Electron Energy Loss Processes in Methyl Methacrylate: Excitation and Bond Breaking

. 2023 Mar 30 ; 127 (12) : 2731-2741. [epub] 20230317

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36930039

Details of electron-induced chemistry of methyl methacrylate (MMA) upon complexation are revealed by combining gas-phase 2D electron energy loss spectroscopy with electron attachment spectroscopy of isolated MMA and its clusters. We show that even though isolated MMA does not form stable parent anions, it efficiently thermalizes the incident electrons via intramolecular vibrational redistribution, leading to autodetachment of slow electrons. This autodetachment channel is reduced in clusters due to intermolecular energy transfer and stabilization of parent molecular anions. Bond breaking via dissociative electron attachment leads to an extensive range of anion products. The dominant OCH3- channel is accessible via core-excited resonances with threshold above 5 eV, despite the estimated thermodynamic threshold below 3 eV. This changes in clusters, where MnOCH3- anions are observed in a lower-lying resonance due to neutral dissociation of the 1(n, π*) state and electron self-scavenging. The present findings have implications for electron-induced chemistry in lithography with poly(methyl methacrylate).

Zobrazit více v PubMed

Carbaugh D. J.; Wright J. T.; Parthiban R.; Rahman F. Photolithography with Polymethyl Methacrylate (PMMA). Semicond. Sci. Technol. 2016, 31, 025010.10.1088/0268-1242/31/2/025010. DOI

Carbaugh D. J.; Pandya S. G.; Wright J. T.; Kaya S.; Rahman F. Combination Photo and Electron Beam Lithography with Polymethyl Methacrylate (PMMA) Resist. Nanotechnology 2017, 28, 455301.10.1088/1361-6528/aa8bd5. PubMed DOI

Kim K.; Lee J.-W.; Park B.-G.; Oh H.-T.; Ku Y.; Lee J.-K.; Lim G.; Lee S. Investigation of Correlative Parameters to Evaluate EUV Lithographic Performance of PMMA. RSC Adv. 2022, 12, 2589–2594. 10.1039/D1RA07291A. PubMed DOI PMC

Zailer I.; Frost J. E. F.; Chabasseur-Molyneux V.; Ford C. J. B.; Pepper M. Crosslinked PMMA as a High-Resolution Negative Resist for Electron Beam Lithography and Applications for Physics of Low-Dimensional Structures. Semicond. Sci. Technol. 1996, 11, 1235–1238. 10.1088/0268-1242/11/8/021. DOI

Hoole A. C. F.; Welland M. E.; Broers A. N. Negative PMMA as a High-Resolution Resist - the Limits and Possibilities. Semicond. Sci. Technol. 1997, 12, 1166–1170. 10.1088/0268-1242/12/9/017. DOI

Manfrinato V. R.; Stein A.; Zhang L.; Nam C.-Y.; Yager K. G.; Stach E. A.; Black C. T. Aberration-Corrected Electron Beam Lithography at the One Nanometer Length Scale. Nano Lett. 2017, 17, 4562–4567. 10.1021/acs.nanolett.7b00514. PubMed DOI

Duan H.; Winston D.; Yang J. K. W.; Cord B. M.; Manfrinato V. R.; Berggren K. K. Sub-10-nm Half-Pitch Electron-Beam Lithography by Using Poly(methyl methacrylate) as a Negative Resist. J. Vac. Sci. Technol. B 2010, 28, C6C58–C6C62. 10.1116/1.3501353. DOI

Schnauber P.; Schmidt R.; Kaganskiy A.; Heuser T.; Gschrey M.; Rodt S.; Reitzenstein S. Using Low-Contrast Negative-Tone PMMA at Cryogenic Temperatures for 3D Electron Beam Lithography. Nanotechnology 2016, 27, 195301.10.1088/0957-4484/27/19/195301. PubMed DOI

Rahman F.; Carbaugh D. J.; Wright J. T.; Rajan P.; Pandya S. G.; Kaya S. A Review of Polymethyl Methacrylate (PMMA) as a Versatile Lithographic Resist - With Emphasis on UV Exposure. Microelectron. Eng. 2020, 224, 111238.10.1016/j.mee.2020.111238. DOI

Duan H.; Xie E.; Han L.; Xu Z. Turning PMMA Nanofibers into Graphene Nanoribbons by In Situ Electron Beam Irradiation. Adv. Mater. 2008, 20, 3284–3288. 10.1002/adma.200702149. DOI

Duan H.; Zhao J.; Zhang Y.; Xie E.; Han L. Preparing Patterned Carbonaceous Nanostructures Directly by Overexposure of PMMA Using Electron-Beam Lithography. Nanotechnology 2009, 20, 135306.10.1088/0957-4484/20/13/135306. PubMed DOI

Torok J.; Del Re R.; Herbol H.; Das S.; Bocharova I.; Paolucci A.; Ocola L. E.; Ventrice C. Jr.; Lifshin E.; Denbeaux G.; Brainard R. L. Secondary Electrons in EUV Lithography. J. Photopolym. Sci. Technol. 2013, 26, 625–634. 10.2494/photopolymer.26.625. DOI

Charged Particle and Photon Interactions with Matter: Recent Advances, Applications, and Interfaces; Hatano Y., Katsumura Y., Mozumder A., Eds.; CRC Press: Boca Raton, FL, 2010.

Ma J. H.; Naulleau P.; Ahmed M.; Kostko O. Determination of Effective Attenuation Length of Slow Electrons in Polymer Films. J. Appl. Phys. 2020, 127, 245301.10.1063/5.0007163. DOI

Todd A. The Mechanisms of Radiation-Induced Changes in Vinyl Polymers. J. Polym. Sci. 1960, 42, 223–247. 10.1002/pol.1960.1204213925. DOI

Lehockey E. M.; Reid I.; Hill I. The Radiation Chemistry of Poly(methyl methacrylate) Polymer Resists. J. Vac. Sci. Technol. A 1988, 6, 2221–2225. 10.1116/1.575014. DOI

Buchwalter L. P.; Czornyj G. Poly(methyl methacrylate) Degradation During X-ray Photoelectron Spectroscopy Analysis. J. Vac. Sci. Technol. A 1990, 8, 781–784. 10.1116/1.576917. DOI

Hedhili M. N.; Yakshinskiy B. V.; Wasielewski R.; Ciszewski A.; Madey T. E. Adsorption and Electron-Induced Polymerization of Methyl Methacrylate on Ru(10 1̅0). J. Chem. Phys. 2008, 128, 174704.10.1063/1.2908821. PubMed DOI

Tsuchida A.; Sakai W.; Nakano M.; Yamamoto M. Electron Capture of Dopants in Two-Photonic Ionization in a Poly(methyl methacrylate) Solid. J. Phys. Chem. 1992, 96, 8855–8858. 10.1021/j100201a032. DOI

Ohkita H.; Ishii H.; Ogi T.; Ito S.; Yamamoto M. Spatial Distribution of Electrons Ejected by Two-Photon Excitation of Aromatic Molecules in Polymer Systems. Radiat. Phys. Chem. 2001, 60, 427–432. 10.1016/S0969-806X(00)00421-7. DOI

Nakano A.; Okamoto K.; Kozawa T.; Tagawa S. Pulse Radiolysis Study on Proton and Charge Transfer Reactions in Solid Poly(methyl methacrylate). Jpn. J. Appl. Phys. 2004, 43, 4363–4367. 10.1143/JJAP.43.4363. DOI

Sakai W.; Tsuchida A.; Yamamoto M.; Matsuyama T.; Yamaoka H.; Yamauchi J. Radical Anion Mechanism for Chain Scission of Poly(methyl methacrylate) via Alectron Transfer. Macromol. Rapid Commun. 1994, 15, 551–557. 10.1002/marc.1994.030150616. DOI

Hsieh H. L.; Quirk R. P.. Anionic Polymerization: Principles and Practical Applications; CRC Press: Boca Raton, FL, 1996.

McDonald R. N.; Chowdhury A. K. Gas-Phase Anionic Oligomerization of Methyl Acrylate Initiated by F3C–, NCCH2–, and Allyl Anions. J. Am. Chem. Soc. 1983, 105, 2194–2203. 10.1021/ja00346a016. DOI

Li Z.; Chen J.; Zou G.; Zhang T.; Wei D.; Xu X.; Guan Y.; Zheng A. Anionic Living Polymerization of Alkyl Methacrylate at Ambient Temperature and its Mechanism Research. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1130–1139. 10.1002/pola.29368. DOI

Ihara E.; Omura N.; Itoh T.; Inoue K. Anionic Polymerization of Methyl Methacrylate and Tert-Butyl Acrylate Initiated with the YCl3/Lithium Amide/nBuLi Systems. J. Organomet. Chem. 2007, 692, 698–704. 10.1016/j.jorganchem.2006.08.039. DOI

Tsukuda T.; Kondow T. Intensity Enhancement in the Size Distributions of Acrylate Cluster Anions. Chem. Phys. Lett. 1992, 197, 438–442. 10.1016/0009-2614(92)85797-E. DOI

Tsunoyama H.; Ohshimo K.; Misaizu F.; Ohno K. Intracluster Anionic Oligomerization of Acrylic Ester Molecules Initiated by Electron Transfer from an Alkali Metal Atom. J. Am. Chem. Soc. 2001, 123, 683–690. 10.1021/ja002155c. PubMed DOI

Yamamoto H.; Kozawa T.; Tagawa S.; Yukawa H.; Sato M.; Onodera J. Enhancement of Acid Production in Chemically Amplified Resist for Extreme Ultraviolet Lithography. Appl. Phys. Express 2008, 1, 047001.10.1143/APEX.1.047001. DOI

Yamamoto H.; Kozawa T.; Saeki A.; Tagawa S.; Mimura T.; Yukawa H.; Onodera J. Reactivity of Halogenated Resist Polymer with Low-Energy Electrons. Jpn. J. Appl. Phys. 2009, 48, 06FC09.10.1143/JJAP.48.06FC09. DOI

Kostko O.; Xu B.; Ahmed M.; Slaughter D. S.; Ogletree D. F.; Closser K. D.; Prendergast D. G.; Naulleau P.; Olynick D. L.; Ashby P. D.; Liu Y.; Hinsberg W. D.; Wallraff G. M. Fundamental Understanding of Chemical Processes in Extreme Ultraviolet Resist Materials. J. Chem. Phys. 2018, 149, 154305.10.1063/1.5046521. PubMed DOI

Rathore A.; Cipriani M.; Huang C.-C.; Amiaud L.; Dablemont C.; Lafosse A.; Ingólfsson O.; De Simone D.; De Gendt S. Electron-Induced Fragmentation Mechanisms in Organic Monomers and Their Implications for Photoresist Optimization for EUV Lithography. Phys. Chem. Chem. Phys. 2021, 23, 9228–9234. 10.1039/D1CP00065A. PubMed DOI

Schafer O.; Allan M.; Haselbach E.; Davidson R. S. Triplet Energies and Electron Affinities of Methyl-Acrylate and Methyl-Methacrylate. Photochem. Photobiol. 1989, 50, 717–719. 10.1111/j.1751-1097.1989.tb02901.x. DOI

Allan M.; Lacko M.; Papp P.; Matejčík Š.; Zlatar M.; Fabrikant I. I.; Kočišek J.; Fedor J. Dissociative Electron Attachment and Electronic Excitation in Fe(CO)5. Phys. Chem. Chem. Phys. 2018, 20, 11692–11701. 10.1039/C8CP01387J. PubMed DOI

Engmann S.; Stano M.; Matejčík t.; Ingólfsson O. The Role of Dissociative Electron Attachment in Focused Electron Beam Induced Processing: A Case Study on Cobalt Tricarbonyl Nitrosyl. Angew. Chem., Int. Ed. 2011, 50, 9475–9477. 10.1002/anie.201103234. PubMed DOI

T P R. K.; Bjornsson R.; Barth S.; Ingólfsson O. Formation and Decay of Negative Ion states up to 11 eV Above the Ionization Energy of the Nanofabrication Precursor HFeCo3(CO)12. Chem. Sci. 2017, 8, 5949–5952. 10.1039/C7SC01927K. PubMed DOI PMC

Ferreira da Silva F.; Thorman R. M.; Bjornsson R.; Lu H.; McElwee-White L.; Ingólfsson O. Dissociation of the FEBID Precursor cis-Pt(CO)2Cl2 Driven by Low-Energy Electrons. Phys. Chem. Chem. Phys. 2020, 22, 6100–6108. 10.1039/C9CP06633K. PubMed DOI

Allan M. Measurement of Differential Cross Sections for Excitation of Helium by Electron Impact within the First 4 eV Above Threshold. J. Phys. B: At. Mol. Opt. Phys. 1992, 25, 1559–1575. 10.1088/0953-4075/25/7/025. DOI

Allan M. Measurement of the Elastic and ν = 0→1 Differential Electron-N2 Cross Sections Over a Wide Angular Range. J. Phys. B: At. Mol. Opt. Phys. 2005, 38, 3655–3672. 10.1088/0953-4075/38/20/003. DOI

Stepanović M.; Pariat Y.; Allan M. Dissociative Electron Attachment in Cyclopentanone, γ-Butyrolactone, Ethylene Carbonate, and Ethylene Carbonate-d4: Role of Dipole-Bound Resonances. J. Chem. Phys. 1999, 110, 11376–11382. 10.1063/1.479078. DOI

Langer J.; Zawadzki M.; Fárník M.; Pinkas J.; Fedor J.; Kočišek J. Electron Interactions with Bis(pentamethylcyclopentadienyl)titanium(IV)-dichloride and Difluoride. Eur. Phys. J. D 2018, 72, 112.10.1140/epjd/e2018-80794-6. DOI

Fárník M.; Fedor J.; Kočišek J.; Lengyel J.; Pluhařová E.; Poterya V.; Pysanenko A. Pickup and Reactions of Molecules on Clusters Relevant for Atmospheric and Interstellar Processes. Phys. Chem. Chem. Phys. 2021, 23, 3195–3213. 10.1039/D0CP06127A. PubMed DOI

Fárník M.; Lengyel J. Mass Spectrometry of Aerosol Particle Analogues in Molecular Beam Experiments. Mass Spectrom. Rev. 2018, 37, 630–651. 10.1002/mas.21554. PubMed DOI

Kočišek J.; Grygoryeva K.; Lengyel J.; Fárník M.; Fedor J. Effect of Cluster Environment on the Electron Attachment to 2-Nitrophenol. Eur. Phys. J. D 2016, 70, 98.10.1140/epjd/e2016-70074-0. DOI

Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; et al.Gaussian 16, rev. C.01; Gaussian, Inc.: Wallingford, CT, 2016.

Virdi A.; Gupta V.; Sharma A. Ab Initio Studies on Conformation, Vibrational and Electronic Spectra of Methyl Methacrylate. J. Mol. Struct.: THEOCHEM 2003, 634, 53–65. 10.1016/S0166-1280(03)00244-6. DOI

Regeta K.; Allan M. Autodetachment Dynamics of Acrylonitrile Anion Revealed by Two-Dimensional Electron Impact Spectra. Phys. Rev. Lett. 2013, 110, 203201.10.1103/PhysRevLett.110.203201. PubMed DOI

Anstöter C. S.; Mensa-Bonsu G.; Nag P.; Ranković M.; Kumar T. P. R.; Boichenko A. N.; Bochenkova A. V.; Fedor J.; Verlet J. R. R. Mode-Specific Vibrational Autodetachment Following Excitation of Electronic Resonances by Electrons and Photons. Phys. Rev. Lett. 2020, 124, 203401.10.1103/PhysRevLett.124.203401. PubMed DOI

Ranković M.; Nag P.; Zawadzki M.; Ballauf L.; Žabka J.; Polášek M.; Kočišek J.; Fedor J. Electron Collisions With Cyanoacetylene HC3N: Vibrational Excitation and Dissociative Electron Attachment. Phys. Rev. A 2018, 98, 052708.10.1103/PhysRevA.98.052708. DOI

Ragesh Kumar T. P.; Nag P.; Ranković M.; Luxford T. F. M.; Kočišek J.; Mašín Z.; Fedor J. Distant Symmetry Control in Electron-Induced Bond Cleavage. The. J. Phys. Chem. Lett. 2022, 13, 11136–11142. 10.1021/acs.jpclett.2c03096. PubMed DOI

Ranković M.; Nag P.; Anstöter C. S.; Mensa-Bonsu G.; Kumar T. P. R.; Verlet J. R. R.; Fedor J. Resonances in Nitrobenzene Probed by the Electron Attachment to Neutral and by the Photodetachment From Anion. J. Chem. Phys. 2022, 157, 064302.10.1063/5.0101358. PubMed DOI

Itikawa Y. Electron-Impact Vibrational Excitation of Polyatomic Molecules. Int. Rev. Phys. Chem. 1997, 16, 155–176. 10.1080/014423597230253. DOI

Sugumaran D.; Abd Karim K. J. Removal of copper (II) ion using chitosan-graft-poly(methyl methacrylate) as adsorbent. eProc. Chem. 2017, 2, 1–11.

Mukherjee M.; Ragesh Kumar T. P.; Ranković M.; Nag P.; Fedor J.; Krylov A. I. Spectroscopic Signatures of States in the Continuum Characterized by a Joint Experimental and Theoretical Study of Pyrrole. J. Chem. Phys. 2022, 157, 204305.10.1063/5.0123603. PubMed DOI

Chen D.; Gallup G. A. The Relationship of the Virtual Orbitals of Self-Consistent-Field Theory to Temporary Negative Ions in Electron Scattering from Molecules. J. Chem. Phys. 1990, 93, 8893–8901. 10.1063/1.459228. DOI

Nag P.; Čurík R.; Tarana M.; Polášek M.; Ehara M.; Sommerfeld T.; Fedor J. Resonant States in Cyanogen NCCN. Phys. Chem. Chem. Phys. 2020, 22, 23141–23147. 10.1039/D0CP03333B. PubMed DOI

Janečková R.; May O.; Milosavljević A.; Fedor J. Partial Cross Sections for Dissociative Electron Attachment to Tetrahydrofuran Reveal a Dynamics-Driven Rich Fragmentation Pattern. Int. J. Mass Spectrom. 2014, 365–366, 163–168. 10.1016/j.ijms.2014.01.017. DOI

Zawadzki M.; Luxford T. F. M.; Kočišek J. Carboxylation Enhances Fragmentation of Furan upon Resonant Electron Attachment. J. Phys. Chem. A 2020, 124, 9427–9435. 10.1021/acs.jpca.0c07283. PubMed DOI PMC

Turner J. E.; Anderson V. E.; Fox K. Ground-State Energy Eigenvalues and Eigenfunctions for an Electron in an Electric-Dipole Field. Phys. Rev. 1968, 174, 81–89. 10.1103/PhysRev.174.81. DOI

Desfrançois C.; Abdoul-Carime H.; Schermann J.-P. Ground-State Dipole-Bound Anions. Int. J. Mod. Phys. B 1996, 10, 1339–1395. 10.1142/S0217979296000520. DOI

Jordan K. D.; Wang F. Theory of Dipole-Bound Anions. Annu. Rev. Phys. Chem. 2003, 54, 367–396. 10.1146/annurev.physchem.54.011002.103851. PubMed DOI

Simons J. Molecular Anions. J. Phys. Chem. A 2008, 112, 6401–6511. 10.1021/jp711490b. PubMed DOI

Meißner R.; Kocišek J.; Feketeová L.; Fedor J.; Fárník M.; Limao-Vieira P.; Illenberger E.; Denifl S. Low-Energy Electrons Transform the Nimorazole Molecule Into a Radiosensitiser. Nat. Commun. 2019, 10, 2388.10.1038/s41467-019-10340-8. PubMed DOI PMC

Med J.; Sršen t.; Slavícek P.; Domaracka A.; Indrajith S.; Rousseau P.; Fárník M.; Fedor J.; Kocišek J. Vibrationally Mediated Stabilization of Electrons in Nonpolar Matter. J. Phys. Chem. Lett. 2020, 11, 2482–2489. 10.1021/acs.jpclett.0c00278. PubMed DOI

Poštulka J.; Slavíček P.; Fedor J.; Fárník M.; Kočišek J. Energy Transfer in Microhydrated Uracil, 5-Fluorouracil, and 5-Bromouracil. J. Phys. Chem. B 2017, 121, 8965–8974. 10.1021/acs.jpcb.7b07390. PubMed DOI

Lengyel J.; Kočišek J.; Fárník M.; Fedor J. Self-Scavenging of Electrons in Fe(CO)5 Aggregates Deposited on Argon Nanoparticles. J. Phys. Chem. C 2016, 120, 7397–7402. 10.1021/acs.jpcc.6b00901. DOI

Ingólfsson O.; Weik F.; Illenberger E. The Reactivity of Slow Electrons with Molecules at Different Degrees of Aggregation: Gas Phase, Clusters and Condensed Phase. Int. J. Mass Spectrom. Ion Processes 1996, 155, 1–68. 10.1016/S0168-1176(96)04392-3. DOI

Li Z.; Milosavljević A. R.; Carmichael I.; Ptasinska S. Characterization of Neutral Radicals from a Dissociative Electron Attachment Process. Phys. Rev. Lett. 2017, 119, 053402.10.1103/PhysRevLett.119.053402. PubMed DOI

Zlatar M.; Allan M.; Fedor J. Excited States of Pt(PF3)4 and Their Role in Focused Electron Beam Nanofabrication. J. Phys. Chem. C 2016, 120, 10667–10674. 10.1021/acs.jpcc.6b02660. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...