Low-energy electrons transform the nimorazole molecule into a radiosensitiser
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
P 30332
Austrian Science Fund FWF - Austria
P30332
Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung) - International
PubMed
31160602
PubMed Central
PMC6546713
DOI
10.1038/s41467-019-10340-8
PII: 10.1038/s41467-019-10340-8
Knihovny.cz E-zdroje
- MeSH
- chemoradioterapie * MeSH
- elektrony * MeSH
- lidé MeSH
- nádory terapie MeSH
- nimorazol chemie terapeutické užití MeSH
- oxidace-redukce MeSH
- radiosenzibilizující látky chemie terapeutické užití MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- nimorazol MeSH
- radiosenzibilizující látky MeSH
While matter is irradiated with highly-energetic particles, it may become chemically modified. Thereby, the reactions of free low-energy electrons (LEEs) formed as secondary particles play an important role. It is unknown to what degree and by which mechanism LEEs contribute to the action of electron-affinic radiosensitisers applied in radiotherapy of hypoxic tumours. Here we show that LEEs effectively cause the reduction of the radiosensitiser nimorazole via associative electron attachment with the cross-section exceeding most of known molecules. This supports the hypothesis that nimorazole is selectively cytotoxic to tumour cells due to reduction of the molecule as prerequisite for accumulation in the cell. In contrast, dissociative electron attachment, commonly believed to be the source of chemical activity of LEEs, represents only a minor reaction channel which is further suppressed upon hydration. Our results show that LEEs may strongly contribute to the radiosensitising effect of nimorazole via associative electron attachment.
Zobrazit více v PubMed
Gokhberg K, Kolorenč P, Kuleff AI, Cederbaum LS. Site- and energy-selective slow-electron production through intermolecular Coulombic decay. Nature. 2014;505:661–663. doi: 10.1038/nature12936. PubMed DOI
Ren XG, Al Maalouf EJ, Dorn A, Denifl S. Direct evidence of two interatomic relaxation mechanisms in argon dimers ionized by electron impact. Nat. Commun. 2016;7:11093. doi: 10.1038/ncomms11093. PubMed DOI PMC
Westphal K, et al. Irreversible electron attachment - a key to DNA damage by solvated electrons in aqueous solution. Org. Biomol. Chem. 2015;13:10362–10369. doi: 10.1039/C5OB01542A. PubMed DOI
Ma J, Wang F, Denisov SA, Adhikary A, Mostafavi M. Reactivity of prehydrated electrons toward nucleobases and nucleotides in aqueous solution. Sci. Adv. 2017;3:e1701669. doi: 10.1126/sciadv.1701669. PubMed DOI PMC
Baccarelli I, Bald I, Gianturco FA, Illenberger E, Kopyra J. Electron-induced damage of DNA and its components: Experiments and theoretical models. Phys. Rep. 2011;508:1–44. doi: 10.1016/j.physrep.2011.06.004. DOI
Ptasinska S, Denifl S, Scheier P, Illenberger E, Märk TD. Bond- and site-selective loss of H atoms from nucleobases by very-low-energy electrons (<3 eV) Angew. Chem. - Int Ed. 2005;44:6941–6943. doi: 10.1002/anie.200502040. PubMed DOI
Michael BD, O’Neill P. Molecular biology. A sting in the tail of electron tracks. Science. 2000;287:1603–1604. doi: 10.1126/science.287.5458.1603. PubMed DOI
Boudaïfffa B, Cloutier P, Hunting D, Huels MA, Sanche L. Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science. 2000;287:1658–1660. doi: 10.1126/science.287.5458.1658. PubMed DOI
Ma J, et al. Observation of dissociative quasi-free electron attachment to nucleoside via excited anion radical in solution. Nat. Commun. 2019;10:102. doi: 10.1038/s41467-018-08005-z. PubMed DOI PMC
Chomicz L, et al. How to find out whether a 5-substituted uracil could be a potential DNA radiosensitizer. J. Phys. Chem. Lett. 2013;4:2853–2857. doi: 10.1021/jz401358w. DOI
Abdoul-Carime H, Huels MA, Illenberger E, Sanche L. Sensitizing DNA to secondary electron damage: resonant formation of oxidative radicals from 5-halouracils. J. Am. Chem. Soc. 2001;123:5354–5355. doi: 10.1021/ja003952d. PubMed DOI
Schürmann R, et al. Resonant formation of strand breaks in sensitized oligonucleotides induced by low-energy electrons (0.5-9 eV) Angew. Chem. Int Ed. Engl. 2017;56:10952–10955. doi: 10.1002/anie.201705504. PubMed DOI
Wardman P. Chemical radiosensitizers for use in radiotherapy. Clin. Oncol. 2007;19:397–417. doi: 10.1016/j.clon.2007.03.010. PubMed DOI
Wang H, Mu X, He H, Zhang XD. Cancer radiosensitizers. Trends Pharm. Sci. 2018;39:24–48. doi: 10.1016/j.tips.2017.11.003. PubMed DOI
Baumann M, et al. Radiation oncology in the era of precision medicine. Nat. Rev. Cancer. 2016;16:234–249. doi: 10.1038/nrc.2016.18. PubMed DOI
Henk JM, Bishop K, Shepherd SF. Treatment of head and neck cancer with CHART and nimorazole: phase II study. Radio. Oncol. 2003;66:65–70. doi: 10.1016/S0167-8140(02)00284-0. PubMed DOI
Feketeova L, et al. Formation of radical anions of radiosensitizers and related model compounds via electrospray ionization. Int J. Mass Spectrom. 2014;365:56–63. doi: 10.1016/j.ijms.2013.12.014. DOI
Klar D, Ruf MW, Hotop H. Attachment of electrons to molecules at meV resolution. Aust. J. Phys. 1992;45:263–291. doi: 10.1071/PH920263. DOI
Matejčik Scaron, et al. Formation and decay of C60- following free-electron capture by C60. J. Chem. Phys. 1995;102:2516–2521. doi: 10.1063/1.468680. DOI
Sommerfeld T, Davis MC. Ring-opening attachment as an explanation for the long lifetime of the octafluorooxolane anion. J. Chem. Phys. 2018;149:084305. doi: 10.1063/1.5045088. PubMed DOI
Cerón-Carrasco JP, Requena A, Zúñiga J, Jacquemin D. Mutagenic effects induced by the attack of NO2 radical to the guanine-cytosine base pair. Front. Chem. 2015;3:13. doi: 10.3389/fchem.2015.00013. PubMed DOI PMC
Neustetter M, Aysina J, da Silva FF, Denifl S. The effect of solvation on electron attachment to pure and hydrated pyrimidine clusters. Angew. Chem. Int Ed. 2015;54:9124–9126. doi: 10.1002/anie.201503733. PubMed DOI PMC
Bald I, Langer J, Tegeder P, Ingólfsson O. From isolated molecules through clusters and condensates to the building blocks of life. A short tribute to Prof. Eugen Illenberger’s work in the field of negative ion chemistry. Int J. Mass Spectrom. 2008;277:4–25. doi: 10.1016/j.ijms.2008.06.013. DOI
Poštulka J, Slavíček P, Fedor J, Farník M, Kočišek J. Energy transfer in microhydrated uracil, 5-fluorouracil, and 5-bromouracil. J. Phys. Chem. B. 2017;121:8965–8974. doi: 10.1021/acs.jpcb.7b07390. PubMed DOI
Kočišek J, Pysanenko A, Farník M, Fedor J. Microhydration prevents fragmentation of uracil and thymine by low-energy electrons. J. Phys. Chem. Lett. 2016;7:3401–3405. doi: 10.1021/acs.jpclett.6b01601. PubMed DOI
Kohanoff J, McAllister M, Tribello GA, Gu B. Interactions between low energy electrons and DNA: a perspective from first-principles simulations. J. Phys. -Condens Mat. 2017;29:383001. doi: 10.1088/1361-648X/aa79e3. PubMed DOI
Zawadzki M, Ranković M, Kočišek J, Fedor J. Dissociative electron attachment and anion-induced dimerization in pyruvic acid. PCCP. 2018;20:6838–6844. doi: 10.1039/C7CP07472G. PubMed DOI
Fabrikant II. Electron attachment to molecules in a cluster environment: suppression and enhancement effects. Eur. Phys. J. D. 2018;72:96. doi: 10.1140/epjd/e2018-90082-2. PubMed DOI
Barnett RN, Landman U, Scharf D, Jortner J. Surface and internal excess electron-states in molecular clusters. Acc. Chem. Res. 1989;22:350–357. doi: 10.1021/ar00166a002. DOI
Cowan ML, et al. Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O. Nature. 2005;434:199–202. doi: 10.1038/nature03383. PubMed DOI
Zhang Z, Piatkowski L, Bakker HJ, Bonn M. Ultrafast vibrational energy transfer at the water/air interface revealed by two-dimensional surface vibrational spectroscopy. Nat. Chem. 2011;3:888–893. doi: 10.1038/nchem.1158. PubMed DOI
Edwards DI. Nitroimidazole drugs - Action and resistance mechanisms I. Mechanisms of action. J. Antimicrob. Chemother. 1993;31:9–20. doi: 10.1093/jac/31.1.9. PubMed DOI
Wardman P. Electron transfer and oxidative stress as key factors in the design of drugs selectively active in hypoxia. Curr. Med. Chem. 2001;8:739–761. doi: 10.2174/0929867013372959. PubMed DOI
Wardman P. The mechanism of radiosensitization by electron-affinic compounds. Radiat. Phys. Chem. 1987;30:423–432.
von Sonntag C. Free-Radical-Induced DNA Damage and Its Repair, A Chemical Perspective, 1 edn. (Springer-Verlag, Berlin Heidelberg, 2006).
Adams GE, et al. Electron-affinic sensitization. VII. A correlation between structures, one-electron reduction potentials, and efficiencies of nitroimidazoles as hypoxic cell radiosensitizers. Radiat. Res. 1976;67:9–20. doi: 10.2307/3574491. PubMed DOI
Denifl S, et al. Free-electron attachment to coronene and corannulene in the gas phase. J. Chem. Phys. 2005;123:104308. doi: 10.1063/1.2008947. PubMed DOI
Kočišek J, Lengyel J, Farnik M. Ionization of large homogeneous and heterogeneous clusters generated in acetylene-Ar expansions: Cluster ion polymerization. J. Chem. Phys. 2013;138:124306. doi: 10.1063/1.4796262. PubMed DOI
Gallup GA, Aflatooni K, Burrow PD. Dissociative electron attachment near threshold, thermal attachment rates, and vertical attachment energies of chloroalkanes. J. Chem. Phys. 2003;118:2562–2574. doi: 10.1063/1.1535891. DOI
Kočišek, J., Grygoryeva, K., Lengyel, J., Farnik, M., & Fedor, J. Effect of cluster environment on the electron attachment to 2-nitrophenol. Eur. Phys. J. D.70, 98 (2016).
Dressler R, Allan M. Energy partitioning in the O−/CO2 dissociative attachment. Chem. Phys. 1985;92:449–455. doi: 10.1016/0301-0104(85)85038-2. DOI
Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008;120:215–241. doi: 10.1007/s00214-007-0310-x. DOI
Hehre, W. J., Radom, L., Schleyer, PvR, Pople, JA. Ab Initio Molecular Orbital Theory. (Wiley, Hoboken, NJ, 1986).
Frisch, M. J. et al. Gaussian 09, Revision D.01. (Gaussian Inc., Wallington CT, 2013).
Low-Energy Electron-Induced Dissociation of the Radiosensitizing Agent Sanazole
Nitro-Group π System Drives the Interaction of RRx-001 with Electrons in Solution
Electron Energy Loss Processes in Methyl Methacrylate: Excitation and Bond Breaking
Low-Energy Electron Induced Reactions in Metronidazole at Different Solvation Conditions
Ring Formation and Hydration Effects in Electron Attachment to Misonidazole