Specific versus Nonspecific Solvent Interactions of a Biomolecule in Water

. 2023 Nov 23 ; 14 (46) : 10499-10508. [epub] 20231116

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37970807

Solvent interactions, particularly hydration, are vital in chemical and biochemical systems. Model systems reveal microscopic details of such interactions. We uncover a specific hydrogen-bonding motif of the biomolecular building block indole (C8H7N), tryptophan's chromophore, in water: a strong localized N-H···OH2 hydrogen bond, alongside unstructured solvent interactions. This insight is revealed from a combined experimental and theoretical analysis of the electronic structure of indole in aqueous solution. We recorded the complete X-ray photoemission and Auger spectrum of aqueous-phase indole, quantitatively explaining all peaks through ab initio modeling. The efficient and accurate technique for modeling valence and core photoemission spectra involves the maximum-overlap method and the nonequilibrium polarizable-continuum model. A two-hole electron-population analysis quantitatively describes the Auger spectra. Core-electron binding energies for nitrogen and carbon highlight the specific interaction with a hydrogen-bonded water molecule at the N-H group and otherwise nonspecific solvent interactions.

Zobrazit více v PubMed

Sobolewski A. L.; Domcke W.; Dedonder-Lardeux C.; Jouvet C. Excited-state hydrogen detachment and hydrogen transfer driven by repulsive 1πσ* states: A new paradigm for nonradiative decay in aromatic biomolecules. Phys. Chem. Chem. Phys. 2002, 4, 1093–1100. 10.1039/b110941n. DOI

Plekan O.; Feyer V.; Richter R.; Coreno M.; Prince K. C. Valence photoionization and photofragmentation of aromatic amino acids. Mol. Phys. 2008, 106, 1143–1153. 10.1080/00268970801974875. DOI

Chrostowska A.; Xu S.; Mazière A.; Boknevitz K.; Li B.; Abbey E. R.; Dargelos A.; Graciaa A.; Liu S.-Y. UV-photoelectron spectroscopy of BN indoles: Experimental and computational electronic structure analysis. J. Am. Chem. Soc. 2014, 136, 11813–11820. 10.1021/ja5063899. PubMed DOI PMC

Vivian J. T.; Callis P. R. Mechanisms of tryptophan fluorescence shifts in proteins. Biophys. J. 2001, 80, 2093–2109. 10.1016/S0006-3495(01)76183-8. PubMed DOI PMC

Sarkisyan K. S.; Yampolsky I. V.; Solntsev K. M.; Lukyanov S. A.; Lukyanov K. A.; Mishin A. S. Tryptophan-based chromophore in fluorescent proteins can be anionic. Sci. Rep. 2012, 2, 608.10.1038/srep00608. PubMed DOI PMC

Short K. W.; Callis P. R. Evidence of pure 1Lb fluorescence from redshifted indole-polar solvent complexes in a supersonic jet. J. Chem. Phys. 1998, 108, 10189–10196. 10.1063/1.476478. DOI

Callis P. R. Molecular orbital theory of the 1Lb and 1La states of indole. J. Chem. Phys. 1991, 95, 4230–4240. 10.1063/1.460778. DOI

Brand C.; Küpper J.; Pratt D. W.; Meerts W. L.; Krügler D.; Tatchen J.; Schmitt M. Vibronic coupling in indole: I. Theoretical description of the 1La–1Lb interaction and the electronic spectrum. Phys. Chem. Chem. Phys. 2010, 12, 4968–4979. 10.1039/c001776k. PubMed DOI

Küpper J.; Pratt D. W.; Meerts W. L.; Brand C.; Tatchen J.; Schmitt M. Vibronic coupling in indole: II. Investigation of the 1La–1Lb interaction using rotationally resolved electronic spectroscopy. Phys. Chem. Chem. Phys. 2010, 12, 4980–4988. 10.1039/c001778g. PubMed DOI

Korter T. M.; Pratt D. W.; Küpper J. Indole-H2O in the gas phase. Structures, barriers to internal motion, and S1 ←S0 transition moment orientation. Solvent reorganization in the electronically excited state. J. Phys. Chem. A 1998, 102, 7211–7216. 10.1021/jp982456x. DOI

Zwier T. S. Laser spectroscopy of jet-cooled biomolecules and their water-containing clusters: Water bridges and molecular conformation. J. Phys. Chem. A 2001, 105, 8827–8839. 10.1021/jp011659+. DOI

Lippert H.; Stert V.; Hesse L.; Schulz C. P.; Hertel I. V.; Radloff W. Ultrafast photoinduced processes in indole-water clusters. Chem. Phys. Lett. 2003, 376, 40–48. 10.1016/S0009-2614(03)00921-7. DOI

Meredith P.; Powell B. J.; Riesz J.; Nighswander-Rempel S. P.; Pederson M. R.; Moore E. G. Towards structure–property–function relationships for eumelanin. Soft Matter 2006, 2, 37–44. 10.1039/B511922G. PubMed DOI

Meredith P.; Sarna T. The physical and chemical properties of eumelanin. Pigment Cell Res. 2006, 19, 572–594. 10.1111/j.1600-0749.2006.00345.x. PubMed DOI

Berden G.; Meerts W. L.; Jalviste E. Rotationally resolved ultraviolet spectroscopy of indole, indazole, and benzimidazole: Inertial axis reorientation in the S1(1Lb)←S transitions. J. Chem. Phys. 1995, 103, 9596–9606. 10.1063/1.469974. DOI

Godfrey T. J.; Yu H.; Biddle M. S.; Ullrich S. A wavelength dependent investigation of the indole photophysics via ionization and fragmentation pump–probe spectroscopies. Phys. Chem. Chem. Phys. 2015, 17, 25197–25209. 10.1039/C5CP02975A. PubMed DOI

Livingstone R.; Schalk O.; Boguslavskiy A. E.; Wu G.; Bergendahl L. T.; Stolow A.; Paterson M. J.; Townsend D. Following the excited state relaxation dynamics of indole and 5-hydroxyindole using time-resolved photoelectron spectroscopy. J. Chem. Phys. 2011, 135, 194307.10.1063/1.3659231. PubMed DOI

Lin M.-F.; Tseng C.-M.; Lee Y. T.; Ni C.-K. Photodissociation dynamics of indole in a molecular beam. J. Chem. Phys. 2005, 123, 124303.10.1063/1.2009736. PubMed DOI

Sobolewski A. L.; Domcke W. Ab initio investigations on the photophysics of indole. Chem. Phys. Lett. 1999, 315, 293–298. 10.1016/S0009-2614(99)01249-X. DOI

Douki T. The variety of UV-induced pyrimidine dimeric photoproducts in DNA as shown by chromatographic quantification methods. Photochem. Photobiol. Sci. 2013, 12, 1286–1302. 10.1039/c3pp25451h. PubMed DOI

Ito T.; Baker S. C.; Stickley C. D.; Peak J. G.; Peak M. J. Dependence of the yield of strand breaks induced by γ-rays in DNA on the physical conditions of exposure: water content and temperature. Int. J. Radiat. Biol. 1993, 63, 289–296. 10.1080/09553009314550391. PubMed DOI

Alizadeh E.; Orlando T. M.; Sanche L. Biomolecular damage induced by ionizing radiation: the direct and indirect effects of low-energy electrons on DNA. Annu. Rev. Phys. Chem. 2015, 66, 379–398. 10.1146/annurev-physchem-040513-103605. PubMed DOI

Lehnert S.Biomolecular action of ionizing radiation; CRC Press: London, 2007.

Morgan W. F. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro. Radiat. Res. 2003, 159, 567–580. 10.1667/0033-7587(2003)159[0567:NADEOE]2.0.CO;2. PubMed DOI

Milligan J. R.; Aguilera J. A.; Ly A.; Tran N. Q.; Hoang O.; Ward J. F. Repair of oxidative DNA damage by amino acids. Nucleic Acids Res. 2003, 31, 6258–6263. 10.1093/nar/gkg816. PubMed DOI PMC

Butchosa C.; Simon S.; Voityuk A. A. Electron transfer from aromatic amino acids to guanine and adenine radical cations in π stacked and T-shaped complexes. Org. Biomol. Chem. 2010, 8, 1870–1875. 10.1039/b927134a. PubMed DOI

Eland J. H. D. Photoelectron spectra of conjugated hydrocarbons and heteromolecules. Int. J. Mass Spectrom. Ion Phys. 1969, 2, 471–484. 10.1016/0020-7381(69)80044-6. DOI

Dolby L. J.; Hanson G.; Koenig T. The He I photoelectron spectra of N-methylisoindole and N-methylindole. J. Org. Chem. 1976, 41, 3537–3539. 10.1021/jo00884a010. DOI

Domelsmith L. N.; Munchausen L. L.; Houk K. N. Photoelectron spectra of psychotropic drugs. 1. Phenethylamines, tryptamines, and LSD. J. Am. Chem. Soc. 1977, 99, 4311–4321. 10.1021/ja00455a018. PubMed DOI

Kubota M.; Kobayashi T. Electronic structures of melatonin and related compounds studied by photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 2003, 128, 165–178. 10.1016/S0368-2048(02)00279-7. DOI

Plekan O.; et al. Experimental and theoretical photoemission study of indole and its derivatives in the gas phase. J. Phys. Chem. A 2020, 124, 4115–4127. 10.1021/acs.jpca.0c02719. PubMed DOI

Kumar G.; Roy A.; McMullen R. S.; Kutagulla S.; Bradforth S. E. The influence of aqueous solvent on the electronic structure and non-adiabatic dynamics of indole explored by liquid-jet photoelectron spectroscopy. Faraday Discuss. 2018, 212, 359–381. 10.1039/C8FD00123E. PubMed DOI

Roy A.; Seidel R.; Kumar G.; Bradforth S. E. Exploring redox properties of aromatic amino acids in water: Contrasting single photon vs resonant multiphoton ionization in aqueous solutions. J. Phys. Chem. B 2018, 122, 3723–3733. 10.1021/acs.jpcb.7b11762. PubMed DOI

Seidel R.; Thürmer S.; Winter B. Photoelectron spectroscopy meets aqueous solution: Studies from a vacuum liquid microjet. J. Phys. Chem. Lett. 2011, 2, 633–641. 10.1021/jz101636y. DOI

Tentscher P. R.; Seidel R.; Winter B.; Guerard J. J.; Arey J. S. Exploring the aqueous vertical ionization of organic molecules by molecular simulation and liquid microjet photoelectron spectroscopy. J. Phys. Chem. B 2015, 119, 238–256. 10.1021/jp508053m. PubMed DOI

Seidel R.; Kraffert K.; Kabelitz A.; Pohl M. N.; Kraehnert R.; Emmerling F.; Winter B. Detection of the electronic structure of iron-(iii)-oxo oligomers forming in aqueous solutions. Phys. Chem. Chem. Phys. 2017, 19, 32226–32234. 10.1039/C7CP06945F. PubMed DOI

Gilbert A. T. B.; Besley N. A.; Gill P. M. W. Self-consistent field calculations of excited states using the maximum overlap method (MOM). J. Phys. Chem. A 2008, 112, 13164–13171. 10.1021/jp801738f. PubMed DOI

Viefhaus J.; Scholz F.; Deinert S.; Glaser L.; Ilchen M.; Seltmann J.; Walter P.; Siewert F. The variable polarization XUV beamline P04 at PETRA III: Optics, mechanics and their performance. Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 2013, 710, 151–154. 10.1016/j.nima.2012.10.110. DOI

Malerz S.; Haak H.; Trinter F.; Stephansen A. B.; Kolbeck C.; Pohl M.; Hergenhahn U.; Meijer G.; Winter B. A setup for studies of photoelectron circular dichroism from chiral molecules in aqueous solution. Rev. Sci. Instrum. 2022, 93, 015101.10.1063/5.0072346. PubMed DOI

Winter B.; Faubel M. Photoemission from liquid aqueous solutions. Chem. Rev. 2006, 106, 1176–1211. 10.1021/cr040381p. PubMed DOI

Faubel M.; Schlemmer S.; Toennies J. P. A molecular beam study of the evaporation of water from a liquid jet. Z. Phys. D - Atoms, Molecules and Clusters 1988, 10, 269–277. 10.1007/BF01384861. DOI

Tang Y.; Shen H.; Sekiguchi K.; Kurahashi N.; Mizuno T.; Suzuki Y.-I.; Suzuki T. Direct measurement of vertical binding energy of a hydrated electron. Phys. Chem. Chem. Phys. 2010, 12, 3653–3655. 10.1039/b925741a. PubMed DOI

Shen H.; Kurahashi N.; Horio T.; Sekiguchi K.; Suzuki T. Direct measurement of vertical electron binding energies of solvated electrons in methanol and ethanol. Chem. Lett. 2010, 39, 668–670. 10.1246/cl.2010.668. DOI

Preissler N.; Buchner F.; Schultz T.; Lübcke A. Electrokinetic charging and evidence for charge evaporation in liquid microjets of aqueous salt solution. J. Phys. Chem. B 2013, 117, 2422–2428. 10.1021/jp304773n. PubMed DOI

Shreve A. T.; Elkins M. H.; Neumark D. M. Photoelectron spectroscopy of solvated electrons in alcohol and acetonitrile microjets. Chem. Sci. 2013, 4, 1633–1639. 10.1039/c3sc22063j. DOI

Kurahashi N.; Karashima S.; Tang Y.; Horio T.; Abulimiti B.; Suzuki Y.-I.; Ogi Y.; Oura M.; Suzuki T. Photoelectron spectroscopy of aqueous solutions: Streaming potentials of NaX (X = Cl, Br, and I) solutions and electron binding energies of liquid water and X–. J. Chem. Phys. 2014, 140, 174506.10.1063/1.4871877. PubMed DOI

Ončák M.; Šištík L.; Slavíček P. Can theory quantitatively model stratospheric photolysis? Ab initio estimate of absolute absorption cross sections of ClOOCl. J. Chem. Phys. 2010, 133, 174303.10.1063/1.3499599. PubMed DOI

Sršeň Š.; Sita J.; Slavíček P.; Ladányi V.; Heger D. Limits of the nuclear ensemble method for electronic spectra simulations: Temperature dependence of the (E)-azobenzene spectrum. J. Chem. Theory Comput. 2020, 16, 6428–6438. 10.1021/acs.jctc.0c00579. PubMed DOI

Sršeň Š.; Slavíček P. Optimal representation of the nuclear ensemble: Application to electronic spectroscopy. J. Chem. Theory Comput. 2021, 17, 6395–6404. 10.1021/acs.jctc.1c00749. PubMed DOI

Ceriotti M.; Bussi G.; Parrinello M. Colored-noise thermostats à la carte. J. Chem. Theory Comput. 2010, 6, 1170–1180. 10.1021/ct900563s. DOI

Hollas D.; Suchan J.; Svoboda O.; Ončák M.; Slavíček P.. ABIN, v1.0; 2020.

Ufimtsev I. S.; Martinez T. J. Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics. J. Chem. Theory Comput. 2009, 5, 2619–2628. 10.1021/ct9003004. PubMed DOI

Titov A. V.; Ufimtsev I. S.; Luehr N.; Martinez T. J. Generating efficient quantum chemistry codes for novel architectures. J. Chem. Theory Comput. 2013, 9, 213–221. 10.1021/ct300321a. PubMed DOI

Shao Y.; et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys. 2015, 113, 184–215. 10.1080/00268976.2014.952696. DOI

Cancès E.; Mennucci B.; Tomasi J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997, 107, 3032–3041. 10.1063/1.474659. DOI

Rappe A. K.; Casewit C. J.; Colwell K. S.; Goddard W. A. III; Skiff W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 1992, 114, 10024–10035. 10.1021/ja00051a040. DOI

Rubešová M.; Jurásková V.; Slavíček P. Efficient modeling of liquid phase photoemission spectra and reorganization energies: Difficult case of multiply charged anions. J. Comput. Chem. 2017, 38, 427–437. 10.1002/jcc.24696. PubMed DOI

Silverman B. W.Density Estimation for Statistics and Data Analysis; Chapman & Hall: London, 1986.

Vydrov O. A.; Scuseria G. E. Assessment of a long-range corrected hybrid functional. J. Chem. Phys. 2006, 125, 234109.10.1063/1.2409292. PubMed DOI

Salzner U.; Baer R. Koopmans’ springs to life. J. Chem. Phys. 2009, 131, 231101.10.1063/1.3269030. PubMed DOI

Muchová E.; Slavíček P. Beyond Koopmans’ theorem: Electron binding energies in disordered materials. J. Phys.: Condens. Matter 2019, 31, 043001.10.1088/1361-648X/aaf130. PubMed DOI

Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. 10.1002/jcc.20495. PubMed DOI

Neria E.; Fischer S.; Karplus M. Simulation of activation free energies in molecular systems. J. Chem. Phys. 1996, 105, 1902–1921. 10.1063/1.472061. DOI

Jorgensen W. L.; Chandrasekhar J.; Madura J. D.; Impey R. W.; Klein M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. 10.1063/1.445869. DOI

Martínez L.; Andrade R.; Birgin E. G.; Martínez J. M. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009, 30, 2157–2164. 10.1002/jcc.21224. PubMed DOI

Mitani M.; Takahashi O.; Saito K.; Iwata S. Theoretical molecular Auger spectra with electron population analysis. J. Electron Spectrosc. Relat. Phenom. 2003, 128, 103–117. 10.1016/S0368-2048(02)00270-0. DOI

Skomorowski W.; Krylov A. I. Feshbach–Fano approach for calculation of Auger decay rates using equation-of-motion coupled-cluster wave functions. I. Theory and implementation. J. Chem. Phys. 2021, 154, 084124.10.1063/5.0036976. PubMed DOI

Sarangi R.; Vidal M. L.; Coriani S.; Krylov A. I. On the basis set selection for calculations of core-level states: different strategies to balance cost and accuracy. Mol. Phys. 2020, 118, e176987210.1080/00268976.2020.1769872. DOI

Epifanovsky E.; et al. Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. J. Chem. Phys. 2021, 155, 084801.10.1063/5.0055522. PubMed DOI PMC

Winter B.; Weber R.; Widdra W.; Dittmar M.; Faubel M.; Hertel I. V. Full valence band photoemission from liquid water using EUV synchrotron radiation. J. Phys. Chem. A 2004, 108, 2625–2632. 10.1021/jp030263q. DOI

Winter B.; Weber R.; Hertel I. V.; Faubel M.; Jungwirth P.; Brown E. C.; Bradforth S. E. Electron binding energies of aqueous alkali and halide ions: EUV photoelectron spectroscopy of liquid solutions and combined ab initio and molecular dynamics calculations. J. Am. Chem. Soc. 2005, 127, 7203–7214. 10.1021/ja042908l. PubMed DOI

Pohl M. N.; Muchová E.; Seidel R.; Ali H.; Sršeň Š.; Wilkinson I.; Winter B.; Slavíček P. Do water’s electrons care about electrolytes?. Chem. Sci. 2019, 10, 848–865. 10.1039/C8SC03381A. PubMed DOI PMC

Gozem S.; Seidel R.; Hergenhahn U.; Lugovoy E.; Abel B.; Winter B.; Krylov A. I.; Bradforth S. E. Probing the electronic structure of bulk water at the molecular length scale with angle-resolved photoelectron spectroscopy. J. Phys. Chem. Lett. 2020, 11, 5162–5170. 10.1021/acs.jpclett.0c00968. PubMed DOI

Perry C. F.; Zhang P.; Nunes F. B.; Jordan I.; von Conta A.; Wörner H. J. Ionization energy of liquid water revisited. J. Phys. Chem. Lett. 2020, 11, 1789–1794. 10.1021/acs.jpclett.9b03391. PubMed DOI

Thürmer S.; Malerz S.; Trinter F.; Hergenhahn U.; Lee C.; Neumark D. M.; Meijer G.; Winter B.; Wilkinson I. Accurate vertical ionization energy and work function determinations of liquid water and aqueous solutions. Chem. Sci. 2021, 12, 10558–10582. 10.1039/D1SC01908B. PubMed DOI PMC

Pluhařová E.; Jungwirth P.; Bradforth S. E.; Slavíček P. Ionization of purine tautomers in nucleobases, nucleosides, and nucleotides: From the gas phase to the aqueous environment. J. Phys. Chem. B 2011, 115, 1294–305. 10.1021/jp110388v. PubMed DOI

Hager J.; Ivanco M.; Smith M. A.; Wallace S. C. Solvation effects in jet-cooled van der Waals clusters: Two-color treshold photoionization spectroscopy of indole, indole-argon, indole-methane, indole-water and indole-methanol. Chem. Phys. Lett. 1985, 113, 503–507. 10.1016/0009-2614(85)80090-7. DOI

Winter B. Liquid microjet for photoelectron spectroscopy. Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 2009, 601, 139–150. 10.1016/j.nima.2008.12.108. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...