sensors. 2018;18:2357. doi: 10.3390/s18082357. PubMed DOI PMC
World Anti-Doping Agency Technical Document—TD2016EAAS. [(accessed on 15 January 2021)]. Available online: https://www.wada-ama.org/sites/default/files/resources/files/wada-td2016eaas-eaas-measurement-and-reporting-en.pdf.
Thevis M., Kuuranne T., Geyer H. Annual banned-substance review—Analytical approaches in human sports drug testing. Drug Test. Anal. 2019;12:7–26. doi: 10.1002/dta.2735. PubMed DOI
Thevis M., Walpurgis K., Thomas A. Analytical Approaches in Human Sports Drug Testing: Recent Advances, Challenges, and Solutions. Anal. Chem. 2019;92:506–523. doi: 10.1021/acs.analchem.9b04639. PubMed DOI
Balcells G., Pozo O.J., Ventura R. High-resolution mass spectrometry in doping control. In: Perez S., Eichhorn P., Barcelo D., editors. Applications of Time-of-Flight and Orbitrap Mass Spectrometry in Environmental, Food, Doping, and Forensic Analysis. Volume 71. Elsevier Science BV; Amsterdam, The Netherlands: 2016. pp. 91–117.
Marcos J., Pozo O.J. Current LC–MS methods and procedures applied to the identification of new steroid metabolites. J. Steroid Biochem. Mol. Biol. 2016;162:41–56. doi: 10.1016/j.jsbmb.2015.12.012. PubMed DOI
Balcells G., Pozo O.J., Esquivel A., Kotronoulas A., Joglar J., Segura J., Ventura R. Screening for anabolic steroids in sports: Analytical strategy based on the detection of phase I and phase II intact urinary metabolites by liquid chromatography tandem mass spectrometry. J. Chromatogr. A. 2015;1389:65–75. doi: 10.1016/j.chroma.2015.02.022. PubMed DOI
Bhawani S., Sulaiman O., Hashim R., Ibrahim M.N.M. Thin-Layer Chromatographic Analysis of Steroids: A Review. Trop. J. Pharm. Res. 2010;9:301–313. doi: 10.4314/tjpr.v9i3.56293. DOI
Musharraf S.G., Arfeen Q.U., Mazhar W., Kanwal N. A validated stability-indicating TLC-densitometric method for the determination of stanozolol in pharmaceutical formulations. Chem. Cent. J. 2013;7:142. doi: 10.1186/1752-153X-7-142. PubMed DOI PMC
Amoli-Diva M., Pourghazi K. Gold nanoparticles grafted modified silica gel as a new stationary phase for separation and determination of steroid hormones by thin layer chromatography. J. Food Drug Anal. 2015;23:279–286. doi: 10.1016/j.jfda.2014.11.005. PubMed DOI PMC
Moser A.C., Hage D.S. Immunoaffinity chromatography: An introduction to applications and recent developments. Bioanalysis. 2010;2:769–790. doi: 10.4155/bio.10.31. PubMed DOI PMC
Pichon V. Solid-Phase Extraction. Elsevier; Amsterdam, The Netherlands: 2019. 6—Aptamer-based and immunosorbents; pp. 151–183. DOI
Rodriguez E.L., Poddar S., Iftekhar S., Suh K., Woolfork A.G., Ovbude S., Pekarek A., Walters M., Lott S., Hage D.S. Affinity chromatography: A review of trends and developments over the past 50 years. J. Chromatogr. B. 2020;1157:122332. doi: 10.1016/j.jchromb.2020.122332. PubMed DOI PMC
Wang Y., Wang E.-L., Xu Y., Wu J., Dong Y. Improved preparation of a chitosan-based immunoaffinity column using antibody against methandrostenolone as ligand. Food Agric. Immunol. 2013;25:149–159. doi: 10.1080/09540105.2012.753514. DOI
Wang Y., Xu Y., Zhang X., Wang E., Dong Y. Development and characterization of a chitosan-supported immunoaffinity chromatography column for the selective extraction of methandrostenolone from food and feed samples. Int. J. Biol. Macromol. 2011;49:428–432. doi: 10.1016/j.ijbiomac.2011.05.027. PubMed DOI
Wang G., Li Y., Li X., Wang X., Zhengguo L., Wu J., Xi C., Li Z. Preparation and Characterization of an Immunoaffinity Column for the Selective Extraction of Salbutamol from Pork Sample. J. Chromatogr. Sci. 2011;49:276–280. doi: 10.1093/chrsci/49.4.276. PubMed DOI
Qiu S., Xu L., Cui Y.-R., Deng Q.-P., Wang W., Chen H.-X., Zhang X.-X. Pseudo-homogeneous immunoextraction of epitestosterone from human urine samples based on gold-coated magnetic nanoparticles. Talanta. 2010;81:819–823. doi: 10.1016/j.talanta.2010.01.021. PubMed DOI
Salvador J.-P., Sanchez-Baeza F., Marco M.-P. A high-throughput screening (HTS) immunochemical method for the analysis of stanozolol metabolites in cattle urine samples. J. Chromatogr. B. 2010;878:243–252. doi: 10.1016/j.jchromb.2009.08.027. PubMed DOI
Li Z.-P., Wang Y.-C., Liu C.-H., Li Y.-K. Development of chemiluminescence detection of gold nanoparticles in biological conjugates for immunoassay. Anal. Chim. Acta. 2005;551:85–91. doi: 10.1016/j.aca.2005.07.014. DOI
Lin Z., Wang X., Li Z.-J., Ren S.-Q., Chen G.-N., Ying X.-T., Lin J.-M. Development of a sensitive, rapid, biotin–streptavidin based chemiluminescent enzyme immunoassay for human thyroid stimulating hormone. Talanta. 2008;75:965–972. doi: 10.1016/j.talanta.2007.12.043. PubMed DOI
Gao H., Cheng G., Wang H., Chen T., Xu C., Lv H., Zhang H., Hou R., Wang Y., Peng D., et al. Development of a broad-spectrum monoclonal antibody-based indirect competitive enzyme-linked immunosorbent assay for screening of androgens in animal edible tissues. Microchem. J. 2020;160:105683. doi: 10.1016/j.microc.2020.105683. DOI
Li X., Chen X., Wu X., Wang J., Liu Z., Sun Y., Shen X., Lei H. Rapid detection of adulteration of dehydroepiandrosterone in slimming products by competitive indirect enzyme-linked immunosorbent assay and lateral flow immunochromatography. Food Agric. Immunol. 2019;30:123–139. doi: 10.1080/09540105.2018.1550057. DOI
Holubová B., Mikšátková P., Kuchař M., Karamonová L., Lapčík O., Fukal L. Immunochemical techniques for anabolic androgenic steroid: Matrix effects study for food supplements. Eur. Food Res. Technol. 2018;245:1011–1019. doi: 10.1007/s00217-018-3204-3. DOI
Wang J., Zheng L., Dong Y., Song Z., Wang Y., Meng M., Ren L., Eremin S.A., Deng C., Yin Y., et al. Establishment of Enhanced Chemiluminescent Immunoassay Formats for Stanozolol Detection in animal-derived foodstuffs and Other Matrices. Food Anal. Methods. 2015;9:1284–1292. doi: 10.1007/s12161-015-0307-3. DOI
Kong N., Song S., Peng J., Liu L., Kuang H., Xu C. Sensitive, Fast, and Specific Immunoassays for Methyltestosterone Detection. Sensors. 2015;15:10059–10073. doi: 10.3390/s150510059. PubMed DOI PMC
Tort N., Salvador J.-P., Marco M.-P. Multiplexed immunoassay to detect anabolic androgenic steroids in human serum. Anal. Bioanal. Chem. 2012;403:1361–1371. doi: 10.1007/s00216-012-5904-z. PubMed DOI
Jiang J., Wang Z., Zhang H., Zhang X., Liu X., Wang S. Monoclonal Antibody-Based ELISA and Colloidal Gold Immunoassay for Detecting 19-Nortestosterone Residue in Animal Tissues. J. Agric. Food Chem. 2011;59:9763–9769. doi: 10.1021/jf2012437. PubMed DOI
Calvo D., Tort N., Salvador J.P., Marco M.-P., Centi F., Marco S. Preliminary study for simultaneous detection and quantification of androgenic anabolic steroids using ELISA and pattern recognition techniques. Analyst. 2011;136:4045–4052. doi: 10.1039/c1an15114b. PubMed DOI
Bulut U., Şanli S., Cevher S.C., Cirpan A., Donmez S., Timur S. A biosensor platform based on amine functionalized conjugated benzenediamine-benzodithiophene polymer for testosterone analysis. J. Appl. Polym. Sci. 2020;137:49332. doi: 10.1002/app.49332. DOI
Lim S.A., Ahmed M.U. Immunosensors. RSC Publishing; London, UK: 2019. Chapter 1. Introduction to immunosensors; pp. 1–20. DOI
Muyldermans S. Nanobodies: Natural Single-Domain Antibodies. Annu. Rev. Biochem. 2013;82:775–797. doi: 10.1146/annurev-biochem-063011-092449. PubMed DOI
Yu X., Xu Q., Wu Y., Jiang H., Wei W., Zulipikaer A., Guo Y., Jirimutu, Chen J. Nanobodies derived from Camelids represent versatile biomolecules for biomedical applications. Biomater. Sci. 2020;8:3559–3573. doi: 10.1039/D0BM00574F. PubMed DOI
Lee K.M., Kim K.H., Yoon H., Kim H. Chemical Design of Functional Polymer Structures for Biosensors: From Nanoscale to Macroscale. Polymers. 2018;10:551. doi: 10.3390/polym10050551. PubMed DOI PMC
Sun Z. Electrochemical Investigation of Testosterone Using a AuNPs Modified Electrode. Int. J. Electrochem. Sci. 2017:11224–11234. doi: 10.20964/2017.12.36. DOI
Li G., Zhu M., Ma L., Yan J., Lu X., Shen Y., Wan Y. Generation of Small Single Domain Nanobody Binders for Sensitive Detection of Testosterone by Electrochemical Impedance Spectroscopy. ACS Appl. Mater. Interfaces. 2016;8:13830–13839. doi: 10.1021/acsami.6b04658. PubMed DOI
Eguílaz M., Moreno-Guzmán M., Campuzano S., González-Cortés A., Yáñez-Sedeño P., Pingarrón J.M., Ruiz S.C. An electrochemical immunosensor for testosterone using functionalized magnetic beads and screen-printed carbon electrodes. Biosens. Bioelectron. 2010;26:517–522. doi: 10.1016/j.bios.2010.07.060. PubMed DOI
Muriano A., Salvador J.-P., Galve R., Marco M.-P., Thayil A.K.N., Loza-Alvarez P., Soria S. High-sensitive nonlinear detection of steroids by resonant double grating waveguide structures-based immunosensors; In Proceedings of the SPIE OPTO; San Francisco, CA, USA. 22–27 January 2011; p. 794114. DOI
Serafín V., Eguílaz M., Agüí L., Yáñez-Sedeño P., Pingarrón J.M. An Electrochemical Immunosensor for Testosterone Using Gold Nanoparticles—Carbon Nanotubes Composite Electrodes. Electroanalysis. 2010;23:169–176. doi: 10.1002/elan.201000419. DOI
Laczka O., del Campo F.J., Muñoz-Pascual F.X., Baldrich E. Electrochemical Detection of Testosterone by Use of Three-Dimensional Disc–Ring Microelectrode Sensing Platforms: Application to Doping Monitoring. Anal. Chem. 2011;83:4037–4044. doi: 10.1021/ac1031594. PubMed DOI
Martínez M.T., Tseng Y.-C., Salvador J.P., Marco M.P., Ormategui N., Loinaz I., Bokor J. Electronic Anabolic Steroid Recognition with Carbon Nanotube Field-Effect Transistors. ACS Nano. 2010;4:1473–1480. doi: 10.1021/nn901547b. PubMed DOI
Mitchell J.S., Lowe T.E. Ultrasensitive detection of testosterone using conjugate linker technology in a nanoparticle-enhanced surface plasmon resonance biosensor. Biosens. Bioelectron. 2009;24:2177–2183. doi: 10.1016/j.bios.2008.11.018. PubMed DOI
Liang K.-Z., Qi J.-S., Mu W.-J., Chen Z.-G. Biomolecules/gold nanowires-doped sol–gel film for label-free electrochemical immunoassay of testosterone. J. Biochem. Biophys. Methods. 2008;70:1156–1162. doi: 10.1016/j.jprot.2007.11.007. PubMed DOI
Conneely G., O’Mahony D., Lu H., Guilbault G.G., Pravda M., Aherne M. An Immunosensor for the Detection of Stanozolol in Bovine Urine. Anal. Lett. 2007;40:1280–1293. doi: 10.1080/00032710701326650. DOI
Conneely G., Aherne M., Lu H., Guilbault G. Electrochemical immunosensors for the detection of 19-nortestosterone and methyltestosterone in bovine urine. Sens. Actuators B Chem. 2007;121:103–112. doi: 10.1016/j.snb.2006.09.035. DOI
Lu H., Kreuzer M.P., Takkinen K., Guilbault G.G. A recombinant Fab fragment-based electrochemical immunosensor for the determination of testosterone in bovine urine. Biosens. Bioelectron. 2007;22:1756–1763. doi: 10.1016/j.bios.2006.08.002. PubMed DOI
Kokkinos C., Economou A., Prodromidis M.I. Electrochemical immunosensors: Critical survey of different architectures and transduction strategies. TrAC Trends Anal. Chem. 2016;79:88–105. doi: 10.1016/j.trac.2015.11.020. DOI
Mistry K.K., Layek K., Mahapatra A., RoyChaudhuri C., Saha H. A review on amperometric-type immunosensors based on screen-printed electrodes. Analyst. 2014;139:2289–2311. doi: 10.1039/c3an02050a. PubMed DOI
Cadwallader A.B., Lim C.S., Rollins D.E., Botrè F. The Androgen Receptor and Its Use in Biological Assays: Looking Toward Effect-Based Testing and Its Applications. J. Anal. Toxicol. 2011;35:594–607. doi: 10.1093/anatox/35.9.594. PubMed DOI PMC
Cooper E.R., McGrath K.C.Y., Heather A.K. In Vitro Androgen Bioassays as a Detection Method for Designer Androgens. Sensors. 2013;13:2148–2163. doi: 10.3390/s130202148. PubMed DOI PMC
Zhou J., Rossi J. Aptamers as targeted therapeutics: Current potential and challenges. Nat. Rev. Drug Discov. 2016;16:181–202. doi: 10.1038/nrd.2016.199. PubMed DOI PMC
Skouridou V., Rubio M.J., Ballester P., Bashammakh A.S., El-Shahawi M.S., Alyoubi A.O., O’Sullivan C.K. Selection and characterization of DNA aptamers against the steroid testosterone. Microchim. Acta. 2017;184:1631–1639. doi: 10.1007/s00604-017-2136-0. DOI
Darmostuk M., Rimpelova S., Gbelcova H., Ruml T. Current approaches in SELEX: An update to aptamer selection technology. Biotechnol. Adv. 2015;33:1141–1161. doi: 10.1016/j.biotechadv.2015.02.008. PubMed DOI
Bai W., Zhu C., Liu J., Yan M., Yang S., Chen A. Split aptamer-based sandwich fluorescence resonance energy transfer assay for 19-nortestosterone. Microchim. Acta. 2016;183:2533–2538. doi: 10.1007/s00604-016-1905-5. DOI
Tort N., Salvador J.-P., Marco M.-P., Eritja R., Poch M., Martínez E., Samitier J. Fluorescence site-encoded DNA addressable hapten microarray for anabolic androgenic steroids. TrAC Trends Anal. Chem. 2009;28:718–728. doi: 10.1016/j.trac.2009.04.003. DOI
Tort N., Salvador J.-P., Aviñó A., Eritja R., Comelles J., Martínez E., Samitier J., Marco M.-P. Synthesis of Steroid–Oligonucleotide Conjugates for a DNA Site-Encoded SPR Immunosensor. Bioconjug. Chem. 2012;23:2183–2191. doi: 10.1021/bc300138p. PubMed DOI
Tort N., Salvador J.-P., Marco M.-P. Multimodal plasmonic biosensing nanostructures prepared by DNA-directed immobilization of multifunctional DNA-gold nanoparticles. Biosens. Bioelectron. 2017;90:13–22. doi: 10.1016/j.bios.2016.11.022. PubMed DOI
Mundaca R., Moreno-Guzmán M., Eguílaz M., Yáñez-Sedeño P., Pingarrón J. Enzyme biosensor for androsterone based on 3α-hydroxysteroid dehydrogenase immobilized onto a carbon nanotubes/ionic liquid/NAD+ composite electrode. Talanta. 2012;99:697–702. doi: 10.1016/j.talanta.2012.07.008. PubMed DOI
BelBruno J.J. Molecularly Imprinted Polymers. Chem. Rev. 2018;119:94–119. doi: 10.1021/acs.chemrev.8b00171. PubMed DOI
Liu K.-H., O’Hare D., Thomas J.L., Guo H.-Z., Yang C.-H., Lee M.-H. Self-assembly Synthesis of Molecularly Imprinted Polymers for the Ultrasensitive Electrochemical Determination of Testosterone. Biosensors. 2020;10:16. doi: 10.3390/bios10030016. PubMed DOI PMC
Haynes A.Z., Levine M. Detection of anabolic steroids via cyclodextrin-promoted fluorescence modulation. RSC Adv. 2020;10:25108–25115. doi: 10.1039/D0RA03485A. PubMed DOI PMC
Gill A.D., Perez L., Salinas I.N.Q., Byers S., Liu Y., Hickey B.L., Zhong W., Hooley R.J. Selective Array-Based Sensing of Anabolic Steroids in Aqueous Solution by Host–Guest Reporter Complexes. Chem. Eur. J. 2018;25:1740–1745. doi: 10.1002/chem.201804854. PubMed DOI
Yamashina M., Tsutsui T., Sei Y., Akita M., Yoshizawa M. A polyaromatic receptor with high androgen affinity. Sci. Adv. 2019;5:eaav3179. doi: 10.1126/sciadv.aav3179. PubMed DOI PMC
Kellens E., Bové H., Vandenryt T., Lambrichts J., Dekens J., Drijkoningen S., D’Haen J., De Ceuninck W., Thoelen R., Junkers T., et al. Micro-patterned molecularly imprinted polymer structures on functionalized diamond-coated substrates for testosterone detection. Biosens. Bioelectron. 2018;118:58–65. doi: 10.1016/j.bios.2018.07.032. PubMed DOI
Luo M., Hua Y., Liang Y., Han J., Liu D., Zhao W., Wang P. Synthesis of novel β-cyclodextrin functionalized S, N codoped carbon dots for selective detection of testosterone. Biosens. Bioelectron. 2017;98:195–201. doi: 10.1016/j.bios.2017.06.056. PubMed DOI
Liu W., Ma Y., Sun G., Wang S., Deng J., Wei H. Molecularly imprinted polymers on graphene oxide surface for EIS sensing of testosterone. Biosens. Bioelectron. 2017;92:305–312. doi: 10.1016/j.bios.2016.11.007. PubMed DOI
Heidarimoghadam R., Akhavan O., Ghaderi E., Hashemi E., Mortazavi S.S., Farmany A. Graphene oxide for rapid determination of testosterone in the presence of cetyltrimethylammonium bromide in urine and blood plasma of athletes. Mater. Sci. Eng. C. 2016;61:246–250. doi: 10.1016/j.msec.2015.12.005. PubMed DOI
Lazar A.I., Biedermann F., Mustafina K.R., Assaf K.I., Hennig A., Nau W.M. Nanomolar Binding of Steroids to Cucurbit[n]urils: Selectivity and Applications. J. Am. Chem. Soc. 2016;138:13022–13029. doi: 10.1021/jacs.6b07655. PubMed DOI
Levent A., Altun A., Taş S., Yardım Y., Şentürk Z. Voltammetric Behavior of Testosterone on Bismuth Film Electrode: Highly Sensitive Determination in Pharmaceuticals and Human Urine by Square-Wave Adsorptive Stripping Voltammetry. Electroanalysis. 2015;27:1219–1228. doi: 10.1002/elan.201400627. DOI
Chen Y., Liu Y., Shen X., Chang Z., Tang L., Dong W.-F., Li M., He J.-J. Ultrasensitive Detection of Testosterone Using Microring Resonator with Molecularly Imprinted Polymers. Sensors. 2015;15:31558–31565. doi: 10.3390/s151229877. PubMed DOI PMC
Levent A., Altun A., Yardım Y., Şentürk Z. Sensitive voltammetric determination of testosterone in pharmaceuticals and human urine using a glassy carbon electrode in the presence of cationic surfactant. Electrochim. Acta. 2014;128:54–60. doi: 10.1016/j.electacta.2013.10.024. DOI
Moura S.L., de Moraes R.R., dos Santos M.A.P., Pividori M.I., Lopes J.A.D., Moreira D.D.L., Zucolotto V., Júnior J.R.D.S. Electrochemical detection in vitro and electron transfer mechanism of testosterone using a modified electrode with a cobalt oxide film. Sens. Actuators B Chem. 2014;202:469–474. doi: 10.1016/j.snb.2014.05.104. DOI
Zhang Q., Jing L., Zhang J., Ren Y., Wang Y., Wang Y., Wei T., Liedberg B. Surface plasmon resonance sensor for femtomolar detection of testosterone with water-compatible macroporous molecularly imprinted film. Anal. Biochem. 2014;463:7–14. doi: 10.1016/j.ab.2014.06.014. PubMed DOI
Betatache A., Lagarde F., Sanglar C., Bonhomme A., Leonard D., Jaffrezic-Renault N. Gold electrodes modified with molecular imprinted acrylate polymer for impedimetric determination of testosterone. Sens. Transducers. 2014;27:92.
Goyal R.N., Gupta V.K., Chatterjee S. Electrochemical investigations of corticosteroid isomers—testosterone and epitestosterone and their simultaneous determination in human urine. Anal. Chim. Acta. 2010;657:147–153. doi: 10.1016/j.aca.2009.10.035. PubMed DOI
Goyal R.N., Chatterjee S., Bishnoi S. Effect of substrate and embedded metallic impurities of fullerene in the determination of nandrolone. Anal. Chim. Acta. 2009;643:95–99. doi: 10.1016/j.aca.2009.04.005. PubMed DOI
Chang K.S., Chen C.C., Sheu J.T., Li Y.-K. Detection of an uncharged steroid with a silicon nanowire field-effect transistor. Sens. Actuators B Chem. 2009;138:148–153. doi: 10.1016/j.snb.2009.02.059. DOI
Kreuzer M.P., Quidant R., Salvador J.-P., Marco M.-P., Badenes G. Colloidal-based localized surface plasmon resonance (LSPR) biosensor for the quantitative determination of stanozolol. Anal. Bioanal. Chem. 2008;391:1813–1820. doi: 10.1007/s00216-008-2022-z. PubMed DOI