Low-energy electrons transform the nimorazole molecule into a radiosensitiser

. 2019 Jun 03 ; 10 (1) : 2388. [epub] 20190603

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31160602

Grantová podpora
P 30332 Austrian Science Fund FWF - Austria
P30332 Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung) - International

Odkazy

PubMed 31160602
PubMed Central PMC6546713
DOI 10.1038/s41467-019-10340-8
PII: 10.1038/s41467-019-10340-8
Knihovny.cz E-zdroje

While matter is irradiated with highly-energetic particles, it may become chemically modified. Thereby, the reactions of free low-energy electrons (LEEs) formed as secondary particles play an important role. It is unknown to what degree and by which mechanism LEEs contribute to the action of electron-affinic radiosensitisers applied in radiotherapy of hypoxic tumours. Here we show that LEEs effectively cause the reduction of the radiosensitiser nimorazole via associative electron attachment with the cross-section exceeding most of known molecules. This supports the hypothesis that nimorazole is selectively cytotoxic to tumour cells due to reduction of the molecule as prerequisite for accumulation in the cell. In contrast, dissociative electron attachment, commonly believed to be the source of chemical activity of LEEs, represents only a minor reaction channel which is further suppressed upon hydration. Our results show that LEEs may strongly contribute to the radiosensitising effect of nimorazole via associative electron attachment.

Zobrazit více v PubMed

Gokhberg K, Kolorenč P, Kuleff AI, Cederbaum LS. Site- and energy-selective slow-electron production through intermolecular Coulombic decay. Nature. 2014;505:661–663. doi: 10.1038/nature12936. PubMed DOI

Ren XG, Al Maalouf EJ, Dorn A, Denifl S. Direct evidence of two interatomic relaxation mechanisms in argon dimers ionized by electron impact. Nat. Commun. 2016;7:11093. doi: 10.1038/ncomms11093. PubMed DOI PMC

Westphal K, et al. Irreversible electron attachment - a key to DNA damage by solvated electrons in aqueous solution. Org. Biomol. Chem. 2015;13:10362–10369. doi: 10.1039/C5OB01542A. PubMed DOI

Ma J, Wang F, Denisov SA, Adhikary A, Mostafavi M. Reactivity of prehydrated electrons toward nucleobases and nucleotides in aqueous solution. Sci. Adv. 2017;3:e1701669. doi: 10.1126/sciadv.1701669. PubMed DOI PMC

Baccarelli I, Bald I, Gianturco FA, Illenberger E, Kopyra J. Electron-induced damage of DNA and its components: Experiments and theoretical models. Phys. Rep. 2011;508:1–44. doi: 10.1016/j.physrep.2011.06.004. DOI

Ptasinska S, Denifl S, Scheier P, Illenberger E, Märk TD. Bond- and site-selective loss of H atoms from nucleobases by very-low-energy electrons (<3 eV) Angew. Chem. - Int Ed. 2005;44:6941–6943. doi: 10.1002/anie.200502040. PubMed DOI

Michael BD, O’Neill P. Molecular biology. A sting in the tail of electron tracks. Science. 2000;287:1603–1604. doi: 10.1126/science.287.5458.1603. PubMed DOI

Boudaïfffa B, Cloutier P, Hunting D, Huels MA, Sanche L. Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science. 2000;287:1658–1660. doi: 10.1126/science.287.5458.1658. PubMed DOI

Ma J, et al. Observation of dissociative quasi-free electron attachment to nucleoside via excited anion radical in solution. Nat. Commun. 2019;10:102. doi: 10.1038/s41467-018-08005-z. PubMed DOI PMC

Chomicz L, et al. How to find out whether a 5-substituted uracil could be a potential DNA radiosensitizer. J. Phys. Chem. Lett. 2013;4:2853–2857. doi: 10.1021/jz401358w. DOI

Abdoul-Carime H, Huels MA, Illenberger E, Sanche L. Sensitizing DNA to secondary electron damage: resonant formation of oxidative radicals from 5-halouracils. J. Am. Chem. Soc. 2001;123:5354–5355. doi: 10.1021/ja003952d. PubMed DOI

Schürmann R, et al. Resonant formation of strand breaks in sensitized oligonucleotides induced by low-energy electrons (0.5-9 eV) Angew. Chem. Int Ed. Engl. 2017;56:10952–10955. doi: 10.1002/anie.201705504. PubMed DOI

Wardman P. Chemical radiosensitizers for use in radiotherapy. Clin. Oncol. 2007;19:397–417. doi: 10.1016/j.clon.2007.03.010. PubMed DOI

Wang H, Mu X, He H, Zhang XD. Cancer radiosensitizers. Trends Pharm. Sci. 2018;39:24–48. doi: 10.1016/j.tips.2017.11.003. PubMed DOI

Baumann M, et al. Radiation oncology in the era of precision medicine. Nat. Rev. Cancer. 2016;16:234–249. doi: 10.1038/nrc.2016.18. PubMed DOI

Henk JM, Bishop K, Shepherd SF. Treatment of head and neck cancer with CHART and nimorazole: phase II study. Radio. Oncol. 2003;66:65–70. doi: 10.1016/S0167-8140(02)00284-0. PubMed DOI

Feketeova L, et al. Formation of radical anions of radiosensitizers and related model compounds via electrospray ionization. Int J. Mass Spectrom. 2014;365:56–63. doi: 10.1016/j.ijms.2013.12.014. DOI

Klar D, Ruf MW, Hotop H. Attachment of electrons to molecules at meV resolution. Aust. J. Phys. 1992;45:263–291. doi: 10.1071/PH920263. DOI

Matejčik Scaron, et al. Formation and decay of C60- following free-electron capture by C60. J. Chem. Phys. 1995;102:2516–2521. doi: 10.1063/1.468680. DOI

Sommerfeld T, Davis MC. Ring-opening attachment as an explanation for the long lifetime of the octafluorooxolane anion. J. Chem. Phys. 2018;149:084305. doi: 10.1063/1.5045088. PubMed DOI

Cerón-Carrasco JP, Requena A, Zúñiga J, Jacquemin D. Mutagenic effects induced by the attack of NO2 radical to the guanine-cytosine base pair. Front. Chem. 2015;3:13. doi: 10.3389/fchem.2015.00013. PubMed DOI PMC

Neustetter M, Aysina J, da Silva FF, Denifl S. The effect of solvation on electron attachment to pure and hydrated pyrimidine clusters. Angew. Chem. Int Ed. 2015;54:9124–9126. doi: 10.1002/anie.201503733. PubMed DOI PMC

Bald I, Langer J, Tegeder P, Ingólfsson O. From isolated molecules through clusters and condensates to the building blocks of life. A short tribute to Prof. Eugen Illenberger’s work in the field of negative ion chemistry. Int J. Mass Spectrom. 2008;277:4–25. doi: 10.1016/j.ijms.2008.06.013. DOI

Poštulka J, Slavíček P, Fedor J, Farník M, Kočišek J. Energy transfer in microhydrated uracil, 5-fluorouracil, and 5-bromouracil. J. Phys. Chem. B. 2017;121:8965–8974. doi: 10.1021/acs.jpcb.7b07390. PubMed DOI

Kočišek J, Pysanenko A, Farník M, Fedor J. Microhydration prevents fragmentation of uracil and thymine by low-energy electrons. J. Phys. Chem. Lett. 2016;7:3401–3405. doi: 10.1021/acs.jpclett.6b01601. PubMed DOI

Kohanoff J, McAllister M, Tribello GA, Gu B. Interactions between low energy electrons and DNA: a perspective from first-principles simulations. J. Phys. -Condens Mat. 2017;29:383001. doi: 10.1088/1361-648X/aa79e3. PubMed DOI

Zawadzki M, Ranković M, Kočišek J, Fedor J. Dissociative electron attachment and anion-induced dimerization in pyruvic acid. PCCP. 2018;20:6838–6844. doi: 10.1039/C7CP07472G. PubMed DOI

Fabrikant II. Electron attachment to molecules in a cluster environment: suppression and enhancement effects. Eur. Phys. J. D. 2018;72:96. doi: 10.1140/epjd/e2018-90082-2. PubMed DOI

Barnett RN, Landman U, Scharf D, Jortner J. Surface and internal excess electron-states in molecular clusters. Acc. Chem. Res. 1989;22:350–357. doi: 10.1021/ar00166a002. DOI

Cowan ML, et al. Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O. Nature. 2005;434:199–202. doi: 10.1038/nature03383. PubMed DOI

Zhang Z, Piatkowski L, Bakker HJ, Bonn M. Ultrafast vibrational energy transfer at the water/air interface revealed by two-dimensional surface vibrational spectroscopy. Nat. Chem. 2011;3:888–893. doi: 10.1038/nchem.1158. PubMed DOI

Edwards DI. Nitroimidazole drugs - Action and resistance mechanisms I. Mechanisms of action. J. Antimicrob. Chemother. 1993;31:9–20. doi: 10.1093/jac/31.1.9. PubMed DOI

Wardman P. Electron transfer and oxidative stress as key factors in the design of drugs selectively active in hypoxia. Curr. Med. Chem. 2001;8:739–761. doi: 10.2174/0929867013372959. PubMed DOI

Wardman P. The mechanism of radiosensitization by electron-affinic compounds. Radiat. Phys. Chem. 1987;30:423–432.

von Sonntag C. Free-Radical-Induced DNA Damage and Its Repair, A Chemical Perspective, 1 edn. (Springer-Verlag, Berlin Heidelberg, 2006).

Adams GE, et al. Electron-affinic sensitization. VII. A correlation between structures, one-electron reduction potentials, and efficiencies of nitroimidazoles as hypoxic cell radiosensitizers. Radiat. Res. 1976;67:9–20. doi: 10.2307/3574491. PubMed DOI

Denifl S, et al. Free-electron attachment to coronene and corannulene in the gas phase. J. Chem. Phys. 2005;123:104308. doi: 10.1063/1.2008947. PubMed DOI

Kočišek J, Lengyel J, Farnik M. Ionization of large homogeneous and heterogeneous clusters generated in acetylene-Ar expansions: Cluster ion polymerization. J. Chem. Phys. 2013;138:124306. doi: 10.1063/1.4796262. PubMed DOI

Gallup GA, Aflatooni K, Burrow PD. Dissociative electron attachment near threshold, thermal attachment rates, and vertical attachment energies of chloroalkanes. J. Chem. Phys. 2003;118:2562–2574. doi: 10.1063/1.1535891. DOI

Kočišek, J., Grygoryeva, K., Lengyel, J., Farnik, M., & Fedor, J. Effect of cluster environment on the electron attachment to 2-nitrophenol. Eur. Phys. J. D.70, 98 (2016).

Dressler R, Allan M. Energy partitioning in the O−/CO2 dissociative attachment. Chem. Phys. 1985;92:449–455. doi: 10.1016/0301-0104(85)85038-2. DOI

Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008;120:215–241. doi: 10.1007/s00214-007-0310-x. DOI

Hehre, W. J., Radom, L., Schleyer, PvR, Pople, JA. Ab Initio Molecular Orbital Theory. (Wiley, Hoboken, NJ, 1986).

Frisch, M. J. et al. Gaussian 09, Revision D.01. (Gaussian Inc., Wallington CT, 2013).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...