Medicinal Use of Testosterone and Related Steroids Revisited

. 2021 Feb 15 ; 26 (4) : . [epub] 20210215

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33672087

Grantová podpora
No. CZ.02.1.01/0.0/0.0/16_019/0000845 European Regional Development Fund - Project
A1_FPBT_2020_004 The Institutional Plan of the UCT Prague

Testosterone derivatives and related compounds (such as anabolic-androgenic steroids-AAS) are frequently misused by athletes (both professional and amateur) wishing to promote muscle development and strength or to cover AAS misuse. Even though these agents are vastly regarded as abusive material, they have important pharmacological activities that cannot be easily replaced by other drugs and have therapeutic potential in a range of conditions (e.g., wasting syndromes, severe burns, muscle and bone injuries, anemia, hereditary angioedema). Testosterone and related steroids have been in some countries treated as controlled substances, which may affect the availability of these agents for patients who need them for therapeutic reasons in a given country. Although these agents are currently regarded as rather older generation drugs and their use may lead to serious side-effects, they still have medicinal value as androgenic, anabolic, and even anti-androgenic agents. This review summarizes and revisits the medicinal use of compounds based on the structure and biological activity of testosterone, with examples of specific compounds. Additionally, some of the newer androgenic-anabolic compounds are discussed such as selective androgen receptor modulators, the efficacy/adverse-effect profiles of which have not been sufficiently established and which may pose a greater risk than conventional androgenic-anabolic agents.

Zobrazit více v PubMed

Dewick P.M. Medicinal Natural Products: A Biosynthetic Approach. 3rd ed. Wiley & Sons; Chichester, UK: 2009.

Gao W., Bohl C.E., Dalton J.T. Chemistry and structural biology of androgen receptor. Chem. Rev. 2005;105:3352–3370. doi: 10.1021/cr020456u. PubMed DOI PMC

Peterson M.D., Belakovskiy A., McGrath R., Yarrow J.F. Testosterone deficiency, weakness, and multimorbidity in men. Sci. Rep. 2018;8 doi: 10.1038/s41598-018-24347-6. PubMed DOI PMC

Barceloux D.G., Palmer R.B. Anabolic-androgenic steroids. Dis. Mon. 2013;59:226–248. doi: 10.1016/j.disamonth.2013.03.010. PubMed DOI

Parkinson A.B., Evans N.A. Anabolic androgenic steroids: A survey of 500 users. Med. Sci. Sports Exerc. 2006;38:644–651. doi: 10.1249/01.mss.0000210194.56834.5d. PubMed DOI

de Ronde W., Smit D.L. Anabolic androgenic steroid abuse in young males. Endocr. Connect. 2020;9:R102–R111. doi: 10.1530/EC-19-0557. PubMed DOI PMC

Ullah M.I., Riche D.M., Koch C.A. Transdermal testosterone replacement therapy in men. Drug Des. Devel. Ther. 2014;8:101–112. doi: 10.2147/DDDT.S43475. PubMed DOI PMC

Efros M., Carrara D., Neijber A. The efficacy, bioavailability and safety of a novel hydroalcoholic testosterone gel 2% in hypogonadal men: Results from phase ii open-label studies. Andrologia. 2016;48:637–645. doi: 10.1111/and.12493. PubMed DOI

Dinsmore W.W., Wyllie M.G. The long-term efficacy and safety of a testosterone mucoadhesive buccal tablet in testosterone-deficient men. BJU Int. 2012;110:162–169. doi: 10.1111/j.1464-410X.2011.10837.x. PubMed DOI

Bloemers J., van Rooij K., de Leede L., Frijlink H.W., Koppeschaar H.P.F., Olivier B., Tuiten A. Single dose sublingual testosterone and oral sildenafil vs. a dual route/dual release fixed dose combination tablet: A pharmacokinetic comparison. Br. J. Clin. Pharmacol. 2016;81:1091–1102. doi: 10.1111/bcp.12887. PubMed DOI PMC

Banks W.A., Morley J.E., Niehoff M.L., Mattern C. Delivery of testosterone to the brain by intranasal administration: Comparison to intravenous testosterone. J. Drug Target. 2009;17:91–97. doi: 10.1080/10611860802382777. PubMed DOI

Saad F., Caliber M., Doros G., Haider K.S., Haider A. Long-term treatment with testosterone undecanoate injections in men with hypogonadism alleviates erectile dysfunction and reduces risk of major adverse cardiovascular events, prostate cancer, and mortality. Aging Male. 2020;23:81–92. doi: 10.1080/13685538.2019.1575354. PubMed DOI

Lobo R.A. Androgens in postmenopausal women: Production, possible role, and replacement options. Obstet. Gynecol. Surv. 2001;56:361–376. doi: 10.1097/00006254-200106000-00022. PubMed DOI

Ruzicka L., Goldberg M.W., Rosenberg H.R. Sexualhormone x. herstellung des 17-methyl-testosterons und anderer androsten- und androstanderivate. zusammenhänge zwischen chemischer konstitution und männlicher hormonwirkung. Helv. Chim. Acta. 1935;18:1487–1498. doi: 10.1002/hlca.193501801203. DOI

Laschet U., Laschet L., Paarmann H.F. Gonadotropin and steroid hormone excretion during treatment with 1-alpha-methyl-5-alpha-androstan-17-beta-ol-3-one (mesterolone) Arzneim.-ForschungDrug Res. 1966;16:469–471. PubMed

Corona G., Rastrelli G., Vignozzi L., Maggi M. Emerging medication for the treatment of male hypogonadism. Expert Opin. Emerg. Drugs. 2012;17:239–259. doi: 10.1517/14728214.2012.683411. PubMed DOI

Yoshihiko S., Shigeo B. Stable isotope methodology in the pharmacokinetic studies of androgenic steroids in humans. Steroids. 1990;55:170–176. doi: 10.1016/0039-128X(90)90106-L. PubMed DOI

Kicman A.T. Pharmacology of anabolic steroids. Br. J. Pharmacol. 2008;154:502–521. doi: 10.1038/bjp.2008.165. PubMed DOI PMC

Kasdon S.C., Fishman W.H., Dart R.M., Bonner C.D., Homburger F. Methylandrostenediol in palliative treatment of breast cancer. J. Am. Med. Assoc. 1952;148:1212–1216. doi: 10.1001/jama.1952.02930140044014. PubMed DOI

Homburger F., Kasdon S.C., Fishman W.H. Methylandrostenediol: A non-virilizing derivative of testosterone in metastatic cancer of the breast. Proc. Soc. Exp. Biol. Med. 1950;74:162–164. doi: 10.3181/00379727-74-17840. PubMed DOI

Holma P.K. Effects of an anabolic steroid (metandienone) on spermatogenesis. Contraception. 1977;15:151–162. doi: 10.1016/0010-7824(77)90013-0. PubMed DOI

Basaria S., Wahlstrom J.T., Dobs A.S. Anabolic-androgenic steroid therapy in the treatment of chronic diseases. J. Clin. Endocrinol. Metab. 2001;86:5108–5117. doi: 10.1210/jcem.86.11.7983. PubMed DOI

Strickland A.L. Long-term results of treatment with low-dose fluoxymesterone in constitutional delay of growth and puberty and in genetic short stature. Pediatrics. 1993;91:716–720. PubMed

Ingle J.N. Additive hormonal therapy in women with advanced breast cancer. Cancer. 1984;53:766–777. doi: 10.1002/1097-0142(19840201)53:3+<766::AID-CNCR2820531327>3.0.CO;2-H. PubMed DOI

Lo T.E.N., Andal Z.C., Lantion-Ang F.L. Fluoxymesterone-induced gynaecomastia in a patient with childhood aplastic anaemia. BMJ Case Rep. 2015;2015:bcr2014207474. doi: 10.1136/bcr-2014-207474. PubMed DOI PMC

Fürstenberger C., Vuorinen A., Da Cunha T., Kratschmar D.V., Saugy M., Schuster D., Odermatt A. The anabolic androgenic steroid fluoxymesterone inhibits 11β-hydroxysteroid dehydrogenase 2-dependent glucocorticoid inactivation. Toxicol. Sci. 2012;126:353–361. doi: 10.1093/toxsci/kfs022. PubMed DOI

Bennett M.B., Helman P., Palmer P. Hormonal therapy of breast cancer with special reference to masteril therapy. S. Afr. Med. J. 1975;49:2036–2040. PubMed

Krug K. Contribution to the pathophysiology of the aplastic anaemia and its treatment with metenolone enanthate. Z. Gesamte Inn. Med. 1980;35:809–812. PubMed

Orr R., Fiatarone Singh M. The anabolic androgenic steroid oxandrolone in the treatment of wasting and catabolic disorders: Review of efficacy and safety. Drugs. 2004;64:725–750. doi: 10.2165/00003495-200464070-00004. PubMed DOI

Church J.A. Oxandrolone treatment of childhood hereditary angioedema. Ann. Allergy. Asthma. Immunol. 2004;92:377–378. doi: 10.1016/S1081-1206(10)61578-5. PubMed DOI

Reeves P.T., Herndon D.N., Tanksley J.D., Jennings K., Klein G.L., Mlcak R.P., Clayton R.P., Crites N.N., Hays J.P., Andersen C., et al. Five-year outcomes after long-term oxandrolone administration in severely burned children: A randomized clinical trial. Shock Augusta Ga. 2016;45:367–374. doi: 10.1097/SHK.0000000000000517. PubMed DOI PMC

Rosenfeld R.G., France J., Attie K.M., Brasel J.A., Burstein S., Cara J.F., Chernausek S., Gotlin R.W., Kuntze J., Lippe B.M., et al. Six-year results of a randomized, prospective trial of human growth hormone and oxandrolone in turner syndrome. J. Pediatr. 1992;121:49–55. doi: 10.1016/S0022-3476(05)82540-5. PubMed DOI

Keele D.K., Vose G.P. A study of bone density: Comparison of the effects of sodium fluoride, inorganic phosphates, and an anabolic steroid (oxymetholone) on demineralized bone. Am. J. Dis. Child. 1969;118:759–764. doi: 10.1001/archpedi.1969.02100040761013. PubMed DOI

Hengge U.R., Stocks K., Faulkner S., Wiehler H., Lorenz C., Jentzen W., Hengge D., Ringham G. Oxymetholone for the treatment of hiv-wasting: A double-blind, randomized, placebo-controlled phase iii trial in eugonadal men and women. HIV Clin. Trials. 2003;4:150–163. doi: 10.1310/9V0C-YADY-UJNV-T2RT. PubMed DOI

Pavlatos A.M., Fultz O., Monberg M.J., Vootkur A. Review of oxymetholone: A 17α-alkylated anabolic-androgenic steroid. Clin. Ther. 2001;23:789–801. doi: 10.1016/S0149-2918(01)80070-9. PubMed DOI

Chesnut III C.H., Ivey J.L., Gruber H.E., Matthews M., Nelp W.B., Sisom K., Baylink D.J. Stanozolol in postmenopausal osteoporosis: Therapeutic efficacy and possible mechanisms of action. Metabolism. 1983;32:571–580. doi: 10.1016/0026-0495(83)90027-6. PubMed DOI

Bork K. Current management options for hereditary angioedema. Curr. Allergy Asthma Rep. 2012;12:273–280. doi: 10.1007/s11882-012-0273-4. PubMed DOI

Sloane D.E., Lee C.W., Sheffer A.L. Hereditary angioedema: Safety of long-term stanozolol therapy. J. Allergy Clin. Immunol. 2007;120:654–658. doi: 10.1016/j.jaci.2007.06.037. PubMed DOI

Morton I.K.M., Hall J.M. Concise Dictionary of Pharmacological Agents: Properties and Synonyms. Kluwer Academic Publishers; Dordrecht, The Netherlands: 1999.

Schwarz S., Onken D., Schubert A. The steroid story of jenapharm: From the late 1940s to the early 1970s. Steroids. 1999;64:439–445. doi: 10.1016/S0039-128X(99)00003-3. PubMed DOI

Gold J., Batterham M.J., Rekers H., Harms M.K., Geurts T.B.P., Helmyr P.M.E., Silva de Mendonça J., Carvalho L.H.F., Panos G., Pinchera A., et al. Effects of nandrolone decanoate compared with placebo or testosterone on hiv-associated wasting. HIV Med. 2006;7:146–155. doi: 10.1111/j.1468-1293.2006.00358.x. PubMed DOI

Geusens P. Nandrolone decanoate: Pharmacological properties and therapeutic use in osteoporosis. Clin. Rheumatol. 1995;14:32–39. doi: 10.1007/BF02210686. PubMed DOI

Heinonen E., Alanko A., Gröhn P., Rissanen P. Nandrolone decanoate added to tamoxifen in the treatment of advanced breast cancer. Breast Cancer Res. Treat. 1985;5:75–80. doi: 10.1007/BF01807653. PubMed DOI

Elks J. The Dictionary of Drugs: Chemical Data: Chemical Data, Structures and Bibliographies. Springer; Dordrecht, The Netherlands: 2013.

Furuhjelm U., Eklund J. Treatment of aplastic anemia with anabolic steroids and corticosteroids. Ann. Paediatr. Fenn. 1966;12:89–95. PubMed

Thomas J.A. Drugs, Athletes, and Physical Performance. Springer; New York, NY, USA: 2012.

Ebadi M. Desk Reference of Clinical Pharmacology. CRC Press; Boca Raton, FL, USA: 2008.

Cunliffe W.J., Menon I.S. Treatment of behcet’s syndrome with phenformin and ethyloestrenol. Lancet. 1969;1:1239–1240. doi: 10.1016/S0140-6736(69)92118-7. PubMed DOI

Nilsson B., Nilsson I.M., Hedner U. Δ4-Ethylestrenol in recurrent deep venous thrombosis. Acta Med. Scand. 1981;209:45–49. doi: 10.1111/j.0954-6820.1981.tb11550.x. PubMed DOI

Fearnley G.R., Chakrabarti R. Phenformin and ethyloestrenol for raynaud’s disease. Lancet. 1969;2:1203. doi: 10.1016/S0140-6736(69)92532-X. PubMed DOI

Miller R.L. The Encyclopedia of Addictive Drugs. Greenwood Publishing Group; Westport, CT, USA: 2002.

Watson R.N., Bradley M.H., Callahan R., Peters B.J., Kory R.C. A six-month evaluation of an anabolic drug, norethandrolone, in underweight persons. i. weight gain. Am. J. Med. 1959;26:238–242. doi: 10.1016/0002-9343(59)90312-2. PubMed DOI

Kroulik W.J. Norethandrolone (nilevar) in the treatment of severely burned victims of the chicago school fire. J. Int. Coll. Surg. 1959;32:359–368. doi: 10.1097/00006534-196003000-00028. PubMed DOI

Najean Y., Pecking A., Danvic M.L., The Cooperative Group for the Study of Aplastic and Refractory Anaemias Secretaries Androgen therapy of aplastic anaemia -a prospective study of 352 cases. Scand. J. Haematol. 1979;22:343–356. doi: 10.1111/j.1600-0609.1979.tb00430.x. PubMed DOI

Schiffer B., Daxenberger A., Meyer K., Meyer H.H. The fate of trenbolone acetate and melengestrol acetate after application as growth promoters in cattle: Environmental studies. Environ. Health Perspect. 2001;109:1145–1151. doi: 10.1289/ehp.011091145. PubMed DOI PMC

Yarrow J.F., McCoy S.C., Borst S.E. Tissue selectivity and potential clinical applications of trenbolone (17β-hydroxyestra-4,9,11-trien-3-one): A potent anabolic steroid with reduced androgenic and estrogenic activity. Steroids. 2010;75:377–389. doi: 10.1016/j.steroids.2010.01.019. PubMed DOI

Nieschlag E., Kumar N., Sitruk-Ware R. 7α-methyl-19-nortestosterone (mentr): The population council’s contribution to research on male contraception and treatment of hypogonadism. Contraception. 2013;87:288–295. doi: 10.1016/j.contraception.2012.08.036. PubMed DOI

Attardi B.J., Engbring J.A., Gropp D., Hild S.A. Development of dimethandrolone 17β-undecanoate (dmau) as an oral male hormonal contraceptive: Induction of infertility and recovery of fertility in adult male rabbits. J. Androl. 2011;32:530–540. doi: 10.2164/jandrol.110.011817. PubMed DOI

Friedel A., Geyer H., Kamber M., Laudenbach-Leschowsky U., Schänzer W., Thevis M., Vollmer G., Zierau O., Diel P. 17β-hydroxy-5alpha-androst-1-en-3-one (1-testosterone) is a potent androgen with anabolic properties. Toxicol. Lett. 2006;165:149–155. doi: 10.1016/j.toxlet.2006.03.001. PubMed DOI

Jasiurkowski B., Raj J., Wisinger D., Carlson R., Zou L., Nadir A. Cholestatic jaundice and iga nephropathy induced by otc muscle building agent superdrol. Am. J. Gastroenterol. 2006;101:2659–2662. doi: 10.1111/j.1572-0241.2006.00735.x. PubMed DOI

Diel P., Friedel A., Geyer H., Kamber M., Laudenbach-Leschowsky U., Schänzer W., Thevis M., Vollmer G., Zierau O. Characterisation of the pharmacological profile of desoxymethyltestosterone (madol), a steroid misused for doping. Toxicol. Lett. 2007;169:64–71. doi: 10.1016/j.toxlet.2006.12.004. PubMed DOI

Catlin D.H., Sekera M.H., Ahrens B.D., Starcevic B., Chang Y.-C., Hatton C.K. Tetrahydrogestrinone: Discovery, synthesis, and detection in urine. Rapid Commun. Mass Spectrom. 2004;18:1245–1249. doi: 10.1002/rcm.1495. PubMed DOI

Catlin D.H., Ahrens B.D., Kucherova Y. Detection of norbolethone, an anabolic steroid never marketed, in athletes’ urine. Rapid Commun. Mass Spectrom. 2002;16:1273–1275. doi: 10.1002/rcm.722. PubMed DOI

Takeda A.-N., Pinon G.M., Bens M., Fagart J., Rafestin-Oblin M.-E., Vandewalle A. The synthetic androgen methyltrienolone (r1881) acts as a potent antagonist of the mineralocorticoid receptor. Mol. Pharmacol. 2007;71:473–482. doi: 10.1124/mol.106.031112. PubMed DOI

Joseph J.F., Parr M.K. Synthetic androgens as designer supplements. Curr. Neuropharmacol. 2015;13:89–100. doi: 10.2174/1570159X13666141210224756. PubMed DOI PMC

Piper T., Fusshöller G., Schänzer W., Lagojda A., Kuehne D., Thevis M. Studies on the in vivo metabolism of methylstenbolone and detection of novel long term metabolites for doping control analysis. Drug Test. Anal. 2019;11:1644–1655. doi: 10.1002/dta.2736. PubMed DOI

Mohler M.L., Bohl C.E., Jones A., Coss C.C., Narayanan R., He Y., Dong J.H., Dalton J.T., Miller D.D. Nonsteroidal selective androgen receptor modulators (sarms): Dissociating the anabolic and androgenic activities of the androgen receptor for therapeutic benefit. J. Med. Chem. 2009;52:3597–3617. doi: 10.1021/jm900280m. PubMed DOI

Meyer L. FDA In Brief: FDA Warns against Using SARMs in Body-Building Products. [(accessed on 6 February 2020)]; Available online: https://www.fda.gov/news-events/fda-brief/fda-brief-fda-warns-against-using-sarms-body-building-products.

Dalton J.T., Barnette K.G., Bohl C.E., Hancock M.L., Rodriguez D., Dodson S.T., Morton R.A., Steiner M.S. The selective androgen receptor modulator gtx-024 (enobosarm) improves lean body mass and physical function in healthy elderly men and postmenopausal women: Results of a double-blind, placebo-controlled phase ii trial. J. Cachexia Sarcopenia Muscle. 2011;2:153–161. doi: 10.1007/s13539-011-0034-6. PubMed DOI PMC

Dobs A.S., Boccia R.V., Croot C.C., Gabrail N.Y., Dalton J.T., Hancock M.L., Johnston M.A., Steiner M.S. Effects of enobosarm on muscle wasting and physical function in patients with cancer: A double-blind, randomised controlled phase 2 trial. Lancet Oncol. 2013;14:335–345. doi: 10.1016/S1470-2045(13)70055-X. PubMed DOI PMC

Srinath R., Dobs A. Enobosarm (gtx-024, s-22): A potential treatment for cachexia. Future Oncol. 2014;10:187–194. doi: 10.2217/fon.13.273. PubMed DOI

Crawford J., Prado C.M.M., Johnston M.A., Gralla R.J., Taylor R.P., Hancock M.L., Dalton J.T. Study design and rationale for the phase 3 clinical development program of enobosarm, a selective androgen receptor modulator, for the prevention and treatment of muscle wasting in cancer patients (power trials) Curr. Oncol. Rep. 2016;18 doi: 10.1007/s11912-016-0522-0. PubMed DOI PMC

Narayanan R., Coss C.C., Dalton J.T. Development of selective androgen receptor modulators (sarms) Mol. Cell. Endocrinol. 2018;465:134–142. doi: 10.1016/j.mce.2017.06.013. PubMed DOI PMC

Basaria S., Collins L., Dillon E.L., Orwoll K., Storer T.W., Miciek R., Ulloor J., Zhang A., Eder R., Zientek H., et al. The safety, pharmacokinetics, and effects of lgd-4033, a novel nonsteroidal oral, selective androgen receptor modulator, in healthy young men. J. Gerontol.-Ser. Biol. Sci. Med. Sci. 2013;68:87–95. doi: 10.1093/gerona/gls078. PubMed DOI PMC

Fragkaki A.G., Sakellariou P., Kiousi P., Kioukia-Fougia N., Tsivou M., Petrou M., Angelis Y. Human in vivo metabolism study of lgd-4033. Drug Test. Anal. 2018;10:1635–1645. doi: 10.1002/dta.2512. PubMed DOI

Ostrowski J., Kuhns J.E., Lupisella J.A., Manfredi M.C., Beehler B.C., Krystek S.R., Jr., Bi Y., Sun C., Seethala R., Golla R., et al. Pharmacological and x-ray structural characterization of a novel selective androgen receptor modulator: Potent hyperanabolic stimulation of skeletal muscle with hypostimulation of prostate in rats. Endocrinology. 2007;148:4–12. doi: 10.1210/en.2006-0843. PubMed DOI

Mealy N.E., Bás M. BMS-564929. Drugs Future. 2004;29:1132.

Piu F., Gardell L.R., Son T., Schlienger N., Lund B.W., Schiffer H.H., Vanover K.E., Davis R.E., Olsson R., Bradley S.R. Pharmacological characterization of ac-262536, a novel selective androgen receptor modulator. J. Steroid Biochem. Mol. Biol. 2008;109:129–137. doi: 10.1016/j.jsbmb.2007.11.001. PubMed DOI

Van Oeveren A., Motamedi M., Mani N.S., Marschke K.B., López F.J., Schrader W.T., Negro-Vilar A., Zhi L. Discovery of 6-n,n-bis(2,2,2-trifluoroethyl)amino-4- trifluoromethylquinolin-2(1h)-one as a novel selective androgen receptor modulator. J. Med. Chem. 2006;49:6143–6146. doi: 10.1021/jm060792t. PubMed DOI

Vajda E.G., López F.J., Rix P., Hill R., Chen Y., Lee K.-J., O’Brien Z., Chang W.Y., Meglasson M.D., Lee Y.-H. Pharmacokinetics and pharmacodynamics of lgd-3303 [9-chloro-2-ethyl-1- methyl-3-(2,2,2-trifluoroethyl)-3h-pyrrolo-[3,2-f]quinolin-7(6h)-one], an orally available nonsteroidal-selective androgen receptor modulator. J. Pharmacol. Exp. Ther. 2009;328:663–670. doi: 10.1124/jpet.108.146811. PubMed DOI

Hanada K., Furuya K., Yamamoto N., Nejishima H., Ichikawa K., Nakamura T., Miyakawa M., Amano S., Sumita Y., Oguro N. Bone anabolic effects of s-40503, a novel nonsteroidal selective androgen receptor modulator (sarm), in rat models of osteoporosis. Biol. Pharm. Bull. 2003;26:1563–1569. doi: 10.1248/bpb.26.1563. PubMed DOI

Jones A., Chen J., Hwang D.J., Miller D.D., Dalton J.T. Preclinical characterization of a (s)-n-(4-cyano-3-trifluoromethyl-phenyl)- 3-(3-fluoro, 4-chlorophenoxy)-2-hydroxy-2-methyl-propanamide: A selective androgen receptor modulator for hormonal male contraception. Endocrinology. 2009;150:385–395. doi: 10.1210/en.2008-0674. PubMed DOI PMC

Hansson A., Knych H., Stanley S., Thevis M., Bondesson U., Hedeland M. Investigation of the selective androgen receptor modulators s1, s4 and s22 and their metabolites in equine plasma using high-resolution mass spectrometry. Rapid Commun. Mass Spectrom. 2016;30:833–842. doi: 10.1002/rcm.7512. PubMed DOI

Chen J., Dong J.H., Bohl C.E., Miller D.D., Dalton J.T. A selective androgen receptor modulator for hormonal male contraception. J. Pharmacol. Exp. Ther. 2005;312:546–553. doi: 10.1124/jpet.104.075424. PubMed DOI

Miller C.P., Shomali M., Lyttle C.R., O’dea L.S.L., Herendeen H., Gallacher K., Paquin D., Compton D.R., Sahoo B., Kerrigan S.A., et al. Design, synthesis, and preclinical characterization of the selective androgen receptor modulator (sarm) rad140. ACS Med. Chem. Lett. 2011;2:124–129. doi: 10.1021/ml1002508. PubMed DOI PMC

Gao W., Dalton J.T. Expanding the therapeutic use of androgens via selective androgen receptor modulators (sarms) Drug Discov. Today. 2007;12:241–248. doi: 10.1016/j.drudis.2007.01.003. PubMed DOI PMC

Yin D., Xu H., He Y., Kirkovsky L.I., Miller D.D., Dalton J.T. Pharmacology, pharmacokinetics, and metabolism of acetothiolutamide, a novel nonsteroidal agonist for the androgen receptor. J. Pharmacol. Exp. Ther. 2003;304:1323–1333. doi: 10.1124/jpet.102.040832. PubMed DOI

Thevis M. Detection of the arylpropionamide-derived selective androgen receptor modulator (sarm) s-4 (andarine) in a black-market product. Drug Test. Anal. 2009;1:387–392. doi: 10.1002/dta.91. PubMed DOI

Hamann L.G., Mani N.S., Davis R.L., Wang X.-N., Marschke K.B., Jones T.K. Discovery of a potent, orally active, nonsteroidal androgen receptor agonist: 4-ethyl-1,2,3,4-tetrahydro-6-(trifluoromethyl)-8-pyridono[5,6-g]- quinoline (lg121071) [3] J. Med. Chem. 1999;42:210–212. doi: 10.1021/jm9806648. PubMed DOI

Schmidt A., Harada S.-I., Kimmel D.B., Bai C., Chen F., Rutledge S.J., Vogel R.L., Scafonas A., Gentile M.A., Nantermet P.V., et al. Identification of anabolic selective androgen receptor modulators with reduced activities in reproductive tissues and sebaceous glands. J. Biol. Chem. 2009;284:36367–36376. doi: 10.1074/jbc.M109.049734. PubMed DOI PMC

Schmidt A., Kimmel D.B., Bai C., Scafonas A., Rutledge S., Vogel R.L., McElwee-Witmer S., Chen F., Nantermet P.V., Kasparcova V., et al. Discovery of the selective androgen receptor modulator mk-0773 using a rational development strategy based on differential transcriptional requirements for androgenic anabolism versus reproductive physiology. J. Biol. Chem. 2010;285:17054–17064. doi: 10.1074/jbc.M109.099002. PubMed DOI PMC

Gao W., Kim J., Dalton J.T. Pharmacokinetics and pharmacodynamics of nonsteroidal androgen receptor ligands. Pharm. Res. 2006;23:1641–1658. doi: 10.1007/s11095-006-9024-3. PubMed DOI PMC

Yatsu T., Kusakabe T., Kato K., Inouye Y., Nemoto K., Kanno Y. Selective androgen receptor modulator, yk11, up-regulates osteoblastic proliferation and differentiation in mc3t3-e1 cells. Biol. Pharm. Bull. 2018;41:394–398. doi: 10.1248/bpb.b17-00748. PubMed DOI

Brown G.A., Vukovich M., King D.S. Testosterone prohormone supplements. Med. Sci. Sports Exerc. 2006;38:1451–1460. doi: 10.1249/01.mss.0000228928.69512.2e. PubMed DOI

Yen S.S.C. Dehydroepiandrosterone sulfate and longevity: New clues for an old friend. Proc. Natl. Acad. Sci. USA. 2001;98:8167–8169. doi: 10.1073/pnas.161278698. PubMed DOI PMC

Van Gammeren D., Falk D., Antonio J. Effects of norandrostenedione and norandrostenediol in resistance-trained men. Nutrition. 2002;18:734–737. doi: 10.1016/S0899-9007(02)00834-1. PubMed DOI

Warren M.P., Constantini N.W. Sports Endocrinology. Humana Press; Totowa, NJ, USA: 2000.

Pokrywka A., Obmiński Z., Malczewska-Lenczowska J., Fijałek Z., Turek-Lepa E., Grucza R. Insights into supplements with tribulus terrestris used by athletes. J. Hum. Kinet. 2014;41:99–105. doi: 10.2478/hukin-2014-0037. PubMed DOI PMC

Sautour M., Mitaine-Offer A.-C., Lacaille-Dubois M.-A. The dioscorea genus: A review of bioactive steroid saponins. J. Nat. Med. 2007;61:91–101. doi: 10.1007/s11418-006-0126-3. DOI

Price E.J., Wilkin P., Sarasan V., Fraser P.D. Metabolite profiling of dioscorea (yam) species reveals underutilised biodiversity and renewable sources for high-value compounds. Sci. Rep. 2016;6 doi: 10.1038/srep29136. PubMed DOI PMC

Yi D., Yan-Yong C., De-Zu W., Chong-Ren Y. Steroidal saponins from a cultivated form of agave sisalana. Phytochemistry. 1989;28:2787–2791. doi: 10.1016/S0031-9422(00)98089-0. DOI

Parr M.K., Ambrosio G., Wuest B., Mazzarino M., de la Torre X., Sibilia F., Joseph J.F., Diel P., Botrè F. Targeting the administration of ecdysterone in doping control samples. Forensic Toxicol. 2020;38:172–184. doi: 10.1007/s11419-019-00504-y. DOI

Koduru S., Kumar R., Srinivasan S., Evers M.B., Damodaran C. Notch-1 inhibition by withaferin-a: A therapeutic target against colon carcinogenesis. Mol. Cancer Ther. 2010;9:202–210. doi: 10.1158/1535-7163.MCT-09-0771. PubMed DOI PMC

Davydov M., Krikorian A.D. Eleutherococcus senticosus (rupr. and maxim.) maxim. (araliaceae) as an adaptogen: A closer look. J. Ethnopharmacol. 2000;72:345–393. doi: 10.1016/S0378-8741(00)00181-1. PubMed DOI

Park J.D., Rhee D.K., Lee Y.H. Biological activities and chemistry of saponins from panax ginseng c. a. meyer. Phytochem. Rev. 2005;4:159–175. doi: 10.1007/s11101-005-2835-8. DOI

Shaw I.C. Food Safety: The Science of Keeping Food Safe. Wiley-Blackwell; Chichester, UK: 2018. Food Supplements; pp. 452–483.

Miyake K., Tezuka Y., Awale S., Li F., Kadota S. Quassinoids from eurycoma longifolia. J. Nat. Prod. 2009;72:2135–2140. doi: 10.1021/np900486f. PubMed DOI

Szewczyk K., Zidorn C. Ethnobotany, phytochemistry, and bioactivity of the genus turnera (passifloraceae) with a focus on damiana-turnera diffusa. J. Ethnopharmacol. 2014;152:424–443. doi: 10.1016/j.jep.2014.01.019. PubMed DOI

Abarikwu S.O., Onuah C.L., Singh S.K. Plants in the management of male infertility. Andrologia. 2020;52 doi: 10.1111/and.13509. PubMed DOI

Neumann F. The antiandrogen cyproterone acetate: Discovery, chemistry, basic pharmacology, clinical use and tool in basic research. Exp. Clin. Endocrinol. Diabetes. 1994;102:1–32. doi: 10.1055/s-0029-1211261. PubMed DOI

Diviccaro S., Melcangi R.C., Giatti S. Post-finasteride syndrome: An emerging clinical problem. Neurobiol. Stress. 2020;12:100209. doi: 10.1016/j.ynstr.2019.100209. PubMed DOI PMC

De Bono J.S., Logothetis C.J., Molina A., Fizazi K., North S., Chu L., Chi K.N., Jones R.J., Goodman O.B., Jr., Saad F., et al. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 2011;364:1995–2005. doi: 10.1056/NEJMoa1014618. PubMed DOI PMC

Bromham D.R., Booker M.W., Rose G.L., Wardle P.G., Newton J.R. A multicentre comparative study of gestrinone and danazol in the treatment of endometriosis. J. Obstet. Gynaecol. 1995;15:188–194. doi: 10.3109/01443619509015498. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace