Site- and energy-selective slow-electron production through intermolecular Coulombic decay
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24362566
DOI
10.1038/nature12936
PII: nature12936
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Irradiation of matter with light tends to electronically excite atoms and molecules, with subsequent relaxation processes determining where the photon energy is ultimately deposited and electrons and ions produced. In weakly bound systems, intermolecular Coulombic decay (ICD) enables very efficient relaxation of electronic excitation through transfer of the excess energy to neighbouring atoms or molecules that then lose an electron and become ionized. Here we propose that the emission site and energy of the electrons released during this process can be controlled by coupling the ICD to a resonant core excitation. We illustrate this concept with ab initio many-body calculations on the argon-krypton model system, where resonant photoabsorption produces an initial or 'parent' excitation of the argon atom, which then triggers a resonant-Auger-ICD cascade that ends with the emission of a slow electron from the krypton atom. Our calculations show that the energy of the emitted electrons depends sensitively on the initial excited state of the argon atom. The incident energy can thus be adjusted both to produce the initial excitation in a chosen atom and to realize an excitation that will result in the emission of ICD electrons with desired energies. These properties of the decay cascade might have consequences for fundamental and applied radiation biology and could be of interest in the development of new spectroscopic techniques.
Zobrazit více v PubMed
Invest Radiol. 1982 Jul-Aug;17(4):407-16 PubMed
J Chem Phys. 2005 Nov 22;123(20):204107 PubMed
Cancer Biother Radiopharm. 2003 Jun;18(3):301-16 PubMed
J Am Chem Soc. 2011 Aug 31;133(34):13430-6 PubMed
Science. 1998 Jul 31;281(5377):679-83 PubMed
Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):11821-4 PubMed
Science. 2000 Mar 3;287(5458):1658-60 PubMed
J Chem Phys. 2010 Oct 21;133(15):154307 PubMed
Phys Rev Lett. 2003 Apr 18;90(15):153401 PubMed
Phys Rev Lett. 2004 Aug 6;93(6):068101 PubMed
J Chem Phys. 2008 Aug 21;129(7):074307 PubMed
Phys Rev Lett. 2008 Jul 25;101(4):043004 PubMed
Nature. 2008 Sep 4;455(7209):89-91 PubMed
Phys Rev Lett. 2004 Oct 22;93(17):173401 PubMed
J Phys Chem A. 2008 Aug 28;112(34):7806-15 PubMed
J Am Chem Soc. 2003 Apr 16;125(15):4467-77 PubMed
Phys Rev Lett. 2006 Jun 23;96(24):243402 PubMed
Nature. 2014 Jan 30;505(7485):664-6 PubMed
J Phys Chem B. 2010 Dec 30;114(51):17057-61 PubMed
Phys Rev Lett. 2011 Jul 1;107(1):016104 PubMed
Int J Radiat Biol. 1991 Mar;59(3):625-42 PubMed
Phys Rev Lett. 2010 Apr 2;104(13):133401 PubMed
J Am Chem Soc. 2011 May 4;133(17):6817-24 PubMed
Phys Rev Lett. 2010 Nov 5;105(19):198102 PubMed
J Chem Phys. 2006 Nov 28;125(20):204305 PubMed
Electronic quantum coherence in glycine molecules probed with ultrashort x-ray pulses in real time
Probing aqueous ions with non-local Auger relaxation
Low-energy electrons transform the nimorazole molecule into a radiosensitiser