Observation of electron-transfer-mediated decay in aqueous solution
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28644468
DOI
10.1038/nchem.2727
PII: nchem.2727
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Photoionization is at the heart of X-ray photoelectron spectroscopy (XPS), which gives access to important information on a sample's local chemical environment. Local and non-local electronic decay after photoionization-in which the refilling of core holes results in electron emission from either the initially ionized species or a neighbour, respectively-have been well studied. However, electron-transfer-mediated decay (ETMD), which involves the refilling of a core hole by an electron from a neighbouring species, has not yet been observed in condensed phase. Here we report the experimental observation of ETMD in an aqueous LiCl solution by detecting characteristic secondary low-energy electrons using liquid-microjet soft XPS. Experimental results are interpreted using molecular dynamics and high-level ab initio calculations. We show that both solvent molecules and counterions participate in the ETMD processes, and different ion associations have distinctive spectral fingerprints. Furthermore, ETMD spectra are sensitive to coordination numbers, ion-solvent distances and solvent arrangement.
Department of Physics Freie Universität Berlin Arnimallee 14 D 14159 Berlin Germany
School of Chemistry Monash University Victoria 3800 Australia
Zobrazit více v PubMed
Phys Chem Chem Phys. 2011 Feb 21;13(7):2613-26 PubMed
J Chem Phys. 2008 Jul 14;129(2):024304 PubMed
J Chem Phys. 2005 Mar 1;122(9):094305 PubMed
J Phys Chem A. 2013 Nov 21;117(46):11766-73 PubMed
Phys Rev Lett. 2014 May 16;112(19):193001 PubMed
J Am Chem Soc. 2011 Aug 31;133(34):13430-6 PubMed
J Phys Chem B. 2010 Dec 30;114(51):17057-61 PubMed
J Phys Chem Lett. 2016 Sep 15;7(18):3554-9 PubMed
J Chem Phys. 2007 Jan 7;126(1):014101 PubMed
Phys Rev Lett. 2016 May 20;116(20):203001 PubMed
Phys Rev Lett. 2011 Jan 21;106(3):033401 PubMed
Phys Rev Lett. 2011 Jan 21;106(3):033402 PubMed
J Am Chem Soc. 2014 Dec 31;136(52):18170-6 PubMed
Nature. 2008 Sep 4;455(7209):89-91 PubMed
Angew Chem Int Ed Engl. 2011 Oct 4;50(41):9708-11 PubMed
J Chem Phys. 2011 Oct 21;135(15):154113 PubMed
Nat Chem. 2016 Mar;8(3):237-41 PubMed
Chem Rev. 2016 Jul 13;116(13):7626-41 PubMed
J Chem Phys. 2012 Nov 28;137(20):204503 PubMed
Int J Radiat Biol. 2008 Dec;84(12 ):959-75 PubMed
J Chem Theory Comput. 2008 Jul;4(7):1040-8 PubMed
Int J Radiat Biol. 2012 Dec;88(12):871-83 PubMed
Phys Rev Lett. 2013 Jun 21;110(25):258302 PubMed
J Phys Chem B. 2014 Jul 17;118(28):7680-91 PubMed
J Chem Theory Comput. 2008 Mar;4(3):435-47 PubMed
Probing aqueous ions with non-local Auger relaxation