Radiation damage by extensive local water ionization from two-step electron-transfer-mediated decay of solvated ions
Status Publisher Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
2017-04162
Vetenskapsrådet (Swedish Research Council)
2018-00740
Vetenskapsrådet (Swedish Research Council)
883759
EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
PubMed
37620544
PubMed Central
PMC10533389
DOI
10.1038/s41557-023-01302-1
PII: 10.1038/s41557-023-01302-1
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Biomolecular radiation damage is largely mediated by radicals and low-energy electrons formed by water ionization rather than by direct ionization of biomolecules. It was speculated that such an extensive, localized water ionization can be caused by ultrafast processes following excitation by core-level ionization of hydrated metal ions. In this model, ions relax via a cascade of local Auger-Meitner and, importantly, non-local charge- and energy-transfer processes involving the water environment. Here, we experimentally and theoretically show that, for solvated paradigmatic intermediate-mass Al3+ ions, electronic relaxation involves two sequential solute-solvent electron transfer-mediated decay processes. The electron transfer-mediated decay steps correspond to sequential relaxation from Al5+ to Al3+ accompanied by formation of four ionized water molecules and two low-energy electrons. Such charge multiplication and the generated highly reactive species are expected to initiate cascades of radical reactions.
Center for Free Electron Laser Science DESY Hamburg Germany
Department of Physical Chemistry University of Chemistry and Technology Prague Czech Republic
Department of Physics and Astronomy Uppsala University Uppsala Sweden
Fritz Haber Institut der Max Planck Gesellschaft Berlin Germany
Institut für Kernphysik Goethe Universität Frankfurt am Main Frankfurt am Main Germany
MAX 4 Laboratory Lund University Lund Sweden
Synchrotron SOLEIL L'Orme des Merisiers Saint Aubin Paris France
Zobrazit více v PubMed
Huels MA, Boudaïffa B, Cloutier P, Hunting D, Sanche L. Single, double, and multiple double strand breaks induced in DNA by 3–100 eV electrons. J. Am. Chem. Soc. 2003;125:4467–4477. doi: 10.1021/ja029527x. PubMed DOI
Sanche L. Beyond radical thinking. Nature. 2009;461:358—359. doi: 10.1038/461358a. PubMed DOI
Alizadeh E, Orlando TM, Sanche L. Biomolecular damage induced by ionizing radiation: the direct and indirect effects of low-energy electrons on DNA. Annu. Rev. Phys. Chem. 2015;66:379–398. doi: 10.1146/annurev-physchem-040513-103605. PubMed DOI
Bertini, I., Gray, H. B., Stiefel, E. I. & Valentine, J. S. Biological Inorganic Chemistry (University Science Books, 2007).
Stumpf V, Gokhberg K, Cederbaum LS. The role of metal ions in X-ray-induced photochemistry. Nat. Chem. 2016;8:237–241. doi: 10.1038/nchem.2429. PubMed DOI
Garrett BC, et al. Role of water in electron-initiated processes and radical chemistry: issues and scientific advances. Chem. Rev. 2005;105:355—390. doi: 10.1021/cr030453x. PubMed DOI
Loh Z-H, et al. Observation of the fastest chemical processes in the radiolysis of water. Science. 2020;367:179–182. doi: 10.1126/science.aaz4740. PubMed DOI
Cederbaum LS, Zobeley J, Tarantelli F. Giant intermolecular decay and fragmentation of clusters. Phys. Rev. Lett. 1997;79:4778. doi: 10.1103/PhysRevLett.79.4778. DOI
Zobeley J, Santra R, Cederbaum LS. Electronic decay in weakly bound heteroclusters: energy transfer versus electron transfer. J. Chem. Phys. 2001;115:5076. doi: 10.1063/1.1395555. DOI
Jahnke T, et al. Experimental observation of interatomic Coulombic decay in neon dimers. Phys. Rev. Lett. 2004;93:163401. doi: 10.1103/PhysRevLett.93.163401. PubMed DOI
Jahnke T, et al. Ultrafast energy transfer between water molecules. Nat. Phys. 2010;6:139–142. doi: 10.1038/nphys1498. DOI
Havermeier T, et al. Interatomic Coulombic decay following photoionization of the helium dimer: observation of vibrational structure. Phys. Rev. Lett. 2010;104:133401. doi: 10.1103/PhysRevLett.104.133401. PubMed DOI
Morishita Y, et al. Experimental evidence of interatomic Coulombic decay from the Auger final states in argon dimers. Phys. Rev. Lett. 2006;96:243402. doi: 10.1103/PhysRevLett.96.243402. PubMed DOI
Gokhberg K, Kolorenč P, Kuleff AI, Cederbaum LS. Site- and energy-selective slow-electron production through intermolecular Coulombic decay. Nature. 2014;505:661–663. doi: 10.1038/nature12936. PubMed DOI
Trinter F, et al. Resonant Auger decay driving intermolecular Coulombic decay in molecular dimers. Nature. 2014;505:664–666. doi: 10.1038/nature12927. PubMed DOI
Marburger S, Kugeler O, Hergenhahn U, Möller T. Experimental evidence for interatomic Coulombic decay in Ne clusters. Phys. Rev. Lett. 2003;90:203401. doi: 10.1103/PhysRevLett.90.203401. PubMed DOI
Mucke M, Arion T, Förstel M, Lischke T, Hergenhahn U. Competition of inelastic electron scattering and interatomic Coulombic decay in Ne clusters. J. Electron Spectrosc. Relat. Phenom. 2015;200:232–238. doi: 10.1016/j.elspec.2015.04.017. DOI
Mucke M, et al. A hitherto unrecognized source of low-energy electrons in water. Nat. Phys. 2010;6:143–146. doi: 10.1038/nphys1500. DOI
Öhrwall G, et al. Charge dependence of solvent-mediated intermolecular Coster–Kronig decay dynamics of aqueous ions. J. Phys. Chem. B. 2010;114:17057–17061. doi: 10.1021/jp108956v. PubMed DOI
Pokapanich W, et al. Ionic-charge dependence of the intermolecular Coulombic decay time scale for aqueous ions probed by the core-hole clock. J. Am. Chem. Soc. 2011;133:13430–13436. doi: 10.1021/ja203430s. PubMed DOI
Thürmer S, et al. On the nature and origin of dicationic, charge-separated species formed in liquid water on X-ray irradiation. Nat. Chem. 2013;5:590–596. doi: 10.1038/nchem.1680. PubMed DOI
Aziz EF, Ottosson N, Faubel M, Hertel IV, Winter B. Interaction between liquid water and hydroxide revealed by core-hole de-excitation. Nature. 2008;455:89–91. doi: 10.1038/nature07252. PubMed DOI
Jahnke T, et al. Interatomic and intermolecular Coulombic decay. Chem. Rev. 2020;120:11295–11369. doi: 10.1021/acs.chemrev.0c00106. PubMed DOI PMC
Harbach PHP, Schneider M, Faraji S, Dreuw A. Intermolecular Coulombic decay in biology: the initial electron detachment from FADH− in DNA photolyases. J. Phys. Chem. Lett. 2013;4:943–949. doi: 10.1021/jz400104h. PubMed DOI
Sakai K, et al. Electron-transfer-mediated decay and interatomic Coulombic decay from the triply ionized states in argon dimers. Phys. Rev. Lett. 2011;106:033401. doi: 10.1103/PhysRevLett.106.033401. PubMed DOI
Förstel M, Mucke M, Arion T, Bradshaw AM, Hergenhahn U. Autoionization mediated by electron transfer. Phys. Rev. Lett. 2011;106:033402. doi: 10.1103/PhysRevLett.106.033402. PubMed DOI
Unger I, et al. Observation of electron-transfer-mediated decay in aqueous solution. Nat. Chem. 2017;9:708–714. doi: 10.1038/nchem.2727. PubMed DOI
Pohl MN, et al. Sensitivity of electron transfer mediated decay to ion pairing. J. Phys. Chem. B. 2017;121:7709–7714. doi: 10.1021/acs.jpcb.7b06061. PubMed DOI
Stumpf V, Kolorenč P, Gokhberg K, Cederbaum LS. Efficient pathway to neutralization of multiply charged ions produced in Auger processes. Phys. Rev. Lett. 2013;110:258302. doi: 10.1103/PhysRevLett.110.258302. PubMed DOI
You D, et al. Charge transfer to ground-state ions produces free electrons. Nat. Commun. 2017;8:14277. doi: 10.1038/ncomms14277. PubMed DOI PMC
Buth C, Santra R, Cederbaum LS. Impact of interatomic electronic decay processes on Xe 4d hole decay in the xenon fluorides. J. Chem. Phys. 2003;119:10575. doi: 10.1063/1.1620502. DOI
Fasshauer, E., Förstel, M., Mucke, M., Arion, T. & Hergenhahn, U. Theoretical and experimental investigation of electron transfer mediated decay in ArKr clusters. Chem. Phys.482, 226–238 (2017).
Krause MO. Atomic radiative and radiationless yields for K and L shells. J. Phys. Chem. Ref. Data. 1979;8:307. doi: 10.1063/1.555594. DOI
Gopakumar G, et al. Probing aqueous ions with non-local Auger relaxation. Phys. Chem. Chem. Phys. 2022;24:8661–8671. doi: 10.1039/D2CP00227B. PubMed DOI PMC
Körber H, Mehlhorn W. Das K-Auger-Spektrum von Neon. Z. Phys. 1966;191:217–230. doi: 10.1007/BF01333005. DOI
Leväsalmi M, Aksela H, Aksela S. Satellite structure in the KLL spectrum of neon. Phys. Scr. 1992;T41:119. doi: 10.1088/0031-8949/1992/T41/019. DOI
Roos AH, et al. Abundance of molecular triple ionization by double Auger decay. Sci. Rep. 2018;8:16405. doi: 10.1038/s41598-018-34807-8. PubMed DOI PMC
Hans A, et al. Direct evidence for radiative charge transfer after inner-shell excitation and ionization of large clusters. New J. Phys. 2018;20:012001. doi: 10.1088/1367-2630/aaa4af. DOI
Malerz S, et al. Low-energy constraints on photoelectron spectra measured from liquid water and aqueous solutions. Phys. Chem. Chem. Phys. 2021;23:8246–8260. doi: 10.1039/D1CP00430A. PubMed DOI
Besley NA. Modeling of the spectroscopy of core electrons with density functional theory. WIREs Comput. Mol. Sci. 2021;11:e1527. doi: 10.1002/wcms.1527. DOI
Müller IB, Cederbaum LS. Ionization and double ionization of small water clusters. J. Chem. Phys. 2006;125:204305. doi: 10.1063/1.2357921. PubMed DOI
Trzhaskovskaya MB, Nefedov VI, Yarzhemsky VG. Photoelectron angular distribution parameters for elements Z=1 to Z=54 in the photoelectron energy range 100–5000 eV. At. Data Nucl. Data Tables. 2001;77:97–159. doi: 10.1006/adnd.2000.0849. DOI
Slavíček P, Winter B, Cederbaum LS, Kryzhevoi NV. Proton-transfer mediated enhancement of nonlocal electronic relaxation processes in X ray irradiated liquid water. J. Am. Chem. Soc. 2014;136:18170–18176. doi: 10.1021/ja5117588. PubMed DOI
Thürmer S, et al. Photoelectron angular distributions from liquid water: effects of electron scattering. Phys. Rev. Lett. 2013;111:173005. doi: 10.1103/PhysRevLett.111.173005. PubMed DOI
Suzuki Y-I, Nishizawa K, Kurahashi N, Suzuki T. Effective attenuation length of an electron in liquid water between 10 and 600 eV. Phys. Rev. E. 2014;90:010302(R). doi: 10.1103/PhysRevE.90.010302. PubMed DOI
Signorell R, Winter B. Photoionization of the aqueous phase: clusters, droplets and liquid jets. Phys. Chem. Chem. Phys. 2022;24:13438–13460. doi: 10.1039/D2CP00164K. PubMed DOI PMC
Crowell RA, Lian R, Sauer Jr MC, Oulianov DA, Shkrob IA. Geminate recombination of hydroxyl radicals generated in 200 nm photodissociation of aqueous hydrogen peroxide. Chem. Phys. Lett. 2004;383:481–485. doi: 10.1016/j.cplett.2003.11.062. DOI
Teolis BD, Plainaki C, Cassidy TA, Raut U. Water ice radiolytic O2, H2, and H2O2 yields for any projectile species, energy, or temperature: a model for icy astrophysical bodies. J. Geophys. Res. Planets. 2017;122:1996–2012. doi: 10.1002/2017JE005285. DOI
Krause W, Jordan A, Scholz R, Jimenez J-LM. Iodinated nitroimidazoles as radiosensitizers. Anticancer Res. 2005;25:2145–2152. PubMed
Kobayashi K, Usami N, Porcel E, Lacombe S, Le Sech C. Enhancement of radiation effect by heavy elements. Mutat. Res. Rev. Mutat. Res. 2010;704:123—131. doi: 10.1016/j.mrrev.2010.01.002. PubMed DOI
Matsumoto K, et al. Destruction of tumor mass by gadolinium-loaded nanoparticles irradiated with monochromatic X-rays: implications for the Auger therapy. Sci. Rep. 2019;9:13275. doi: 10.1038/s41598-019-49978-1. PubMed DOI PMC
Ku A, Facca VJ, Cai Z, Reilly RM. Auger electrons for cancer therapy—a review. EJNMMI Radiopharm. Chem. 2019;4:27. doi: 10.1186/s41181-019-0075-2. PubMed DOI PMC
Higashi Y, et al. Iodine containing porous organosilica nanoparticles trigger tumor spheroids destruction upon monochromatic X ray irradiation: DNA breaks and K edge energy X ray. Sci. Rep. 2021;11:14192. doi: 10.1038/s41598-021-93429-9. PubMed DOI PMC
George SJ, et al. X-ray photochemistry in iron complexes from Fe(0) to Fe(IV)—can a bug become a feature? Inorg. Chim. Acta. 2008;361:1157–1165. doi: 10.1016/j.ica.2007.10.039. DOI
Goldberger, D. L. Optimization of Useful Hard X-ray Photochemistry. MSc thesis, Univ. Nevada, Las Vegas (2018).
Emsley, J. Nature’s Building Blocks (Oxford Univ. Press, 2011).
Viefhaus J, et al. The Variable Polarization XUV Beamline P04 at PETRA III: optics, mechanics and their performance. Nucl. Instrum. Methods Phys. Res. A. 2013;710:151–154. doi: 10.1016/j.nima.2012.10.110. DOI
Malerz S, et al. A setup for studies of photoelectron circular dichroism from chiral molecules in aqueous solution. Rev. Sci. Instrum. 2022;93:015101. doi: 10.1063/5.0072346. PubMed DOI
Follath R, Senf F. New plane-grating monochromators for third generation synchrotron radiation light sources. Nucl. Instrum. Methods Phys. Res. A. 1997;390:388–394. doi: 10.1016/S0168-9002(97)00401-4. DOI
Weiss MR, Follath R, Senf F, Gudat W. Comparative monochromator studies for a soft X-ray microfocus beamline for BESSY-II. J. Electron Spectrosc. Relat. Phenom. 1999;101–103:1003–1012. doi: 10.1016/S0368-2048(98)00380-6. DOI
Jung C, et al. First results of the soft X-ray microfocus beamline U41-PGM. Nucl. Instrum. Methods. Phys. Res. A. 2001;467:485–487. doi: 10.1016/S0168-9002(01)00376-X. DOI
Seidel R, Thürmer S, Winter B. Photoelectron spectroscopy meets aqueous solution: studies from a vacuum liquid microjet. J. Phys. Chem. Lett. 2011;2:633–641. doi: 10.1021/jz101636y. DOI
Duan J, Gregory J. Coagulation by hydrolysing metal salts. Adv. Colloid Interface Sci. 2003;100–102:475–502. doi: 10.1016/S0001-8686(02)00067-2. DOI
Thürmer S, et al. Accurate vertical ionization energy and work function determinations of liquid water and aqueous solutions. Chem. Sci. 2021;12:10558–10582. doi: 10.1039/D1SC01908B. PubMed DOI PMC
Barone V, Cossi M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A. 1998;102:1995–2001. doi: 10.1021/jp9716997. DOI
Lange AW, Herbert JM. A smooth, nonsingular, and faithful discretization scheme for polarizable continuum models: the switching/Gaussian approach. J. Chem. Phys. 2010;133:244111. doi: 10.1063/1.3511297. PubMed DOI
Gilbert ATB, Besley NA, Gill PMW. Self-consistent field calculations of excited states using the maximum overlap method (MOM) J. Phys. Chem. A. 2008;112:13164—13171. doi: 10.1021/jp801738f. PubMed DOI
Epifanovsky E, et al. Software for the frontiers of quantum chemistry: an overview of developments in the Q-Chem 5 package. J. Chem. Phys. 2021;155:084801. doi: 10.1063/5.0055522. PubMed DOI PMC
Ufimtsev IS, Martinez TJ. Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics. J. Chem. Theory Comput. 2009;5:2619–2628. doi: 10.1021/ct9003004. PubMed DOI
Titov AV, Ufimtsev IS, Luehr N, Martinez TJ. Generating efficient quantum chemistry codes for novel architectures. J. Chem. Theory Comput. 2013;9:213–221. doi: 10.1021/ct300321a. PubMed DOI