Radiation damage by extensive local water ionization from two-step electron-transfer-mediated decay of solvated ions

. 2023 Oct ; 15 (10) : 1408-1414. [epub] 20230824

Status Publisher Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37620544

Grantová podpora
2017-04162 Vetenskapsrådet (Swedish Research Council)
2018-00740 Vetenskapsrådet (Swedish Research Council)
883759 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)

Odkazy

PubMed 37620544
PubMed Central PMC10533389
DOI 10.1038/s41557-023-01302-1
PII: 10.1038/s41557-023-01302-1
Knihovny.cz E-zdroje

Biomolecular radiation damage is largely mediated by radicals and low-energy electrons formed by water ionization rather than by direct ionization of biomolecules. It was speculated that such an extensive, localized water ionization can be caused by ultrafast processes following excitation by core-level ionization of hydrated metal ions. In this model, ions relax via a cascade of local Auger-Meitner and, importantly, non-local charge- and energy-transfer processes involving the water environment. Here, we experimentally and theoretically show that, for solvated paradigmatic intermediate-mass Al3+ ions, electronic relaxation involves two sequential solute-solvent electron transfer-mediated decay processes. The electron transfer-mediated decay steps correspond to sequential relaxation from Al5+ to Al3+ accompanied by formation of four ionized water molecules and two low-energy electrons. Such charge multiplication and the generated highly reactive species are expected to initiate cascades of radical reactions.

Zobrazit více v PubMed

Huels MA, Boudaïffa B, Cloutier P, Hunting D, Sanche L. Single, double, and multiple double strand breaks induced in DNA by 3–100 eV electrons. J. Am. Chem. Soc. 2003;125:4467–4477. doi: 10.1021/ja029527x. PubMed DOI

Sanche L. Beyond radical thinking. Nature. 2009;461:358—359. doi: 10.1038/461358a. PubMed DOI

Alizadeh E, Orlando TM, Sanche L. Biomolecular damage induced by ionizing radiation: the direct and indirect effects of low-energy electrons on DNA. Annu. Rev. Phys. Chem. 2015;66:379–398. doi: 10.1146/annurev-physchem-040513-103605. PubMed DOI

Bertini, I., Gray, H. B., Stiefel, E. I. & Valentine, J. S. Biological Inorganic Chemistry (University Science Books, 2007).

Stumpf V, Gokhberg K, Cederbaum LS. The role of metal ions in X-ray-induced photochemistry. Nat. Chem. 2016;8:237–241. doi: 10.1038/nchem.2429. PubMed DOI

Garrett BC, et al. Role of water in electron-initiated processes and radical chemistry: issues and scientific advances. Chem. Rev. 2005;105:355—390. doi: 10.1021/cr030453x. PubMed DOI

Loh Z-H, et al. Observation of the fastest chemical processes in the radiolysis of water. Science. 2020;367:179–182. doi: 10.1126/science.aaz4740. PubMed DOI

Cederbaum LS, Zobeley J, Tarantelli F. Giant intermolecular decay and fragmentation of clusters. Phys. Rev. Lett. 1997;79:4778. doi: 10.1103/PhysRevLett.79.4778. DOI

Zobeley J, Santra R, Cederbaum LS. Electronic decay in weakly bound heteroclusters: energy transfer versus electron transfer. J. Chem. Phys. 2001;115:5076. doi: 10.1063/1.1395555. DOI

Jahnke T, et al. Experimental observation of interatomic Coulombic decay in neon dimers. Phys. Rev. Lett. 2004;93:163401. doi: 10.1103/PhysRevLett.93.163401. PubMed DOI

Jahnke T, et al. Ultrafast energy transfer between water molecules. Nat. Phys. 2010;6:139–142. doi: 10.1038/nphys1498. DOI

Havermeier T, et al. Interatomic Coulombic decay following photoionization of the helium dimer: observation of vibrational structure. Phys. Rev. Lett. 2010;104:133401. doi: 10.1103/PhysRevLett.104.133401. PubMed DOI

Morishita Y, et al. Experimental evidence of interatomic Coulombic decay from the Auger final states in argon dimers. Phys. Rev. Lett. 2006;96:243402. doi: 10.1103/PhysRevLett.96.243402. PubMed DOI

Gokhberg K, Kolorenč P, Kuleff AI, Cederbaum LS. Site- and energy-selective slow-electron production through intermolecular Coulombic decay. Nature. 2014;505:661–663. doi: 10.1038/nature12936. PubMed DOI

Trinter F, et al. Resonant Auger decay driving intermolecular Coulombic decay in molecular dimers. Nature. 2014;505:664–666. doi: 10.1038/nature12927. PubMed DOI

Marburger S, Kugeler O, Hergenhahn U, Möller T. Experimental evidence for interatomic Coulombic decay in Ne clusters. Phys. Rev. Lett. 2003;90:203401. doi: 10.1103/PhysRevLett.90.203401. PubMed DOI

Mucke M, Arion T, Förstel M, Lischke T, Hergenhahn U. Competition of inelastic electron scattering and interatomic Coulombic decay in Ne clusters. J. Electron Spectrosc. Relat. Phenom. 2015;200:232–238. doi: 10.1016/j.elspec.2015.04.017. DOI

Mucke M, et al. A hitherto unrecognized source of low-energy electrons in water. Nat. Phys. 2010;6:143–146. doi: 10.1038/nphys1500. DOI

Öhrwall G, et al. Charge dependence of solvent-mediated intermolecular Coster–Kronig decay dynamics of aqueous ions. J. Phys. Chem. B. 2010;114:17057–17061. doi: 10.1021/jp108956v. PubMed DOI

Pokapanich W, et al. Ionic-charge dependence of the intermolecular Coulombic decay time scale for aqueous ions probed by the core-hole clock. J. Am. Chem. Soc. 2011;133:13430–13436. doi: 10.1021/ja203430s. PubMed DOI

Thürmer S, et al. On the nature and origin of dicationic, charge-separated species formed in liquid water on X-ray irradiation. Nat. Chem. 2013;5:590–596. doi: 10.1038/nchem.1680. PubMed DOI

Aziz EF, Ottosson N, Faubel M, Hertel IV, Winter B. Interaction between liquid water and hydroxide revealed by core-hole de-excitation. Nature. 2008;455:89–91. doi: 10.1038/nature07252. PubMed DOI

Jahnke T, et al. Interatomic and intermolecular Coulombic decay. Chem. Rev. 2020;120:11295–11369. doi: 10.1021/acs.chemrev.0c00106. PubMed DOI PMC

Harbach PHP, Schneider M, Faraji S, Dreuw A. Intermolecular Coulombic decay in biology: the initial electron detachment from FADH− in DNA photolyases. J. Phys. Chem. Lett. 2013;4:943–949. doi: 10.1021/jz400104h. PubMed DOI

Sakai K, et al. Electron-transfer-mediated decay and interatomic Coulombic decay from the triply ionized states in argon dimers. Phys. Rev. Lett. 2011;106:033401. doi: 10.1103/PhysRevLett.106.033401. PubMed DOI

Förstel M, Mucke M, Arion T, Bradshaw AM, Hergenhahn U. Autoionization mediated by electron transfer. Phys. Rev. Lett. 2011;106:033402. doi: 10.1103/PhysRevLett.106.033402. PubMed DOI

Unger I, et al. Observation of electron-transfer-mediated decay in aqueous solution. Nat. Chem. 2017;9:708–714. doi: 10.1038/nchem.2727. PubMed DOI

Pohl MN, et al. Sensitivity of electron transfer mediated decay to ion pairing. J. Phys. Chem. B. 2017;121:7709–7714. doi: 10.1021/acs.jpcb.7b06061. PubMed DOI

Stumpf V, Kolorenč P, Gokhberg K, Cederbaum LS. Efficient pathway to neutralization of multiply charged ions produced in Auger processes. Phys. Rev. Lett. 2013;110:258302. doi: 10.1103/PhysRevLett.110.258302. PubMed DOI

You D, et al. Charge transfer to ground-state ions produces free electrons. Nat. Commun. 2017;8:14277. doi: 10.1038/ncomms14277. PubMed DOI PMC

Buth C, Santra R, Cederbaum LS. Impact of interatomic electronic decay processes on Xe 4d hole decay in the xenon fluorides. J. Chem. Phys. 2003;119:10575. doi: 10.1063/1.1620502. DOI

Fasshauer, E., Förstel, M., Mucke, M., Arion, T. & Hergenhahn, U. Theoretical and experimental investigation of electron transfer mediated decay in ArKr clusters. Chem. Phys.482, 226–238 (2017).

Krause MO. Atomic radiative and radiationless yields for K and L shells. J. Phys. Chem. Ref. Data. 1979;8:307. doi: 10.1063/1.555594. DOI

Gopakumar G, et al. Probing aqueous ions with non-local Auger relaxation. Phys. Chem. Chem. Phys. 2022;24:8661–8671. doi: 10.1039/D2CP00227B. PubMed DOI PMC

Körber H, Mehlhorn W. Das K-Auger-Spektrum von Neon. Z. Phys. 1966;191:217–230. doi: 10.1007/BF01333005. DOI

Leväsalmi M, Aksela H, Aksela S. Satellite structure in the KLL spectrum of neon. Phys. Scr. 1992;T41:119. doi: 10.1088/0031-8949/1992/T41/019. DOI

Roos AH, et al. Abundance of molecular triple ionization by double Auger decay. Sci. Rep. 2018;8:16405. doi: 10.1038/s41598-018-34807-8. PubMed DOI PMC

Hans A, et al. Direct evidence for radiative charge transfer after inner-shell excitation and ionization of large clusters. New J. Phys. 2018;20:012001. doi: 10.1088/1367-2630/aaa4af. DOI

Malerz S, et al. Low-energy constraints on photoelectron spectra measured from liquid water and aqueous solutions. Phys. Chem. Chem. Phys. 2021;23:8246–8260. doi: 10.1039/D1CP00430A. PubMed DOI

Besley NA. Modeling of the spectroscopy of core electrons with density functional theory. WIREs Comput. Mol. Sci. 2021;11:e1527. doi: 10.1002/wcms.1527. DOI

Müller IB, Cederbaum LS. Ionization and double ionization of small water clusters. J. Chem. Phys. 2006;125:204305. doi: 10.1063/1.2357921. PubMed DOI

Trzhaskovskaya MB, Nefedov VI, Yarzhemsky VG. Photoelectron angular distribution parameters for elements Z=1 to Z=54 in the photoelectron energy range 100–5000 eV. At. Data Nucl. Data Tables. 2001;77:97–159. doi: 10.1006/adnd.2000.0849. DOI

Slavíček P, Winter B, Cederbaum LS, Kryzhevoi NV. Proton-transfer mediated enhancement of nonlocal electronic relaxation processes in X ray irradiated liquid water. J. Am. Chem. Soc. 2014;136:18170–18176. doi: 10.1021/ja5117588. PubMed DOI

Thürmer S, et al. Photoelectron angular distributions from liquid water: effects of electron scattering. Phys. Rev. Lett. 2013;111:173005. doi: 10.1103/PhysRevLett.111.173005. PubMed DOI

Suzuki Y-I, Nishizawa K, Kurahashi N, Suzuki T. Effective attenuation length of an electron in liquid water between 10 and 600 eV. Phys. Rev. E. 2014;90:010302(R). doi: 10.1103/PhysRevE.90.010302. PubMed DOI

Signorell R, Winter B. Photoionization of the aqueous phase: clusters, droplets and liquid jets. Phys. Chem. Chem. Phys. 2022;24:13438–13460. doi: 10.1039/D2CP00164K. PubMed DOI PMC

Crowell RA, Lian R, Sauer Jr MC, Oulianov DA, Shkrob IA. Geminate recombination of hydroxyl radicals generated in 200 nm photodissociation of aqueous hydrogen peroxide. Chem. Phys. Lett. 2004;383:481–485. doi: 10.1016/j.cplett.2003.11.062. DOI

Teolis BD, Plainaki C, Cassidy TA, Raut U. Water ice radiolytic O2, H2, and H2O2 yields for any projectile species, energy, or temperature: a model for icy astrophysical bodies. J. Geophys. Res. Planets. 2017;122:1996–2012. doi: 10.1002/2017JE005285. DOI

Krause W, Jordan A, Scholz R, Jimenez J-LM. Iodinated nitroimidazoles as radiosensitizers. Anticancer Res. 2005;25:2145–2152. PubMed

Kobayashi K, Usami N, Porcel E, Lacombe S, Le Sech C. Enhancement of radiation effect by heavy elements. Mutat. Res. Rev. Mutat. Res. 2010;704:123—131. doi: 10.1016/j.mrrev.2010.01.002. PubMed DOI

Matsumoto K, et al. Destruction of tumor mass by gadolinium-loaded nanoparticles irradiated with monochromatic X-rays: implications for the Auger therapy. Sci. Rep. 2019;9:13275. doi: 10.1038/s41598-019-49978-1. PubMed DOI PMC

Ku A, Facca VJ, Cai Z, Reilly RM. Auger electrons for cancer therapy—a review. EJNMMI Radiopharm. Chem. 2019;4:27. doi: 10.1186/s41181-019-0075-2. PubMed DOI PMC

Higashi Y, et al. Iodine containing porous organosilica nanoparticles trigger tumor spheroids destruction upon monochromatic X ray irradiation: DNA breaks and K edge energy X ray. Sci. Rep. 2021;11:14192. doi: 10.1038/s41598-021-93429-9. PubMed DOI PMC

George SJ, et al. X-ray photochemistry in iron complexes from Fe(0) to Fe(IV)—can a bug become a feature? Inorg. Chim. Acta. 2008;361:1157–1165. doi: 10.1016/j.ica.2007.10.039. DOI

Goldberger, D. L. Optimization of Useful Hard X-ray Photochemistry. MSc thesis, Univ. Nevada, Las Vegas (2018).

Emsley, J. Nature’s Building Blocks (Oxford Univ. Press, 2011).

Viefhaus J, et al. The Variable Polarization XUV Beamline P04 at PETRA III: optics, mechanics and their performance. Nucl. Instrum. Methods Phys. Res. A. 2013;710:151–154. doi: 10.1016/j.nima.2012.10.110. DOI

Malerz S, et al. A setup for studies of photoelectron circular dichroism from chiral molecules in aqueous solution. Rev. Sci. Instrum. 2022;93:015101. doi: 10.1063/5.0072346. PubMed DOI

Follath R, Senf F. New plane-grating monochromators for third generation synchrotron radiation light sources. Nucl. Instrum. Methods Phys. Res. A. 1997;390:388–394. doi: 10.1016/S0168-9002(97)00401-4. DOI

Weiss MR, Follath R, Senf F, Gudat W. Comparative monochromator studies for a soft X-ray microfocus beamline for BESSY-II. J. Electron Spectrosc. Relat. Phenom. 1999;101–103:1003–1012. doi: 10.1016/S0368-2048(98)00380-6. DOI

Jung C, et al. First results of the soft X-ray microfocus beamline U41-PGM. Nucl. Instrum. Methods. Phys. Res. A. 2001;467:485–487. doi: 10.1016/S0168-9002(01)00376-X. DOI

Seidel R, Thürmer S, Winter B. Photoelectron spectroscopy meets aqueous solution: studies from a vacuum liquid microjet. J. Phys. Chem. Lett. 2011;2:633–641. doi: 10.1021/jz101636y. DOI

Duan J, Gregory J. Coagulation by hydrolysing metal salts. Adv. Colloid Interface Sci. 2003;100–102:475–502. doi: 10.1016/S0001-8686(02)00067-2. DOI

Thürmer S, et al. Accurate vertical ionization energy and work function determinations of liquid water and aqueous solutions. Chem. Sci. 2021;12:10558–10582. doi: 10.1039/D1SC01908B. PubMed DOI PMC

Barone V, Cossi M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A. 1998;102:1995–2001. doi: 10.1021/jp9716997. DOI

Lange AW, Herbert JM. A smooth, nonsingular, and faithful discretization scheme for polarizable continuum models: the switching/Gaussian approach. J. Chem. Phys. 2010;133:244111. doi: 10.1063/1.3511297. PubMed DOI

Gilbert ATB, Besley NA, Gill PMW. Self-consistent field calculations of excited states using the maximum overlap method (MOM) J. Phys. Chem. A. 2008;112:13164—13171. doi: 10.1021/jp801738f. PubMed DOI

Epifanovsky E, et al. Software for the frontiers of quantum chemistry: an overview of developments in the Q-Chem 5 package. J. Chem. Phys. 2021;155:084801. doi: 10.1063/5.0055522. PubMed DOI PMC

Ufimtsev IS, Martinez TJ. Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics. J. Chem. Theory Comput. 2009;5:2619–2628. doi: 10.1021/ct9003004. PubMed DOI

Titov AV, Ufimtsev IS, Luehr N, Martinez TJ. Generating efficient quantum chemistry codes for novel architectures. J. Chem. Theory Comput. 2013;9:213–221. doi: 10.1021/ct300321a. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...