Do water's electrons care about electrolytes?
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30774880
PubMed Central
PMC6346409
DOI
10.1039/c8sc03381a
PII: c8sc03381a
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Ions have a profound effect on the geometrical structure of liquid water and an aqueous environment is known to change the electronic structure of ions. Here we combine photoelectron spectroscopy measurements from liquid microjets with molecular dynamical and quantum chemical calculations to address the reverse question, to what extent do ions affect the electronic structure of liquid water? We study aqueous solutions of sodium iodide (NaI) over a wide concentration range, from nearly pure water to 8 M solutions, recording spectra in the 5 to 60 eV binding energy range to include all water valence and the solute Na+ 2p, I- 4d, and I- 5p orbital ionization peaks. We observe that the electron binding energies of the solute ions change only slightly as a function of electrolyte concentration, less than 150 ± 60 meV over an ∼8 M range. Furthermore, the photoelectron spectrum of liquid water is surprisingly mildly affected as we transform the sample from a dilute aqueous salt solution to a viscous, crystalline-like phase. The most noticeable spectral changes are a negative binding energy shift of the water 1b2 ionizing transition (up to -370 ± 60 meV) and a narrowing of the flat-top shape water 3a1 ionization feature (up to 450 ± 90 meV). A novel computationally efficient technique is introduced to calculate liquid-state photoemission spectra using small clusters from molecular dynamics (MD) simulations embedded in dielectric continuum. This theoretical treatment captured the characteristic positions and structures of the aqueous photoemission peaks, reproducing the experimentally observed narrowing of the water 3a1 feature and weak sensitivity of the water binding energies to electrolyte concentration. The calculations allowed us to attribute the small binding energy shifts to ion-induced disruptions of intermolecular electronic interactions. Furthermore, they demonstrate the importance of considering concentration-dependent screening lengths for a correct description of the electronic structure of solvated systems. Accounting for electronic screening, the calculations highlight the minimal effect of electrolyte concentration on the 1b1 binding energy reference, in accord with the experiments. This leads us to a key finding that the isolated, lowest-binding-energy, 1b1, photoemission feature of liquid water is a robust energetic reference for aqueous liquid microjet photoemission studies.
Fachbereich Physik Freie Universität Berlin Arnimallee 14 D 14195 Berlin Germany
Fritz Haber Institut der Max Planck Gesellschaft Faradayweg 4 6 D 14195 Berlin Germany Email
Humboldt Universität zu Berlin Department of Chemistry Brook Taylor Str 2 D 12489 Berlin Germany
Zobrazit více v PubMed
Coffey P., Cathedrals of Science – The personalities and rivalries that made modern chemistry, Oxford University Press, 2008.
Pettersson L. G. M., Henchman R. H., Nilsson A. Chem. Rev. 2016;116:7459–7462. PubMed
Wernet P., Nordlund D., Bergmann U., Cavalleri M., Odelius M., Ogasawara H., Naslund L. A., Hirsch T. K., Ojamae L., Glatzel P., Pettersson L. G. M., Nilsson A. Science. 2004;304:995–999. PubMed
Smith J. D., Cappa C. D., Wilson K. R., Messer B. M., Cohen R. C., Saykally R. J. Science. 2004;306:851–853. PubMed
Huang C., Wikfeldt K. T., Tokushima T., Nordlund D., Harada Y., Bergmann U., Niebuhr M., Weiss T. M., Horikawa Y., Leetmaa M., Ljungberg M. P., Takahashi O., Lenz A., Ojamae L., Lyubartsev A. P., Shin S., Pettersson L. G. M., Nilsson A. Proc. Natl. Acad. Sci. U. S. A. 2009;106:15214–15218. PubMed PMC
Clark G. N. I., Cappa C. D., Smith J. D., Saykally R. J., Head-Gordon T. Mol. Phys. 2010;108:1415–1433.
Henchman R. H., Cockram S. J. Faraday Discuss. 2013;167:529–550. PubMed
Kühne T. D., Khaliullin R. Z. Nat. Commun. 2013;4:1450. PubMed
Harada Y., Miyawaki J., Niwa H., Yamazoe K., Pettersson L. G. M., Nilsson A. J. Phys. Chem. Lett. 2017;8:5487–5491. PubMed
Gallo P., Arnann-Winkel K., Angell C. A., Anisimov M. A., Caupin F., Chakravarty C., Lascaris E., Loerting T., Panagiotopoulos A. Z., Russo J., Sellberg J. A., Stanley H. E., Tanaka H., Vega C., Xu L. M., Pettersson L. G. M. Chem. Rev. 2016;116:7463–7500. PubMed PMC
Bakker H. Chem. Rev. 2008;108:1456–1473. PubMed
Jeyachandran Y. L., Meyer F., Nagarajan S., Benkert A., Bar M., Blum M., Yang W. L., Reinert F., Heske C., Weinhardt L., Zharnikov M. J. Phys. Chem. Lett. 2014;5:4143–4148. PubMed
Yin Z., Inhester L., Veedu S. T., Quevedo W., Pietzsch A., Wernet P., Groenhof G., Föhlisch A., Grubmüller H., Techert S. J. Phys. Chem. Lett. 2017;8:3759–3764. PubMed
Tielrooij K., Garcia-Araez N., Bonn M., Bakker H. Science. 2010;328:1006–1009. PubMed
Omta A. W., Kropman M. F., Woutersen S., Bakker H. J. Science. 2003;301:347–349. PubMed
Marcus Y. Chem. Rev. 2009;109:1346–1370. PubMed
Yin Z., Rajkovic I., Kubicek K., Quevedo W., Pietzsch A., Wernet P., Föhlisch A., Techert S. J. Phys. Chem. B. 2014;118:9398–9403. PubMed
Waluyo I., Nordlund D., Bergmann U., Schlesinger D., Pettersson L. G. M., Nilsson A. J. Chem. Phys. 2014;140:244506. PubMed
Suo L. M., Borodin O., Gao T., Olguin M., Ho J., Fan X. L., Luo C., Wang C. S., Xu K. Science. 2015;350:938–943. PubMed
Yamada Y., Usui K., Sodeyama K., Ko S., Tateyama Y., Yamada A. Nat. Energy. 2016;1:16129.
Kuhnel R. S., Reber D., Battaglia C. ACS Energy Lett. 2017;2:2005–2006.
Smith A. M., Lee A. A., Perkin S. J. Phys. Chem. Lett. 2016;7:2157–2163. PubMed
Lee A. A., Perez-Martinez C. S., Smith A. M., Perkin S. Faraday Discuss. 2017;199:239–259. PubMed
Goodwin Z. A. H., Kornyshev A. A. Electrochem. Commun. 2017;82:129–133.
Sankari R., Ehara M., Nakatsuji H., Senba Y., Hosokawa K., Yoshida H., De Fanis A., Tamenori Y., Aksela S., Ueda K. Chem. Phys. Lett. 2003;380:647–653.
Banna M. S., McQuaide B. H., Malutzki R., Schmidt V. J. Chem. Phys. 1986;84:4739–4747.
Reutt J. E., Wang L. S., Lee Y. T., Shirley D. A. J. Chem. Phys. 1986;85:6928–6939.
Page R. H., Larkin R. J., Shen Y. R., Lee Y. T. J. Chem. Phys. 1988;88:2249–2263.
Truong S. Y., Yencha A. J., Juarez A. M., Cavanagh S. J., Bolognesi P., King G. C. Chem. Phys. 2009;355:183–193.
Barth S., Ončák M., Ulrich V., Mucke M., Lischke T., Slavíček P., Hergenhahn U. J. Phys. Chem. A. 2009;113:13519–13527. PubMed
Hollas D., Muchová E., Slavíček P. J. Chem. Theory Comput. 2016;12:5009–5017. PubMed
Gaiduk A. P., Govoni M., Seidel R., Skone J. H., Winter B., Galli G. J. Am. Chem. Soc. 2016;138:6912–6915. PubMed
Winter B., Weber R., Widdra W., Dittmar M., Faubel M., Hertel I. V. J. Phys. Chem. A. 2004;108:2625–2632.
Nordlund D., Odelius M., Bluhm H., Ogasawara H., Pettersson L. G. M., Nilsson A. Chem. Phys. Lett. 2008;460:86–92.
Nishizawa K., Kurahashi N., Sekiguchi K., Mizuno T., Ogi Y., Horio T., Oura M., Kosugi N., Suzuki T. Phys. Chem. Chem. Phys. 2011;13:413–417. PubMed
Guo J. H., Luo Y. J. Electron Spectrosc. Relat. Phenom. 2010;177:181–191.
Pluhařová E., Slavíček P., Jungwirth P. Acc. Chem. Res. 2015;48:1209–1217. PubMed
Slavíček P., Winter B., Faubel M., Bradforth S. E., Jungwirth P. J. Am. Chem. Soc. 2009;131:6460–6467. PubMed
Schroeder C. A., Pluhařová E., Seidel R., Schroeder W. P., Faubel M., Slavíček P., Winter B., Jungwirth P., Bradforth S. E. J. Am. Chem. Soc. 2015;137:201–209. PubMed
Pluhařová E., Schroeder C., Seidel R., Bradforth S. E., Winter B., Faubel M., Slavíček P., Jungwirth P. J. Phys. Chem. Lett. 2013;4:3766–3769.
Pluhařová E., Jungwirth P., Bradforth S. E., Slavíček P. J. Phys. Chem. B. 2011;115:1294–1305. PubMed
Pluhařová E., Ončák M., Seidel R., Schroeder C., Schroeder W., Winter B., Bradforth S. E., Jungwirth P., Slavíček P. J. Phys. Chem. B. 2012;116:13254–13264. PubMed
Debye P., Hückel E. Phys. Z. 1923;24:185–206.
Fransson T., Harada Y., Kosugi N., Besley N. A., Winter B., Rehr J. J., Pettersson L. G. M., Nilsson A. Chem. Rev. 2016;116:7551–7569. PubMed
Elles C. G., Rivera C. A., Zhang Y., Pieniazek P. A., Bradforth S. E. J. Chem. Phys. 2009:130. PubMed
Elles C. G., Shkrob I. A., Crowell R. A., Bradforth S. E. J. Chem. Phys. 2007;126:164503. PubMed
Kerr G. D., Williams M. W., Birkhoff R. D., Hamm R. N., Painter L. R. Phys. Rev. A. 1972;5:2523.
Bernas A., Ferradini C., JayGerin J. P. Chem. Phys. 1997;222:151–160.
Nilsson A., Nordlund D., Waluyo I., Huang N., Ogasawara H., Kaya S., Bergmann U., Naslund L. A., Ostrom H., Wernet P., Andersson K. J., Schiros T., Pettersson L. G. M. J. Electron Spectrosc. Relat. Phenom. 2010;177:99–129.
Weinhardt L., Fuchs O., Blum M., Bär M., Weigand M., Denlinger J. D., Zubavichus Y., Zharnikov M., Grunze M., Heske C., Umbach E. J. Electron Spectrosc. Relat. Phenom. 2010;177:206–211.
Winter B., Faubel M. Chem. Rev. 2006;106:1176–1211. PubMed
Pietzsch A., Hennies F., Miedema P. S., Kennedy B., Schlappa J., Schmitt T., Strocov V. N., Föhlisch A. Phys. Rev. Lett. 2015;114:088302. PubMed
Nilsson A., Pettersson L. G. M. Chem. Phys. 2011;389:1–34.
Winter B. Nucl. Instrum. Methods Phys. Res., Sect. A. 2009;601:139–150.
Siegbahn H., Siegbahn K. J. Electron Spectrosc. Relat. Phenom. 1973;2:319–325.
Lundholm M., Siegbahn H., Holberg S., Arbman M. J. Electron Spectrosc. Relat. Phenom. 1986;40:163–180.
Delahay P., Von Burg K. Chem. Phys. Lett. 1981;83:250–254.
Von Burg K., Delahay P. Chem. Phys. Lett. 1981;78:287–290.
Delahay P., Dziedzic A. J. Chem. Phys. 1984;80:5793–5798.
Seidel R., Winter B. and Bradforth S. E., in Annu. Rev. Phys. Chem., ed. M. A. Johnson and T. J. Martinez, 2016, vol. 67, pp. 283–305. PubMed
Faubel M., Steiner B., Toennies J. P. J. Chem. Phys. 1997;106:9013–9031.
Salmeron M., Schlögl R. Surf. Sci. Rep. 2008;63:169–199.
Starr D. E., Liu Z., Haevecker M., Knop-Gericke A., Bluhm H. Chem. Soc. Rev. 2013;42:5833–5857. PubMed
Wu C. H., Weatherup R. S., Salmeron M. B. Phys. Chem. Chem. Phys. 2015;17:30229–30239. PubMed
Winter B., Aziz E. F., Hergenhahn U., Faubel M., Hertel I. V. J. Chem. Phys. 2007;126:124504. PubMed
Kurahashi N., Karashima S., Tang Y., Horio T., Abulimiti B., Suzuki Y.-I., Ogi Y., Oura M., Suzuki T. J. Chem. Phys. 2014:140. PubMed
Preissler N., Buchner F., Schultz T., Lübcke A. J. Phys. Chem. B. 2013;117:2422–2428. PubMed
Kelly D. N., Lam R. K., Duffin A. M., Saykally R. J. J. Phys. Chem. C. 2013;117:12702–12706.
Nguyen-Truong H. T. J. Phys.: Condens. Matter. 2018;30:155101. PubMed
Slavíček P., Winter B., Cederbaum L. S., Kryzhevoi N. V. J. Am. Chem. Soc. 2014;136:18170–18176. PubMed
Hess B., Kutzner C., van der Spoel D., Lindahl E. J. Chem. Theory Comput. 2008;4:435–447. PubMed
Berendsen H. J. C., Grigera J. R., Straatsma T. P. J. Phys. Chem. 1987;91:6269–6271.
Parrinello M., Rahman A. J. Appl. Phys. 1981;52:7182–7190.
Nose S. Mol. Phys. 1984;52:255–268.
Hoover W. G. Phys. Rev. A. 1985;31:1695–1697. PubMed
Hess B., Bekker H., Berendsen H. J. C., Fraaije J. J. Comput. Chem. 1997;18:1463–1472.
Essmann U., Perera L., Berkowitz M. L., Darden T., Lee H., Pedersen L. G. J. Chem. Phys. 1995;103:8577–8593.
Errington J. R., Debenedetti P. G. Nature. 2001;409:318. PubMed
Chau P.-L., Hardwick A. Mol. Phys. 1998;93:511–518.
Joung I. S., Cheatham T. E. J. Phys. Chem. B. 2008;112:9020–9041. PubMed PMC
Rubešová M., Muchová E., Slavíček P. J. Chem. Theory Comput. 2017;13:4972–4983. PubMed
Bartlett R. J., Ranasinghe D. S. Chem. Phys. Lett. 2017;669:54–70.
Levy M., Perdew J. P., Sahni V. Phys. Rev. A. 1984;30:2745–2748.
Mulliken R. S. J. Chem. Phys. 1955;23:1833–1840.
Della Sala F., Rousseau R., Gorling A., Marx D. Phys. Rev. Lett. 2004;92:183401. PubMed
Ončák M., Šištík L., Slavíček P. J. Chem. Phys. 2010;133:174303–174309. PubMed
Rubešová M., Jurásková V., Slavíček P. J. Comput. Chem. 2017;38:427–437. PubMed
Cossi M., Rega N., Scalmani G., Barone V. J. Comput. Chem. 2003;24:669–681. PubMed
Barone V., Cossi M. J. Phys. Chem. A. 1998;102:1995–2001.
Truong T. N., Stefanovich E. V. Chem. Phys. Lett. 1995;240:253–260.
Jagoda-Cwiklik B., Slavíček P., Cwiklik L., Nolting D., Winter B., Jungwirth P. J. Phys. Chem. A. 2008;112:3499–3505. PubMed
You Z. Q., Mewes J. M., Dreuw A., Herbert J. M. J. Chem. Phys. 2015;143:204104. PubMed
Guido C. A., Jacquemin D., Adamo C., Mennucci B. J. Chem. Theory Comput. 2015;11:5782–5790. PubMed
Mewes J. M., You Z. Q., Wormit M., Kriesche T., Herbert J. M., Dreuw A. J. Phys. Chem. A. 2015;119:5446–5464. PubMed
de Queiroz T. B., Kummel S. J. Chem. Phys. 2015;143:034101. PubMed
Boruah A., Borpuzari M. P., Kawashima Y., Hirao K., Kar R. J. Chem. Phys. 2017;146:164102. PubMed
Harris F. E., O'Konski C. T. J. Phys. Chem. 1957;61:310–319.
Hasted J., Ritson D., Collie C. J. Chem. Phys. 1948;16:1–21.
Haggis G., Hasted J., Buchanan T. J. Chem. Phys. 1952;20:1452–1465.
Buchner R., Hefter G. T., May P. M. J. Phys. Chem. A. 1999;103:1–9.
Winsor IV P., Cole R. H. J. Phys. Chem. 1982;86:2486–2490.
Hasted J., Roderick G. J. Chem. Phys. 1958;29:17–26.
Guan X. F., Ma M. M., Gan Z. C., Xu Z. L., Li B. Phys. Rev. E. 2016;94:053312. PubMed
Li B., Wen J. Y., Zhou S. G. Commun. Math. Sci. 2016;14:249–271. PubMed PMC
Clark H. A., Sutherland B. R. Exp. Fluids. 2009;47:183–193.
Mennucci B., Cammi R., Tomasi J. J. Chem. Phys. 1998;109:2798–2807.
Cossi M., Barone V. J. Phys. Chem. A. 2000;104:10614–10622.
Glendening E. D., Landis C. R., Weinhold F. J. Comput. Chem. 2013;34:1429–1437. PubMed
Reed A. Chem. Rev. 1988;88:899.
Winter B., Weber R., Schmidt P. M., Hertel I. V., Faubel M., Vrbka L., Jungwirth P. J. Phys. Chem. B. 2004;108:14558–14564.
Kowalczyk S. P., McFeely F. R., Ley L., Pollak R. A., Shirley D. A. Phys. Rev. B: Condens. Matter Mater. Phys. 1974;9:3573–3581.
Lewis T., Winter B., Stern A. C., Baer M. D., Mundy C. J., Tobias D. J., Hemminger J. C. J. Phys. Chem. C. 2011;115:21183–21190. PubMed
Lewis T., Faubel M., Winter B., Hemminger J. C. Angew. Chem., Int. Ed. 2011;50:10178–10181. PubMed
Ottosson N., Faubel M., Bradforth S. E., Jungwirth P., Winter B. J. Electron Spectrosc. Relat. Phenom. 2010;177:60–70.
Thürmer S., Seidel R., Faubel M., Eberhardt W., Hemminger J. C., Bradforth S. E., Winter B. Phys. Rev. Lett. 2013;111:173005. PubMed
Suzuki Y.-I., Nishizawa K., Kurahashi N., Suzuki T. Phys. Rev. E. 2014;90:010302. PubMed
Horinek D., Mamatkulov S. I., Netz R. R. J. Chem. Phys. 2009;130:124507. PubMed
Joung I. S., Cheatham T. E. J. Phys. Chem. B. 2009;113:13279–13290. PubMed PMC
Jensen K. P., Jorgensen W. L. J. Chem. Theory Comput. 2006;2:1499–1509. PubMed
Di Tommaso D., Ruiz-Agudo E., de Leeuw N. H., Putnis A., Putnis C. V. Phys. Chem. Chem. Phys. 2014;16:7772–7785. PubMed
Hartkamp R., Coasne B. J. Chem. Phys. 2014;141:124508. PubMed
Jungwirth P., Tobias D. J. J. Phys. Chem. B. 2001;105:10468–10472.
Jungwirth P., Tobias D. J. J. Phys. Chem. B. 2002;106:6361–6373.
Liu D. F., Ma G., Levering L. M., Allen H. C. J. Phys. Chem. B. 2004;108:2252–2260.
Ottosson N., Heyda J., Wernersson E., Pokapanich W., Svensson S., Winter B., Öhrwall G., Jungwirth P., Björneholm O. Phys. Chem. Chem. Phys. 2010;12:10693–10700. PubMed
Yeh J.-J., Atomic Calculations of Photoionization Cross Sections and Asymmetry Parameters, Gordon and Breach, Langhorne, PA, 1993.
Jungwirth P., Tobias D. J. Chem. Rev. 2006;106:1259–1281. PubMed
Smith J. D., Saykally R. J., Geissler P. L. J. Am. Chem. Soc. 2007;129:13847–13856. PubMed
Wang Y., Tominaga Y. J. Chem. Phys. 1994;101:3453–3458.
Mizoguchi K., Ujike T., Tominaga Y. J. Chem. Phys. 1998;109:1867–1872.
Amo Y., Tominaga Y. Phys. Rev. E. 1998;58:7553.
Ujike T., Tominaga Y., Mizoguchi K. J. Chem. Phys. 1999;110:1558–1568.
Foggi P., Bellini M., Kien D. P., Vercuque I., Righini R. J. Phys. Chem. A. 1997;101:7029–7035.
Tielrooij K., Van Der Post S., Hunger J., Bonn M., Bakker H. J. Phys. Chem. B. 2011;115:12638–12647. PubMed
O'Brien J. T., Williams E. R. J. Am. Chem. Soc. 2012;134:10228–10236. PubMed
Olivieri G., Goel A., Kleibert A., Cvetko D., Brown M. A. Phys. Chem. Chem. Phys. 2016;18:29506–29515. PubMed
Madelung O., New series group III, 1987, vol. 22, 63, p. 117.
Hüfner S., Photoelectron Spectroscopy: Principles and Applications, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest, 1995.
Pohl M. N., Richter C., Lugovoy E., Seidel R., Slavíček P., Aziz E. F., Abel B., Winter B., Hergenhahn U. J. Phys. Chem. B. 2017;121:7709–7714. PubMed
Unger I., Seidel R., Thürmer S., Pohl M. N., Aziz E. F., Cederbaum L. S., Muchová E., Slavíček P., Winter B., Kryzhevoi N. V. Nat. Chem. 2017;9:708. PubMed
Lange A. W., Herbert J. M. J. Chem. Phys. 2011;134:204110. PubMed
Frecer V., Miertus S. Int. J. Quantum Chem. 1992;42:1449–1468.
McBride C., Vega C., Noya E. G., Ramirez R., Sese L. M. J. Chem. Phys. 2009;131:024506. PubMed
Specific versus Nonspecific Solvent Interactions of a Biomolecule in Water
Probing aqueous ions with non-local Auger relaxation
Following in Emil Fischer's Footsteps: A Site-Selective Probe of Glucose Acid-Base Chemistry