Tailor-Made Immunochromatographic Test for the Detection of Multiple 17α-Methylated Anabolics in Dietary Supplements
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33915816
PubMed Central
PMC8065520
DOI
10.3390/foods10040741
PII: foods10040741
Knihovny.cz E-zdroje
- Klíčová slova
- 17α-methylated AAS, anabolic steroids (AAS), dietary supplements, immunochromatography, stanazolol,
- Publikační typ
- časopisecké články MeSH
In recent years, the undeclared presence of various anabolic androgenic steroids (AAS) in commercial supplements has been confirmed. This fact can be a potential threat to all athletes using these supplements, and therefore, there is of increased interest in the implementation of rapid methods for the detection of AAS. The presented study describes the development of an immunostrip test for the detection of multiple 17α-methylated AAS based on direct and indirect competitive principle using gold nanoparticles as a label. As a capture reagent on test lines conjugated stanazolol to rabbit serum albumin (RSA/ST-3) was used, the intensity of color formed in the test line of the AAS-positive sample was visually distinguishable from that of negative sample within 10 min. The optimized closed direct and indirect format of the test provided a similar visual detection limit (0.7 and 0.9 ng/mL, respectively). The most commonly orally abused AAS (17α-methyltestosterone, methandienone, methyldihydrotestosterone, oxandrolone and oxymetholone) showed a strong cross-reaction. Developed immunostrips were successfully applied to analysis of artificially contaminated dietary supplements with 17α-methylated AASs. The developed immunostrips offer potential as a useful user-friendly method for capturing suspicious dietary supplement samples with different contents of AAS at levels far below the usually used concentrations of AAS.
Zobrazit více v PubMed
Geyer H., Parr M.K., Mareck U., Reinhart U., Schrader Y., Schanzer W. Analysis of non-hormonal nutritional supplements for anabolic-androgenic steroids-results of an international study. Int. J. Sports Med. 2004;25:124–129. doi: 10.1055/s-2004-819955. PubMed DOI
De Cock K.J., Delbeke F.T., Van Eenoo P., Desmet N., Roels K., De Backer P. Detection and determination of anabolic steroids in nutritional supplements. J. Pharm. Biomed. Anal. 2001;25:843–852. doi: 10.1016/S0731-7085(01)00396-X. PubMed DOI
Walpurgis K., Thomas A., Geyer H., Mareck U., Thevis M. Dietary supplement and food tontaminations and their implications for doping controls. Foods. 2020;9:1012. doi: 10.3390/foods9081012. PubMed DOI PMC
Martinez-Sanz J.M., Sospedra I., Ortiz C.M., Baladia E., Gil-Izquierdo A., Ortiz-Moncada R. Intended or unintended doping? A review of the presence of doping substances in dietary supplements used in sports. Nutrients. 2017;9:1093. doi: 10.3390/nu9101093. PubMed DOI PMC
Baume N., Mahler N., Kamber M., Mangin P., Saugy M. Research of stimulants and anabolic steroids in dietary supplements. Scand. J. Med. Sci. Sports. 2006;16:41–48. doi: 10.1111/j.1600-0838.2005.00442.x. PubMed DOI
Jurášek M., Göselová S., Mikšátková P., Holubová B., Vyšatová E., Kuchař M., Fukal L., Lapčík O., Drašar P. Highly sensitive avidin-biotin ELISA for detection of nandrolone and testosterone in dietary supplements. Drug Test. Anal. 2017;9:553–560. doi: 10.1002/dta.2005. PubMed DOI
Huml L., Havlová D., Longin O., Staňková E., Holubová B., Kuchař M., Prokudina E., Rottnerová Z., Zimmermann T., Drašar P., et al. Stanazolol derived ELISA as a sensitive forensic tool for the detection of multiple 17α-methylated anabolics. Steroids. 2020;155:108550. doi: 10.1016/j.steroids.2019.108550. PubMed DOI
Fojtíková L., Fukal L., Blažková M., Sýkorová S., Kuchař M., Mikšátková P., Lapčík O., Holubová B. Development of enzyme-linked immunosorbent assay for determination of boldenone in dietary supplements. Food Anal. Methods. 2016;9:3179–3186. doi: 10.1007/s12161-016-0511-9. DOI
Sýkorová S., Fojtíková L., Kuchař M., Mikšátková P., Karamonová L., Fukal L., Lapčík O., Holubová B. Sensitive enzyme immunoassay for screening methandienone in dietary supplements. Food Addit. Contam. Part. A. 2018;35:1653–1661. doi: 10.1080/19440049.2018.1459876. PubMed DOI
Urusov A.E., Petrakova A.V., Zherdev A.V., Dzantiev B.B. “Multistage in one touch” design with a universal labelling conjugate for high-sensitive lateral flow immunoassays. Biosens. Bioelectron. 2016;86:575–579. doi: 10.1016/j.bios.2016.07.027. PubMed DOI
Agnamey P., Sarfati C., Pinel C., Rabodoniriina M., Kapel N., Dutoit E., Garnaud C., Diouf M., Garin J.F., Totet A., et al. Evaluation of four commercial rapid immunochromatographic assays for detection of Cryptosporidium antigens in stool samples: A blind multicenter trial. J. Clin. Microbiol. 2011;49:1605–1607. doi: 10.1128/JCM.02074-10. PubMed DOI PMC
Song L.-W., Wang Y.-B., Fang L.-L., Wu Y., Yang L., Chen J.-Y., Ge S.-X., Zhang J., Xiong Y.-Z., Deng X.-M., et al. Rapid fluorescent lateral-flow immunoassay for hepatitis B virus genotyping. Anal. Chem. 2015;87:5173–5180. doi: 10.1021/ac504832c. PubMed DOI
Khlebtsov B.N., Tumskiy R.S., Burov A.M., Pylaev T.E., Khlebtsov N.G. Quantifying the numbers of gold nanoparticles in the test zone of lateral flow immunoassay strips. ACS Appl. Nano Mater. 2019;2:5020–5028. doi: 10.1021/acsanm.9b00956. DOI
Nicol T., Lefeuvre C., Serri O., Pivert A., Joubaud F., Dubée V., Kouatchet A., Ducancelle A., Lunel-Fabiani F., Le Guillou-Guillemette H. Assessment of SARS-CoV-2 serological tests for the diagnosis of COVID-19 through the evaluation of three immunoassays: Two automated immunoassays (Euroimmun and Abbott) and one rapid lateral flow immunoassay (NG Biotech) J. Clin. Virol. 2020;129:104511. doi: 10.1016/j.jcv.2020.104511. PubMed DOI PMC
Karakus C., Salih B.A. Comparison of the lateral flow immunoassays (LFIA) for the diagnosis of Helicobacter pylori infection. J. Immunol. Methods. 2013;396:8–14. doi: 10.1016/j.jim.2013.08.010. PubMed DOI
Wiriyachaiporn S., Howarth P.H., Bruce K.D., Dailey L.A. Evaluation of a rapid lateral flow immunoassay for Staphylococcus aureus detection in respiratory samples. Diagnostic Microbiology and Infectious Disease. 2013;75:28–36. doi: 10.1016/j.diagmicrobio.2012.09.011. PubMed DOI
Li J., Ma B., Fang J., Zhi A., Chen E., Xu Y., Yu X., Sun C., Zhang M. Recombinase polymerase amplification (RPA) combined with lateral flow immunoassay for rapid detection of Salmonella in food. Foods. 2020;9:27. doi: 10.3390/foods9010027. PubMed DOI PMC
Upadhyay N., Nara S. Lateral flow assay for rapid detection of Staphylococcus aureus enterotoxin A in milk. Microchem. J. 2018;137:435–442. doi: 10.1016/j.microc.2017.12.011. DOI
Zvereva E.A., Hendrickson O.D., Zherdev A.V., Dzantiev B.B. Immunochromatographic tests for the detection of microcystin-LR toxin in water and fish samples. Anal. Methods. 2020;12:392–400. doi: 10.1039/C9AY01970G. DOI
Pan M., Ma T., Yang J., Li S., Liu S., Wang S. Development of lateral flow immunochromatographic assays using colloidal Au sphere and nanorods as signal marker for the determination of zearalenone in cereals. Foods. 2020;9:281. doi: 10.3390/foods9030281. PubMed DOI PMC
Blažková M., Micková-Holubová B., Rauch P., Fukal L. Immunochromatographic colloidal carbon-based assay for detection of methiocarb in surface water. Biosens. Bioelectron. 2009;25:753–758. doi: 10.1016/j.bios.2009.08.023. PubMed DOI
Bayoumy S., Hyytiä H., Leivo J., Talha S.M., Huhtinen K., Poutanen M., Hynninen J., Perheentupa A., Lamminmäki U., Gidwani K., et al. Glycovariant-based lateral flow immunoassay to detect ovarian cancer–associated serum CA125. Commun. Biol. 2020;3:1–7. doi: 10.1038/s42003-020-01191-x. PubMed DOI PMC
Fang C.C., Chou C.C., Yang Y.Q., Wei-Kai T., Wang Y.T., Chan Y.H. Multiplexed detection of tumor markers with multicolor polymer dot-based immunochromatography test strip. Anal. Chem. 2018;90:2134–2140. doi: 10.1021/acs.analchem.7b04411. PubMed DOI
Berlina A.N., Bartosh A.V., Zherdev A.V., Xu C.L., Dzantiev B.B. Development of immunochromatographic assay for determination of tetracycline in human serum. Antibiotics. 2018;7:99. doi: 10.3390/antibiotics7040099. PubMed DOI PMC
Hendrickson O.D., Zvereva E.A., Shanin I.A., Zherdev A.V., Tarannum N., Dzantiev B.B. Highly sensitive immunochromatographic detection of antibiotic ciprofloxacin in milk. Appl. Biochem. Microbiol. 2018;54:670–676. doi: 10.1134/S000368381806008X. DOI
Fojtíková L., Šuláková A., Blažková M., Holubová B., Kuchař M., Mikšátková P., Lapčík O., Fukal L. Lateral flow immunoassay and enzyme linked immunosorbent assay as effective immunomethods for the detection of synthetic cannabinoid JWH-200 based on the newly synthesized hapten. Toxicol. Rep. 2018;5:65–75. doi: 10.1016/j.toxrep.2017.12.004. PubMed DOI PMC
Wennig R., Moeller M.R., Haguenoer J.M., Marocchi A., Zoppi F., Smith B.L., de la Torre R., Carstensen C.A., Goerlach-Graw A., Schaeffler J., et al. Development and evaluation of immunochromatographic rapid tests for screening of cannabinoids, cocaine, and opiates in urine. J. Anal. Toxicol. 1998;22:148–155. doi: 10.1093/jat/22.2.148. PubMed DOI
Zhang Y., Xiao W., Kong H., Cheng J.J., Yan X., Zhang M.L., Wang Q.G., Qu H.H., Zhao Y.A. Highly sensitive immunochromatographic strip test for rapid and quantitative detection of Saikosaponind. Molecules. 2018;23:338. doi: 10.3390/molecules23020338. PubMed DOI PMC
Wang M., Guo L., Yu M., Zhao H. The application of a lateral flow immunographic assay to rapidly test for dexamethasone in commercial facial masks. Anal. Bioanal. Chem. 2019;411:5703–5710. doi: 10.1007/s00216-019-01948-2. PubMed DOI PMC
Samsonova J.V., Safronova V.A., Osipov A.P. Pretreatment-free lateral flow enzyme immunoassay for progesterone detection in whole cows milk. Talanta. 2015;132:685–689. doi: 10.1016/j.talanta.2014.10.043. PubMed DOI
Oh H.K., Kim J.W., Kim J.M., Kim M.G. High sensitive and broad-range detection of cortisol in human saliva using a trap lateral flow immunoassay (trapLFI) sensor. Analyst. 2018;143:3883–3889. doi: 10.1039/C8AN00719E. PubMed DOI
Liu L.Q., Peng C.F., Jin Z.Y., Xu C.L. Development and evaluation of a rapid lateral flow immunochromatographic strip assay for screening 19-nortestosterone. Biomed. Chromatogr. 2007;21:861–866. doi: 10.1002/bmc.832. PubMed DOI
Yao X.L., Wang Z.H., Dou L.N., Zhao B.X., He Y.X., Wang J.L., Sun J., Li T., Zhang D.H. An innovative immunochromatography assay for highly sensitive detection of 17 beta-estradiol based on an indirect probe strategy. Sens. Actuators B Chem. 2019;289:48–55. doi: 10.1016/j.snb.2019.03.078. DOI
Lou S., Ye J.Y., Li K.Q., Wu A.G. A gold nanoparticle-based immunochromatographic assay: The influence of nanoparticulate size. Analyst. 2012;137:1174–1181. doi: 10.1039/C2AN15844B. PubMed DOI
Razo S.C., Panferova N.A., Panferov V.G., Safenkova I.V., Drenova N.V., Varitsev Y.A., Zherdev A.V., Pakina E.N., Dzantiev B.B. Enlargement of gold nanoparticles for sensitive immunochromatographic diagnostics of potato Brown Rot. Sensors. 2019;19:153. doi: 10.3390/s19010153. PubMed DOI PMC
Blažková M., Rauch P., Fukal L. Strip-based immunoassay for rapid detection of thiabendazole. Biosens. Bioelectron. 2010;25:2122–2128. doi: 10.1016/j.bios.2010.02.011. PubMed DOI
Hua X.D., Yang J.F., Wang L.M., Fang Q.K., Zhang G.P., Liu F.Q. Development of an enzyme linked immunosorbent assay and an immunochromatographic assay for detection of organophosphorus pesticides in different agricultural products. PLoS ONE. 2012;7:e53099. doi: 10.1371/journal.pone.0053099. PubMed DOI PMC
Stepan R., Cuhra P., Barsova S. Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detection for the determination of anabolic steroids and related compounds in nutritional supplements. Food Addit. Contam. Part. A. 2008;25:557–565. doi: 10.1080/02652030701609228. PubMed DOI
Huang X.L., Aguilar Z.P., Xu H.Y., Lai W.H., Xiong Y.H. Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: A review. Biosens. Bioelectron. 2016;75:166–180. doi: 10.1016/j.bios.2015.08.032. PubMed DOI
Lee J.Y., Kim Y.A., Kim M.Y., Lee Y.T., Hammock B.D., Lee H.S. Importance of membrane selection in the development of immunochromatographic assays for low-molecular weight compounds. Anal. Chim. Acta. 2012;757:69–74. doi: 10.1016/j.aca.2012.10.052. PubMed DOI PMC
Jones K. FUSION 5: A new platform for lateral flow immunoassay tests. Lateral Flow Immunoass. 2009:115–129. doi: 10.1007/978-1-59745-240-3_7. DOI
Girotti S., Eremin S., Montoya A., Moreno M.J., Caputo P., D’Elia M., Ripani L., Romolo F.S., Maiolini E. Development of a chemiluminescent ELISA and a colloidal gold-based LFIA for TNT detection. Anal. Bioanal. Chem. 2010;396:687–695. doi: 10.1007/s00216-009-3264-0. PubMed DOI
Šuláková A., Fojtíková L., Holubová B., Bártová K., Lapčík O., Kuchař M. Two immunoassays for the detection of 2C-B and related hallucinogenic phenethylamines. J. Pharmacol. Toxicol. Methods. 2019;95:36–46. doi: 10.1016/j.vascn.2018.11.001. PubMed DOI
Suárez-Pantaleón C., Wichers J., Abad-Somovilla A., van Amerongen A., Abad-Fuentes A. Development of an immunochromatographic assay based on carbon nanoparticles for the determination of the phytoregulator forchlorfenuron. Biosens. Bioelectron. 2013;42:170–176. doi: 10.1016/j.bios.2012.11.001. PubMed DOI
Lin L., Song S., Wu X., Liu L., Kuang H., Xiao J., Xu C. Determination of robenidine in shrimp and chicken samples using the indirect competitive enzyme-linked immunosorbent assay and immunochromatographic strip assay. Analyst. 2021;146:721–729. doi: 10.1039/D0AN01783C. PubMed DOI
Xu X., Wang Z., Guo L., Xu X., Wu A., Kuang H., Sun L., Song S., Xu C. Sensitive lateral flow immunoassay for the residues of imidocarb in milk and beef samples. ACS Omega. 2021;6:2559–2569. doi: 10.1021/acsomega.0c04422. PubMed DOI PMC
Kong N., Song S., Peng J., Liu L., Kuang H., Xu C. Sensitive, fast, and specific immunoassays for methyltestosterone detection. Sensors. 2015;15:10059–10073. doi: 10.3390/s150510059. PubMed DOI PMC
Wang Z., Zou S., Xing C., Song S., Liu L., Xu C. Preparation of a monoclonal antibody against testosterone and its use in development of an immunochromatographic assay. Food Agric. Immunol. 2016;27:547–558. doi: 10.1080/09540105.2015.1137276. DOI
Xing C., Liu L., Song S., Feng M., Kuang H., Xu C. Ultrasensitive immunochromatographic assay for the simultaneous detection of five chemicals in drinking water. Biosens. Bioelectron. 2015;66:445–453. doi: 10.1016/j.bios.2014.12.004. PubMed DOI
Holubová B., Mikšátková P., Kuchař M., Karamonová L., Lapčík O., Fukal L. Immunochemical techniques for anabolic androgenic steroid: Matrix effects study for food supplements. Eur. Food Res. Technol. 2019;245:1011–1019. doi: 10.1007/s00217-018-3204-3. DOI
Hernandez-Guerra A.I., Tapia J., Menendez-Quintanal L.M., Lucena J.S. Sudden cardiac death in anabolic androgenic steroids abuse: Case report and literature review. Forensic. Sci. Res. 2019;4:267–273. doi: 10.1080/20961790.2019.1595350. PubMed DOI PMC
[(accessed on 17 December 2020)]; Available online: https://gymporn.cz/sestavovani-kury.
Steroidové Cykly. [(accessed on 17 December 2020)]; Available online: http://steroidy.szm.com/cykly.html.
Potravinářská Inspekce Zakázala Doplněk Stravy z USA s Šesti Nepovolenými Látkami Včetně Anabolických Steroidů a Léčiv. [(accessed on 17 December 2020)]; Available online: https://www.szpi.gov.cz/clanek/potravinarska-inspekce-zakazala-doplnek-stravy-z-usa-s-sesti-nepovolenymi-latkami-vcetne-anabolickych-steroidu-a-leciv.aspx?q=JmNobnVtPTEmaGw9dGVzdG9zdGVyb24%3d.
Potravinářská Inspekce Zakázala Potravinu s Anabolickým Steroidem. [(accessed on 17 December 2020)]; Available online: https://www.szpi.gov.cz/clanek/potravinarska-inspekce-zakazala-potravinu-s-anabolickym-steroidem.aspx.
Průběžné Výsledky Kontroly Doplňků Pro Sportovce: Největší Problémy Jsou s Označováním, Anabolika Zatím Pouze ve Dvou Výrobcích. [(accessed on 17 December 2020)]; Available online: https://www.szpi.gov.cz/clanek/prubezne-vysledky-kontroly-doplnku-pro-sportovce-nejvetsi-problemy-jsou-s-oznacovanim-anabolika-zatim-pouze-ve-dvou-vyrobcich.aspx?q=JmhsPWFuYWJvbGlrYcKo.