Do water's electrons care about electrolytes?

. 2019 Jan 21 ; 10 (3) : 848-865. [epub] 20181101

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30774880

Ions have a profound effect on the geometrical structure of liquid water and an aqueous environment is known to change the electronic structure of ions. Here we combine photoelectron spectroscopy measurements from liquid microjets with molecular dynamical and quantum chemical calculations to address the reverse question, to what extent do ions affect the electronic structure of liquid water? We study aqueous solutions of sodium iodide (NaI) over a wide concentration range, from nearly pure water to 8 M solutions, recording spectra in the 5 to 60 eV binding energy range to include all water valence and the solute Na+ 2p, I- 4d, and I- 5p orbital ionization peaks. We observe that the electron binding energies of the solute ions change only slightly as a function of electrolyte concentration, less than 150 ± 60 meV over an ∼8 M range. Furthermore, the photoelectron spectrum of liquid water is surprisingly mildly affected as we transform the sample from a dilute aqueous salt solution to a viscous, crystalline-like phase. The most noticeable spectral changes are a negative binding energy shift of the water 1b2 ionizing transition (up to -370 ± 60 meV) and a narrowing of the flat-top shape water 3a1 ionization feature (up to 450 ± 90 meV). A novel computationally efficient technique is introduced to calculate liquid-state photoemission spectra using small clusters from molecular dynamics (MD) simulations embedded in dielectric continuum. This theoretical treatment captured the characteristic positions and structures of the aqueous photoemission peaks, reproducing the experimentally observed narrowing of the water 3a1 feature and weak sensitivity of the water binding energies to electrolyte concentration. The calculations allowed us to attribute the small binding energy shifts to ion-induced disruptions of intermolecular electronic interactions. Furthermore, they demonstrate the importance of considering concentration-dependent screening lengths for a correct description of the electronic structure of solvated systems. Accounting for electronic screening, the calculations highlight the minimal effect of electrolyte concentration on the 1b1 binding energy reference, in accord with the experiments. This leads us to a key finding that the isolated, lowest-binding-energy, 1b1, photoemission feature of liquid water is a robust energetic reference for aqueous liquid microjet photoemission studies.

Zobrazit více v PubMed

Coffey P., Cathedrals of Science – The personalities and rivalries that made modern chemistry, Oxford University Press, 2008.

Pettersson L. G. M., Henchman R. H., Nilsson A. Chem. Rev. 2016;116:7459–7462. PubMed

Wernet P., Nordlund D., Bergmann U., Cavalleri M., Odelius M., Ogasawara H., Naslund L. A., Hirsch T. K., Ojamae L., Glatzel P., Pettersson L. G. M., Nilsson A. Science. 2004;304:995–999. PubMed

Smith J. D., Cappa C. D., Wilson K. R., Messer B. M., Cohen R. C., Saykally R. J. Science. 2004;306:851–853. PubMed

Huang C., Wikfeldt K. T., Tokushima T., Nordlund D., Harada Y., Bergmann U., Niebuhr M., Weiss T. M., Horikawa Y., Leetmaa M., Ljungberg M. P., Takahashi O., Lenz A., Ojamae L., Lyubartsev A. P., Shin S., Pettersson L. G. M., Nilsson A. Proc. Natl. Acad. Sci. U. S. A. 2009;106:15214–15218. PubMed PMC

Clark G. N. I., Cappa C. D., Smith J. D., Saykally R. J., Head-Gordon T. Mol. Phys. 2010;108:1415–1433.

Henchman R. H., Cockram S. J. Faraday Discuss. 2013;167:529–550. PubMed

Kühne T. D., Khaliullin R. Z. Nat. Commun. 2013;4:1450. PubMed

Harada Y., Miyawaki J., Niwa H., Yamazoe K., Pettersson L. G. M., Nilsson A. J. Phys. Chem. Lett. 2017;8:5487–5491. PubMed

Gallo P., Arnann-Winkel K., Angell C. A., Anisimov M. A., Caupin F., Chakravarty C., Lascaris E., Loerting T., Panagiotopoulos A. Z., Russo J., Sellberg J. A., Stanley H. E., Tanaka H., Vega C., Xu L. M., Pettersson L. G. M. Chem. Rev. 2016;116:7463–7500. PubMed PMC

Bakker H. Chem. Rev. 2008;108:1456–1473. PubMed

Jeyachandran Y. L., Meyer F., Nagarajan S., Benkert A., Bar M., Blum M., Yang W. L., Reinert F., Heske C., Weinhardt L., Zharnikov M. J. Phys. Chem. Lett. 2014;5:4143–4148. PubMed

Yin Z., Inhester L., Veedu S. T., Quevedo W., Pietzsch A., Wernet P., Groenhof G., Föhlisch A., Grubmüller H., Techert S. J. Phys. Chem. Lett. 2017;8:3759–3764. PubMed

Tielrooij K., Garcia-Araez N., Bonn M., Bakker H. Science. 2010;328:1006–1009. PubMed

Omta A. W., Kropman M. F., Woutersen S., Bakker H. J. Science. 2003;301:347–349. PubMed

Marcus Y. Chem. Rev. 2009;109:1346–1370. PubMed

Yin Z., Rajkovic I., Kubicek K., Quevedo W., Pietzsch A., Wernet P., Föhlisch A., Techert S. J. Phys. Chem. B. 2014;118:9398–9403. PubMed

Waluyo I., Nordlund D., Bergmann U., Schlesinger D., Pettersson L. G. M., Nilsson A. J. Chem. Phys. 2014;140:244506. PubMed

Suo L. M., Borodin O., Gao T., Olguin M., Ho J., Fan X. L., Luo C., Wang C. S., Xu K. Science. 2015;350:938–943. PubMed

Yamada Y., Usui K., Sodeyama K., Ko S., Tateyama Y., Yamada A. Nat. Energy. 2016;1:16129.

Kuhnel R. S., Reber D., Battaglia C. ACS Energy Lett. 2017;2:2005–2006.

Smith A. M., Lee A. A., Perkin S. J. Phys. Chem. Lett. 2016;7:2157–2163. PubMed

Lee A. A., Perez-Martinez C. S., Smith A. M., Perkin S. Faraday Discuss. 2017;199:239–259. PubMed

Goodwin Z. A. H., Kornyshev A. A. Electrochem. Commun. 2017;82:129–133.

Sankari R., Ehara M., Nakatsuji H., Senba Y., Hosokawa K., Yoshida H., De Fanis A., Tamenori Y., Aksela S., Ueda K. Chem. Phys. Lett. 2003;380:647–653.

Banna M. S., McQuaide B. H., Malutzki R., Schmidt V. J. Chem. Phys. 1986;84:4739–4747.

Reutt J. E., Wang L. S., Lee Y. T., Shirley D. A. J. Chem. Phys. 1986;85:6928–6939.

Page R. H., Larkin R. J., Shen Y. R., Lee Y. T. J. Chem. Phys. 1988;88:2249–2263.

Truong S. Y., Yencha A. J., Juarez A. M., Cavanagh S. J., Bolognesi P., King G. C. Chem. Phys. 2009;355:183–193.

Barth S., Ončák M., Ulrich V., Mucke M., Lischke T., Slavíček P., Hergenhahn U. J. Phys. Chem. A. 2009;113:13519–13527. PubMed

Hollas D., Muchová E., Slavíček P. J. Chem. Theory Comput. 2016;12:5009–5017. PubMed

Gaiduk A. P., Govoni M., Seidel R., Skone J. H., Winter B., Galli G. J. Am. Chem. Soc. 2016;138:6912–6915. PubMed

Winter B., Weber R., Widdra W., Dittmar M., Faubel M., Hertel I. V. J. Phys. Chem. A. 2004;108:2625–2632.

Nordlund D., Odelius M., Bluhm H., Ogasawara H., Pettersson L. G. M., Nilsson A. Chem. Phys. Lett. 2008;460:86–92.

Nishizawa K., Kurahashi N., Sekiguchi K., Mizuno T., Ogi Y., Horio T., Oura M., Kosugi N., Suzuki T. Phys. Chem. Chem. Phys. 2011;13:413–417. PubMed

Guo J. H., Luo Y. J. Electron Spectrosc. Relat. Phenom. 2010;177:181–191.

Pluhařová E., Slavíček P., Jungwirth P. Acc. Chem. Res. 2015;48:1209–1217. PubMed

Slavíček P., Winter B., Faubel M., Bradforth S. E., Jungwirth P. J. Am. Chem. Soc. 2009;131:6460–6467. PubMed

Schroeder C. A., Pluhařová E., Seidel R., Schroeder W. P., Faubel M., Slavíček P., Winter B., Jungwirth P., Bradforth S. E. J. Am. Chem. Soc. 2015;137:201–209. PubMed

Pluhařová E., Schroeder C., Seidel R., Bradforth S. E., Winter B., Faubel M., Slavíček P., Jungwirth P. J. Phys. Chem. Lett. 2013;4:3766–3769.

Pluhařová E., Jungwirth P., Bradforth S. E., Slavíček P. J. Phys. Chem. B. 2011;115:1294–1305. PubMed

Pluhařová E., Ončák M., Seidel R., Schroeder C., Schroeder W., Winter B., Bradforth S. E., Jungwirth P., Slavíček P. J. Phys. Chem. B. 2012;116:13254–13264. PubMed

Debye P., Hückel E. Phys. Z. 1923;24:185–206.

Fransson T., Harada Y., Kosugi N., Besley N. A., Winter B., Rehr J. J., Pettersson L. G. M., Nilsson A. Chem. Rev. 2016;116:7551–7569. PubMed

Elles C. G., Rivera C. A., Zhang Y., Pieniazek P. A., Bradforth S. E. J. Chem. Phys. 2009:130. PubMed

Elles C. G., Shkrob I. A., Crowell R. A., Bradforth S. E. J. Chem. Phys. 2007;126:164503. PubMed

Kerr G. D., Williams M. W., Birkhoff R. D., Hamm R. N., Painter L. R. Phys. Rev. A. 1972;5:2523.

Bernas A., Ferradini C., JayGerin J. P. Chem. Phys. 1997;222:151–160.

Nilsson A., Nordlund D., Waluyo I., Huang N., Ogasawara H., Kaya S., Bergmann U., Naslund L. A., Ostrom H., Wernet P., Andersson K. J., Schiros T., Pettersson L. G. M. J. Electron Spectrosc. Relat. Phenom. 2010;177:99–129.

Weinhardt L., Fuchs O., Blum M., Bär M., Weigand M., Denlinger J. D., Zubavichus Y., Zharnikov M., Grunze M., Heske C., Umbach E. J. Electron Spectrosc. Relat. Phenom. 2010;177:206–211.

Winter B., Faubel M. Chem. Rev. 2006;106:1176–1211. PubMed

Pietzsch A., Hennies F., Miedema P. S., Kennedy B., Schlappa J., Schmitt T., Strocov V. N., Föhlisch A. Phys. Rev. Lett. 2015;114:088302. PubMed

Nilsson A., Pettersson L. G. M. Chem. Phys. 2011;389:1–34.

Winter B. Nucl. Instrum. Methods Phys. Res., Sect. A. 2009;601:139–150.

Siegbahn H., Siegbahn K. J. Electron Spectrosc. Relat. Phenom. 1973;2:319–325.

Lundholm M., Siegbahn H., Holberg S., Arbman M. J. Electron Spectrosc. Relat. Phenom. 1986;40:163–180.

Delahay P., Von Burg K. Chem. Phys. Lett. 1981;83:250–254.

Von Burg K., Delahay P. Chem. Phys. Lett. 1981;78:287–290.

Delahay P., Dziedzic A. J. Chem. Phys. 1984;80:5793–5798.

Seidel R., Winter B. and Bradforth S. E., in Annu. Rev. Phys. Chem., ed. M. A. Johnson and T. J. Martinez, 2016, vol. 67, pp. 283–305. PubMed

Faubel M., Steiner B., Toennies J. P. J. Chem. Phys. 1997;106:9013–9031.

Salmeron M., Schlögl R. Surf. Sci. Rep. 2008;63:169–199.

Starr D. E., Liu Z., Haevecker M., Knop-Gericke A., Bluhm H. Chem. Soc. Rev. 2013;42:5833–5857. PubMed

Wu C. H., Weatherup R. S., Salmeron M. B. Phys. Chem. Chem. Phys. 2015;17:30229–30239. PubMed

Winter B., Aziz E. F., Hergenhahn U., Faubel M., Hertel I. V. J. Chem. Phys. 2007;126:124504. PubMed

Kurahashi N., Karashima S., Tang Y., Horio T., Abulimiti B., Suzuki Y.-I., Ogi Y., Oura M., Suzuki T. J. Chem. Phys. 2014:140. PubMed

Preissler N., Buchner F., Schultz T., Lübcke A. J. Phys. Chem. B. 2013;117:2422–2428. PubMed

Kelly D. N., Lam R. K., Duffin A. M., Saykally R. J. J. Phys. Chem. C. 2013;117:12702–12706.

Nguyen-Truong H. T. J. Phys.: Condens. Matter. 2018;30:155101. PubMed

Slavíček P., Winter B., Cederbaum L. S., Kryzhevoi N. V. J. Am. Chem. Soc. 2014;136:18170–18176. PubMed

Hess B., Kutzner C., van der Spoel D., Lindahl E. J. Chem. Theory Comput. 2008;4:435–447. PubMed

Berendsen H. J. C., Grigera J. R., Straatsma T. P. J. Phys. Chem. 1987;91:6269–6271.

Parrinello M., Rahman A. J. Appl. Phys. 1981;52:7182–7190.

Nose S. Mol. Phys. 1984;52:255–268.

Hoover W. G. Phys. Rev. A. 1985;31:1695–1697. PubMed

Hess B., Bekker H., Berendsen H. J. C., Fraaije J. J. Comput. Chem. 1997;18:1463–1472.

Essmann U., Perera L., Berkowitz M. L., Darden T., Lee H., Pedersen L. G. J. Chem. Phys. 1995;103:8577–8593.

Errington J. R., Debenedetti P. G. Nature. 2001;409:318. PubMed

Chau P.-L., Hardwick A. Mol. Phys. 1998;93:511–518.

Joung I. S., Cheatham T. E. J. Phys. Chem. B. 2008;112:9020–9041. PubMed PMC

Rubešová M., Muchová E., Slavíček P. J. Chem. Theory Comput. 2017;13:4972–4983. PubMed

Bartlett R. J., Ranasinghe D. S. Chem. Phys. Lett. 2017;669:54–70.

Levy M., Perdew J. P., Sahni V. Phys. Rev. A. 1984;30:2745–2748.

Mulliken R. S. J. Chem. Phys. 1955;23:1833–1840.

Della Sala F., Rousseau R., Gorling A., Marx D. Phys. Rev. Lett. 2004;92:183401. PubMed

Ončák M., Šištík L., Slavíček P. J. Chem. Phys. 2010;133:174303–174309. PubMed

Rubešová M., Jurásková V., Slavíček P. J. Comput. Chem. 2017;38:427–437. PubMed

Cossi M., Rega N., Scalmani G., Barone V. J. Comput. Chem. 2003;24:669–681. PubMed

Barone V., Cossi M. J. Phys. Chem. A. 1998;102:1995–2001.

Truong T. N., Stefanovich E. V. Chem. Phys. Lett. 1995;240:253–260.

Jagoda-Cwiklik B., Slavíček P., Cwiklik L., Nolting D., Winter B., Jungwirth P. J. Phys. Chem. A. 2008;112:3499–3505. PubMed

You Z. Q., Mewes J. M., Dreuw A., Herbert J. M. J. Chem. Phys. 2015;143:204104. PubMed

Guido C. A., Jacquemin D., Adamo C., Mennucci B. J. Chem. Theory Comput. 2015;11:5782–5790. PubMed

Mewes J. M., You Z. Q., Wormit M., Kriesche T., Herbert J. M., Dreuw A. J. Phys. Chem. A. 2015;119:5446–5464. PubMed

de Queiroz T. B., Kummel S. J. Chem. Phys. 2015;143:034101. PubMed

Boruah A., Borpuzari M. P., Kawashima Y., Hirao K., Kar R. J. Chem. Phys. 2017;146:164102. PubMed

Harris F. E., O'Konski C. T. J. Phys. Chem. 1957;61:310–319.

Hasted J., Ritson D., Collie C. J. Chem. Phys. 1948;16:1–21.

Haggis G., Hasted J., Buchanan T. J. Chem. Phys. 1952;20:1452–1465.

Buchner R., Hefter G. T., May P. M. J. Phys. Chem. A. 1999;103:1–9.

Winsor IV P., Cole R. H. J. Phys. Chem. 1982;86:2486–2490.

Hasted J., Roderick G. J. Chem. Phys. 1958;29:17–26.

Guan X. F., Ma M. M., Gan Z. C., Xu Z. L., Li B. Phys. Rev. E. 2016;94:053312. PubMed

Li B., Wen J. Y., Zhou S. G. Commun. Math. Sci. 2016;14:249–271. PubMed PMC

Clark H. A., Sutherland B. R. Exp. Fluids. 2009;47:183–193.

Mennucci B., Cammi R., Tomasi J. J. Chem. Phys. 1998;109:2798–2807.

Cossi M., Barone V. J. Phys. Chem. A. 2000;104:10614–10622.

Glendening E. D., Landis C. R., Weinhold F. J. Comput. Chem. 2013;34:1429–1437. PubMed

Reed A. Chem. Rev. 1988;88:899.

Winter B., Weber R., Schmidt P. M., Hertel I. V., Faubel M., Vrbka L., Jungwirth P. J. Phys. Chem. B. 2004;108:14558–14564.

Kowalczyk S. P., McFeely F. R., Ley L., Pollak R. A., Shirley D. A. Phys. Rev. B: Condens. Matter Mater. Phys. 1974;9:3573–3581.

Lewis T., Winter B., Stern A. C., Baer M. D., Mundy C. J., Tobias D. J., Hemminger J. C. J. Phys. Chem. C. 2011;115:21183–21190. PubMed

Lewis T., Faubel M., Winter B., Hemminger J. C. Angew. Chem., Int. Ed. 2011;50:10178–10181. PubMed

Ottosson N., Faubel M., Bradforth S. E., Jungwirth P., Winter B. J. Electron Spectrosc. Relat. Phenom. 2010;177:60–70.

Thürmer S., Seidel R., Faubel M., Eberhardt W., Hemminger J. C., Bradforth S. E., Winter B. Phys. Rev. Lett. 2013;111:173005. PubMed

Suzuki Y.-I., Nishizawa K., Kurahashi N., Suzuki T. Phys. Rev. E. 2014;90:010302. PubMed

Horinek D., Mamatkulov S. I., Netz R. R. J. Chem. Phys. 2009;130:124507. PubMed

Joung I. S., Cheatham T. E. J. Phys. Chem. B. 2009;113:13279–13290. PubMed PMC

Jensen K. P., Jorgensen W. L. J. Chem. Theory Comput. 2006;2:1499–1509. PubMed

Di Tommaso D., Ruiz-Agudo E., de Leeuw N. H., Putnis A., Putnis C. V. Phys. Chem. Chem. Phys. 2014;16:7772–7785. PubMed

Hartkamp R., Coasne B. J. Chem. Phys. 2014;141:124508. PubMed

Jungwirth P., Tobias D. J. J. Phys. Chem. B. 2001;105:10468–10472.

Jungwirth P., Tobias D. J. J. Phys. Chem. B. 2002;106:6361–6373.

Liu D. F., Ma G., Levering L. M., Allen H. C. J. Phys. Chem. B. 2004;108:2252–2260.

Ottosson N., Heyda J., Wernersson E., Pokapanich W., Svensson S., Winter B., Öhrwall G., Jungwirth P., Björneholm O. Phys. Chem. Chem. Phys. 2010;12:10693–10700. PubMed

Yeh J.-J., Atomic Calculations of Photoionization Cross Sections and Asymmetry Parameters, Gordon and Breach, Langhorne, PA, 1993.

Jungwirth P., Tobias D. J. Chem. Rev. 2006;106:1259–1281. PubMed

Smith J. D., Saykally R. J., Geissler P. L. J. Am. Chem. Soc. 2007;129:13847–13856. PubMed

Wang Y., Tominaga Y. J. Chem. Phys. 1994;101:3453–3458.

Mizoguchi K., Ujike T., Tominaga Y. J. Chem. Phys. 1998;109:1867–1872.

Amo Y., Tominaga Y. Phys. Rev. E. 1998;58:7553.

Ujike T., Tominaga Y., Mizoguchi K. J. Chem. Phys. 1999;110:1558–1568.

Foggi P., Bellini M., Kien D. P., Vercuque I., Righini R. J. Phys. Chem. A. 1997;101:7029–7035.

Tielrooij K., Van Der Post S., Hunger J., Bonn M., Bakker H. J. Phys. Chem. B. 2011;115:12638–12647. PubMed

O'Brien J. T., Williams E. R. J. Am. Chem. Soc. 2012;134:10228–10236. PubMed

Olivieri G., Goel A., Kleibert A., Cvetko D., Brown M. A. Phys. Chem. Chem. Phys. 2016;18:29506–29515. PubMed

Madelung O., New series group III, 1987, vol. 22, 63, p. 117.

Hüfner S., Photoelectron Spectroscopy: Principles and Applications, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest, 1995.

Pohl M. N., Richter C., Lugovoy E., Seidel R., Slavíček P., Aziz E. F., Abel B., Winter B., Hergenhahn U. J. Phys. Chem. B. 2017;121:7709–7714. PubMed

Unger I., Seidel R., Thürmer S., Pohl M. N., Aziz E. F., Cederbaum L. S., Muchová E., Slavíček P., Winter B., Kryzhevoi N. V. Nat. Chem. 2017;9:708. PubMed

Lange A. W., Herbert J. M. J. Chem. Phys. 2011;134:204110. PubMed

Frecer V., Miertus S. Int. J. Quantum Chem. 1992;42:1449–1468.

McBride C., Vega C., Noya E. G., Ramirez R., Sese L. M. J. Chem. Phys. 2009;131:024506. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...