Specific versus Nonspecific Solvent Interactions of a Biomolecule in Water
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37970807
PubMed Central
PMC10683073
DOI
10.1021/acs.jpclett.3c01763
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Solvent interactions, particularly hydration, are vital in chemical and biochemical systems. Model systems reveal microscopic details of such interactions. We uncover a specific hydrogen-bonding motif of the biomolecular building block indole (C8H7N), tryptophan's chromophore, in water: a strong localized N-H···OH2 hydrogen bond, alongside unstructured solvent interactions. This insight is revealed from a combined experimental and theoretical analysis of the electronic structure of indole in aqueous solution. We recorded the complete X-ray photoemission and Auger spectrum of aqueous-phase indole, quantitatively explaining all peaks through ab initio modeling. The efficient and accurate technique for modeling valence and core photoemission spectra involves the maximum-overlap method and the nonequilibrium polarizable-continuum model. A two-hole electron-population analysis quantitatively describes the Auger spectra. Core-electron binding energies for nitrogen and carbon highlight the specific interaction with a hydrogen-bonded water molecule at the N-H group and otherwise nonspecific solvent interactions.
Center for Ultrafast Imaging Universität Hamburg Luruper Chaussee 149 22761 Hamburg Germany
Department of Physics Universität Hamburg Luruper Chaussee 149 22761 Hamburg Germany
Institute of Atomic and Molecular Physics Jilin University 130012 Changchun China
Zobrazit více v PubMed
Sobolewski A. L.; Domcke W.; Dedonder-Lardeux C.; Jouvet C. Excited-state hydrogen detachment and hydrogen transfer driven by repulsive 1πσ* states: A new paradigm for nonradiative decay in aromatic biomolecules. Phys. Chem. Chem. Phys. 2002, 4, 1093–1100. 10.1039/b110941n. DOI
Plekan O.; Feyer V.; Richter R.; Coreno M.; Prince K. C. Valence photoionization and photofragmentation of aromatic amino acids. Mol. Phys. 2008, 106, 1143–1153. 10.1080/00268970801974875. DOI
Chrostowska A.; Xu S.; Mazière A.; Boknevitz K.; Li B.; Abbey E. R.; Dargelos A.; Graciaa A.; Liu S.-Y. UV-photoelectron spectroscopy of BN indoles: Experimental and computational electronic structure analysis. J. Am. Chem. Soc. 2014, 136, 11813–11820. 10.1021/ja5063899. PubMed DOI PMC
Vivian J. T.; Callis P. R. Mechanisms of tryptophan fluorescence shifts in proteins. Biophys. J. 2001, 80, 2093–2109. 10.1016/S0006-3495(01)76183-8. PubMed DOI PMC
Sarkisyan K. S.; Yampolsky I. V.; Solntsev K. M.; Lukyanov S. A.; Lukyanov K. A.; Mishin A. S. Tryptophan-based chromophore in fluorescent proteins can be anionic. Sci. Rep. 2012, 2, 608.10.1038/srep00608. PubMed DOI PMC
Short K. W.; Callis P. R. Evidence of pure 1Lb fluorescence from redshifted indole-polar solvent complexes in a supersonic jet. J. Chem. Phys. 1998, 108, 10189–10196. 10.1063/1.476478. DOI
Callis P. R. Molecular orbital theory of the 1Lb and 1La states of indole. J. Chem. Phys. 1991, 95, 4230–4240. 10.1063/1.460778. DOI
Brand C.; Küpper J.; Pratt D. W.; Meerts W. L.; Krügler D.; Tatchen J.; Schmitt M. Vibronic coupling in indole: I. Theoretical description of the 1La–1Lb interaction and the electronic spectrum. Phys. Chem. Chem. Phys. 2010, 12, 4968–4979. 10.1039/c001776k. PubMed DOI
Küpper J.; Pratt D. W.; Meerts W. L.; Brand C.; Tatchen J.; Schmitt M. Vibronic coupling in indole: II. Investigation of the 1La–1Lb interaction using rotationally resolved electronic spectroscopy. Phys. Chem. Chem. Phys. 2010, 12, 4980–4988. 10.1039/c001778g. PubMed DOI
Korter T. M.; Pratt D. W.; Küpper J. Indole-H2O in the gas phase. Structures, barriers to internal motion, and S1 ←S0 transition moment orientation. Solvent reorganization in the electronically excited state. J. Phys. Chem. A 1998, 102, 7211–7216. 10.1021/jp982456x. DOI
Zwier T. S. Laser spectroscopy of jet-cooled biomolecules and their water-containing clusters: Water bridges and molecular conformation. J. Phys. Chem. A 2001, 105, 8827–8839. 10.1021/jp011659+. DOI
Lippert H.; Stert V.; Hesse L.; Schulz C. P.; Hertel I. V.; Radloff W. Ultrafast photoinduced processes in indole-water clusters. Chem. Phys. Lett. 2003, 376, 40–48. 10.1016/S0009-2614(03)00921-7. DOI
Meredith P.; Powell B. J.; Riesz J.; Nighswander-Rempel S. P.; Pederson M. R.; Moore E. G. Towards structure–property–function relationships for eumelanin. Soft Matter 2006, 2, 37–44. 10.1039/B511922G. PubMed DOI
Meredith P.; Sarna T. The physical and chemical properties of eumelanin. Pigment Cell Res. 2006, 19, 572–594. 10.1111/j.1600-0749.2006.00345.x. PubMed DOI
Berden G.; Meerts W. L.; Jalviste E. Rotationally resolved ultraviolet spectroscopy of indole, indazole, and benzimidazole: Inertial axis reorientation in the S1(1Lb)←S transitions. J. Chem. Phys. 1995, 103, 9596–9606. 10.1063/1.469974. DOI
Godfrey T. J.; Yu H.; Biddle M. S.; Ullrich S. A wavelength dependent investigation of the indole photophysics via ionization and fragmentation pump–probe spectroscopies. Phys. Chem. Chem. Phys. 2015, 17, 25197–25209. 10.1039/C5CP02975A. PubMed DOI
Livingstone R.; Schalk O.; Boguslavskiy A. E.; Wu G.; Bergendahl L. T.; Stolow A.; Paterson M. J.; Townsend D. Following the excited state relaxation dynamics of indole and 5-hydroxyindole using time-resolved photoelectron spectroscopy. J. Chem. Phys. 2011, 135, 194307.10.1063/1.3659231. PubMed DOI
Lin M.-F.; Tseng C.-M.; Lee Y. T.; Ni C.-K. Photodissociation dynamics of indole in a molecular beam. J. Chem. Phys. 2005, 123, 124303.10.1063/1.2009736. PubMed DOI
Sobolewski A. L.; Domcke W. Ab initio investigations on the photophysics of indole. Chem. Phys. Lett. 1999, 315, 293–298. 10.1016/S0009-2614(99)01249-X. DOI
Douki T. The variety of UV-induced pyrimidine dimeric photoproducts in DNA as shown by chromatographic quantification methods. Photochem. Photobiol. Sci. 2013, 12, 1286–1302. 10.1039/c3pp25451h. PubMed DOI
Ito T.; Baker S. C.; Stickley C. D.; Peak J. G.; Peak M. J. Dependence of the yield of strand breaks induced by γ-rays in DNA on the physical conditions of exposure: water content and temperature. Int. J. Radiat. Biol. 1993, 63, 289–296. 10.1080/09553009314550391. PubMed DOI
Alizadeh E.; Orlando T. M.; Sanche L. Biomolecular damage induced by ionizing radiation: the direct and indirect effects of low-energy electrons on DNA. Annu. Rev. Phys. Chem. 2015, 66, 379–398. 10.1146/annurev-physchem-040513-103605. PubMed DOI
Lehnert S.Biomolecular action of ionizing radiation; CRC Press: London, 2007.
Morgan W. F. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro. Radiat. Res. 2003, 159, 567–580. 10.1667/0033-7587(2003)159[0567:NADEOE]2.0.CO;2. PubMed DOI
Milligan J. R.; Aguilera J. A.; Ly A.; Tran N. Q.; Hoang O.; Ward J. F. Repair of oxidative DNA damage by amino acids. Nucleic Acids Res. 2003, 31, 6258–6263. 10.1093/nar/gkg816. PubMed DOI PMC
Butchosa C.; Simon S.; Voityuk A. A. Electron transfer from aromatic amino acids to guanine and adenine radical cations in π stacked and T-shaped complexes. Org. Biomol. Chem. 2010, 8, 1870–1875. 10.1039/b927134a. PubMed DOI
Eland J. H. D. Photoelectron spectra of conjugated hydrocarbons and heteromolecules. Int. J. Mass Spectrom. Ion Phys. 1969, 2, 471–484. 10.1016/0020-7381(69)80044-6. DOI
Dolby L. J.; Hanson G.; Koenig T. The He I photoelectron spectra of N-methylisoindole and N-methylindole. J. Org. Chem. 1976, 41, 3537–3539. 10.1021/jo00884a010. DOI
Domelsmith L. N.; Munchausen L. L.; Houk K. N. Photoelectron spectra of psychotropic drugs. 1. Phenethylamines, tryptamines, and LSD. J. Am. Chem. Soc. 1977, 99, 4311–4321. 10.1021/ja00455a018. PubMed DOI
Kubota M.; Kobayashi T. Electronic structures of melatonin and related compounds studied by photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 2003, 128, 165–178. 10.1016/S0368-2048(02)00279-7. DOI
Plekan O.; et al. Experimental and theoretical photoemission study of indole and its derivatives in the gas phase. J. Phys. Chem. A 2020, 124, 4115–4127. 10.1021/acs.jpca.0c02719. PubMed DOI
Kumar G.; Roy A.; McMullen R. S.; Kutagulla S.; Bradforth S. E. The influence of aqueous solvent on the electronic structure and non-adiabatic dynamics of indole explored by liquid-jet photoelectron spectroscopy. Faraday Discuss. 2018, 212, 359–381. 10.1039/C8FD00123E. PubMed DOI
Roy A.; Seidel R.; Kumar G.; Bradforth S. E. Exploring redox properties of aromatic amino acids in water: Contrasting single photon vs resonant multiphoton ionization in aqueous solutions. J. Phys. Chem. B 2018, 122, 3723–3733. 10.1021/acs.jpcb.7b11762. PubMed DOI
Seidel R.; Thürmer S.; Winter B. Photoelectron spectroscopy meets aqueous solution: Studies from a vacuum liquid microjet. J. Phys. Chem. Lett. 2011, 2, 633–641. 10.1021/jz101636y. DOI
Tentscher P. R.; Seidel R.; Winter B.; Guerard J. J.; Arey J. S. Exploring the aqueous vertical ionization of organic molecules by molecular simulation and liquid microjet photoelectron spectroscopy. J. Phys. Chem. B 2015, 119, 238–256. 10.1021/jp508053m. PubMed DOI
Seidel R.; Kraffert K.; Kabelitz A.; Pohl M. N.; Kraehnert R.; Emmerling F.; Winter B. Detection of the electronic structure of iron-(iii)-oxo oligomers forming in aqueous solutions. Phys. Chem. Chem. Phys. 2017, 19, 32226–32234. 10.1039/C7CP06945F. PubMed DOI
Gilbert A. T. B.; Besley N. A.; Gill P. M. W. Self-consistent field calculations of excited states using the maximum overlap method (MOM). J. Phys. Chem. A 2008, 112, 13164–13171. 10.1021/jp801738f. PubMed DOI
Viefhaus J.; Scholz F.; Deinert S.; Glaser L.; Ilchen M.; Seltmann J.; Walter P.; Siewert F. The variable polarization XUV beamline P04 at PETRA III: Optics, mechanics and their performance. Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 2013, 710, 151–154. 10.1016/j.nima.2012.10.110. DOI
Malerz S.; Haak H.; Trinter F.; Stephansen A. B.; Kolbeck C.; Pohl M.; Hergenhahn U.; Meijer G.; Winter B. A setup for studies of photoelectron circular dichroism from chiral molecules in aqueous solution. Rev. Sci. Instrum. 2022, 93, 015101.10.1063/5.0072346. PubMed DOI
Winter B.; Faubel M. Photoemission from liquid aqueous solutions. Chem. Rev. 2006, 106, 1176–1211. 10.1021/cr040381p. PubMed DOI
Faubel M.; Schlemmer S.; Toennies J. P. A molecular beam study of the evaporation of water from a liquid jet. Z. Phys. D - Atoms, Molecules and Clusters 1988, 10, 269–277. 10.1007/BF01384861. DOI
Tang Y.; Shen H.; Sekiguchi K.; Kurahashi N.; Mizuno T.; Suzuki Y.-I.; Suzuki T. Direct measurement of vertical binding energy of a hydrated electron. Phys. Chem. Chem. Phys. 2010, 12, 3653–3655. 10.1039/b925741a. PubMed DOI
Shen H.; Kurahashi N.; Horio T.; Sekiguchi K.; Suzuki T. Direct measurement of vertical electron binding energies of solvated electrons in methanol and ethanol. Chem. Lett. 2010, 39, 668–670. 10.1246/cl.2010.668. DOI
Preissler N.; Buchner F.; Schultz T.; Lübcke A. Electrokinetic charging and evidence for charge evaporation in liquid microjets of aqueous salt solution. J. Phys. Chem. B 2013, 117, 2422–2428. 10.1021/jp304773n. PubMed DOI
Shreve A. T.; Elkins M. H.; Neumark D. M. Photoelectron spectroscopy of solvated electrons in alcohol and acetonitrile microjets. Chem. Sci. 2013, 4, 1633–1639. 10.1039/c3sc22063j. DOI
Kurahashi N.; Karashima S.; Tang Y.; Horio T.; Abulimiti B.; Suzuki Y.-I.; Ogi Y.; Oura M.; Suzuki T. Photoelectron spectroscopy of aqueous solutions: Streaming potentials of NaX (X = Cl, Br, and I) solutions and electron binding energies of liquid water and X–. J. Chem. Phys. 2014, 140, 174506.10.1063/1.4871877. PubMed DOI
Ončák M.; Šištík L.; Slavíček P. Can theory quantitatively model stratospheric photolysis? Ab initio estimate of absolute absorption cross sections of ClOOCl. J. Chem. Phys. 2010, 133, 174303.10.1063/1.3499599. PubMed DOI
Sršeň Š.; Sita J.; Slavíček P.; Ladányi V.; Heger D. Limits of the nuclear ensemble method for electronic spectra simulations: Temperature dependence of the (E)-azobenzene spectrum. J. Chem. Theory Comput. 2020, 16, 6428–6438. 10.1021/acs.jctc.0c00579. PubMed DOI
Sršeň Š.; Slavíček P. Optimal representation of the nuclear ensemble: Application to electronic spectroscopy. J. Chem. Theory Comput. 2021, 17, 6395–6404. 10.1021/acs.jctc.1c00749. PubMed DOI
Ceriotti M.; Bussi G.; Parrinello M. Colored-noise thermostats à la carte. J. Chem. Theory Comput. 2010, 6, 1170–1180. 10.1021/ct900563s. DOI
Hollas D.; Suchan J.; Svoboda O.; Ončák M.; Slavíček P.. ABIN, v1.0; 2020.
Ufimtsev I. S.; Martinez T. J. Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics. J. Chem. Theory Comput. 2009, 5, 2619–2628. 10.1021/ct9003004. PubMed DOI
Titov A. V.; Ufimtsev I. S.; Luehr N.; Martinez T. J. Generating efficient quantum chemistry codes for novel architectures. J. Chem. Theory Comput. 2013, 9, 213–221. 10.1021/ct300321a. PubMed DOI
Shao Y.; et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys. 2015, 113, 184–215. 10.1080/00268976.2014.952696. DOI
Cancès E.; Mennucci B.; Tomasi J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997, 107, 3032–3041. 10.1063/1.474659. DOI
Rappe A. K.; Casewit C. J.; Colwell K. S.; Goddard W. A. III; Skiff W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 1992, 114, 10024–10035. 10.1021/ja00051a040. DOI
Rubešová M.; Jurásková V.; Slavíček P. Efficient modeling of liquid phase photoemission spectra and reorganization energies: Difficult case of multiply charged anions. J. Comput. Chem. 2017, 38, 427–437. 10.1002/jcc.24696. PubMed DOI
Silverman B. W.Density Estimation for Statistics and Data Analysis; Chapman & Hall: London, 1986.
Vydrov O. A.; Scuseria G. E. Assessment of a long-range corrected hybrid functional. J. Chem. Phys. 2006, 125, 234109.10.1063/1.2409292. PubMed DOI
Salzner U.; Baer R. Koopmans’ springs to life. J. Chem. Phys. 2009, 131, 231101.10.1063/1.3269030. PubMed DOI
Muchová E.; Slavíček P. Beyond Koopmans’ theorem: Electron binding energies in disordered materials. J. Phys.: Condens. Matter 2019, 31, 043001.10.1088/1361-648X/aaf130. PubMed DOI
Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. 10.1002/jcc.20495. PubMed DOI
Neria E.; Fischer S.; Karplus M. Simulation of activation free energies in molecular systems. J. Chem. Phys. 1996, 105, 1902–1921. 10.1063/1.472061. DOI
Jorgensen W. L.; Chandrasekhar J.; Madura J. D.; Impey R. W.; Klein M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. 10.1063/1.445869. DOI
Martínez L.; Andrade R.; Birgin E. G.; Martínez J. M. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009, 30, 2157–2164. 10.1002/jcc.21224. PubMed DOI
Mitani M.; Takahashi O.; Saito K.; Iwata S. Theoretical molecular Auger spectra with electron population analysis. J. Electron Spectrosc. Relat. Phenom. 2003, 128, 103–117. 10.1016/S0368-2048(02)00270-0. DOI
Skomorowski W.; Krylov A. I. Feshbach–Fano approach for calculation of Auger decay rates using equation-of-motion coupled-cluster wave functions. I. Theory and implementation. J. Chem. Phys. 2021, 154, 084124.10.1063/5.0036976. PubMed DOI
Sarangi R.; Vidal M. L.; Coriani S.; Krylov A. I. On the basis set selection for calculations of core-level states: different strategies to balance cost and accuracy. Mol. Phys. 2020, 118, e176987210.1080/00268976.2020.1769872. DOI
Epifanovsky E.; et al. Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. J. Chem. Phys. 2021, 155, 084801.10.1063/5.0055522. PubMed DOI PMC
Winter B.; Weber R.; Widdra W.; Dittmar M.; Faubel M.; Hertel I. V. Full valence band photoemission from liquid water using EUV synchrotron radiation. J. Phys. Chem. A 2004, 108, 2625–2632. 10.1021/jp030263q. DOI
Winter B.; Weber R.; Hertel I. V.; Faubel M.; Jungwirth P.; Brown E. C.; Bradforth S. E. Electron binding energies of aqueous alkali and halide ions: EUV photoelectron spectroscopy of liquid solutions and combined ab initio and molecular dynamics calculations. J. Am. Chem. Soc. 2005, 127, 7203–7214. 10.1021/ja042908l. PubMed DOI
Pohl M. N.; Muchová E.; Seidel R.; Ali H.; Sršeň Š.; Wilkinson I.; Winter B.; Slavíček P. Do water’s electrons care about electrolytes?. Chem. Sci. 2019, 10, 848–865. 10.1039/C8SC03381A. PubMed DOI PMC
Gozem S.; Seidel R.; Hergenhahn U.; Lugovoy E.; Abel B.; Winter B.; Krylov A. I.; Bradforth S. E. Probing the electronic structure of bulk water at the molecular length scale with angle-resolved photoelectron spectroscopy. J. Phys. Chem. Lett. 2020, 11, 5162–5170. 10.1021/acs.jpclett.0c00968. PubMed DOI
Perry C. F.; Zhang P.; Nunes F. B.; Jordan I.; von Conta A.; Wörner H. J. Ionization energy of liquid water revisited. J. Phys. Chem. Lett. 2020, 11, 1789–1794. 10.1021/acs.jpclett.9b03391. PubMed DOI
Thürmer S.; Malerz S.; Trinter F.; Hergenhahn U.; Lee C.; Neumark D. M.; Meijer G.; Winter B.; Wilkinson I. Accurate vertical ionization energy and work function determinations of liquid water and aqueous solutions. Chem. Sci. 2021, 12, 10558–10582. 10.1039/D1SC01908B. PubMed DOI PMC
Pluhařová E.; Jungwirth P.; Bradforth S. E.; Slavíček P. Ionization of purine tautomers in nucleobases, nucleosides, and nucleotides: From the gas phase to the aqueous environment. J. Phys. Chem. B 2011, 115, 1294–305. 10.1021/jp110388v. PubMed DOI
Hager J.; Ivanco M.; Smith M. A.; Wallace S. C. Solvation effects in jet-cooled van der Waals clusters: Two-color treshold photoionization spectroscopy of indole, indole-argon, indole-methane, indole-water and indole-methanol. Chem. Phys. Lett. 1985, 113, 503–507. 10.1016/0009-2614(85)80090-7. DOI
Winter B. Liquid microjet for photoelectron spectroscopy. Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 2009, 601, 139–150. 10.1016/j.nima.2008.12.108. DOI
From Gas to Solution: The Changing Neutral Structure of Proline upon Solvation