• This record comes from PubMed

Carboxylation Enhances Fragmentation of Furan upon Resonant Electron Attachment

. 2020 Nov 12 ; 124 (45) : 9427-9435. [epub] 20201030

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

We report a dissociative electron attachment study to 2-furoic acid (C5H4O3) isolated in a gas phase, which is a model molecule consisting of a carboxylic group and a furan ring. Dissociation of furan by low energy electrons is accessible only via electronic excited Feshbach resonances at energies of incident electrons above 5 eV. On the other hand, carboxylic acids are well-known to dissociate via attachment of electrons at subexcitation energies. Here we elucidate how the electron and proton transfer reactions induced by carboxylation influence stability of the furan ring. Overlap of the furan and carboxyl π orbitals results in transformation of the nondissociative π2 resonance of the furan ring to a dissociative resonance. The interpretation of hydrogen transfer reactions is supported by experimental studies of 3-methyl-2-furoic and 5-methyl-2-furoic acids (C6H6O3) and density functional theory (DFT) calculations.

See more in PubMed

Sulzer P.; Ptasińska S.; Zappa F.; Mielewska B.; Milosavljevic A. R.; Scheier P.; Märk T. D.; Bald I.; Gohlke S.; Huels M. A.; et al. Dissociative electron attachment to furan, tetrahydrofuran, and fructose. J. Chem. Phys. 2006, 125, 044304.10.1063/1.2222370. PubMed DOI

Janečková R.; May O.; Milosavljević A. R.; Fedor J. Partial cross sections for dissociative electron attachment to tetrahydrofuran reveal a dynamics-driven rich fragmentation pattern. Int. J. Mass Spectrom. 2014, 365, 163–168. 10.1016/j.ijms.2014.01.017. DOI

Baccarelli I.; Bald I.; Gianturco F. A.; Illenberger E.; Kopyra J. Electron-induced damage of DNA and its components: Experiments and theoretical models. Phys. Rep. 2011, 508, 1–44. 10.1016/j.physrep.2011.06.004. DOI

Milosavljević A. R.; Kočišek J.; Papp P.; Kubala D.; Marinković B. P.; Mach P.; Urban J.; Matejčík Š. Electron impact ionization of furanose alcohols. J. Chem. Phys. 2010, 132, 104308.10.1063/1.3352422. PubMed DOI

Maljković J. B.; Blanco F.; Čurík R.; García G.; Marinković B. P.; Milosavljević A. R. Absolute cross sections for electron scattering from furan. J. Chem. Phys. 2012, 137, 064312.10.1063/1.4742759. PubMed DOI

Khakoo M. A.; Muse J.; Ralphs K.; da Costa R. F.; Bettega M. H. F.; Lima M. A. P. Low-energy elastic electron scattering from furan. Phys. Rev. A: At., Mol., Opt. Phys. 2010, 81, 062716.10.1103/PhysRevA.81.062716. DOI

Dampc M.; Linert I.; Zubek M. Ionization and fragmentation of furan molecules by electron collisions. J. Phys. B: At., Mol. Opt. Phys. 2015, 48, 165202.10.1088/0953-4075/48/16/165202. DOI

Regeta K.; Allan M. Absolute cross sections for electronic excitation of furan by electron impact. Phys. Rev. A: At., Mol., Opt. Phys. 2015, 91, 012707.10.1103/PhysRevA.91.012707. PubMed DOI

Wolff W.; Rudek B.; da Silva L. A.; Hilgers G.; Montenegro E. C.; Homem M. G. P. Absolute ionization and dissociation cross sections of tetrahydrofuran: Fragmentation-ion production mechanisms. J. Chem. Phys. 2019, 151, 064304.10.1063/1.5115403. DOI

Boudaiffa B.; Cloutier P.; Hunting D.; Huels M. A.; Sanche L. Resonant Formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science 2000, 287, 1658–1660. 10.1126/science.287.5458.1658. PubMed DOI

Gorfinkiel J. D.; Ptasińska S. Electron scattering from molecules and molecular aggregates of biological relevance. J. Phys. B: At., Mol. Opt. Phys. 2017, 50, 182001.10.1088/1361-6455/aa8572. DOI

Alizadeh E.; Orlando T. M.; Sanche L. Biomolecular damage induced by ionizing radiation: the direct and indirect effects of low-energy electrons on DNA. Annu. Rev. Phys. Chem. 2015, 66, 379–398. 10.1146/annurev-physchem-040513-103605. PubMed DOI

Low-Energy Electron Scattering from Molecules, Biomolecules and Surfaces; Čársky P., Čurik R., Eds.; CRC Press: Boca Raton, FL, 2012.

Vasil’ev Y. V.; Figard B. J.; Voinov V. G.; Barofsky D. F.; Deinzer M. L. Resonant electron capture by some amino acids and their methyl esters. J. Am. Chem. Soc. 2006, 128, 5506–5515. 10.1021/ja058464q. PubMed DOI

Bald I.; Langer J.; Tegeder P.; Ingólfsson O. From isolated molecules through clusters and condensates to the building blocks of life. Int. J. Mass Spectrom. 2008, 277, 4–25. 10.1016/j.ijms.2008.06.013. DOI

Fabrikant I. I.; Eden S.; Mason N. J.; Fedor J. Recent progress in dissociative electron attachment: From diatomics to biomolecules. Adv. At., Mol., Opt. Phys. 2017, 66, 545.10.1016/bs.aamop.2017.02.002. DOI

Kambara O.; Tominaga K.; Nishizawa J.; Sasaki T.; Wang H.; Hayashi M. Mode assignment of vibrational bands of 2-furoic acid in the terahertz frequency region. Chem. Phys. Lett. 2010, 498, 86–89. 10.1016/j.cplett.2010.08.047. DOI

Bachorz R. A.; Harańczyk M.; Dąbkowska I.; Rak J.; Gutowski M. Anion of the formic acid dimer as a model for intermolecular proton transfer induced by a π* excess electron. J. Chem. Phys. 2005, 122, 204304.10.1063/1.1899144. PubMed DOI

Keolopile Z. G.; Gutowski M.; Buonaugurio A.; Collins E.; Zhang X.; Erb J.; Lectka T.; Bowen K. H.; Allan M. Importance of Time Scale and Local Environment in Electron-Driven Proton Transfer. The Anion of Acetoacetic Acid. J. Am. Chem. Soc. 2015, 137, 14329–14340. 10.1021/jacs.5b08134. PubMed DOI

Allan M. Electron Collisions with Formic Acid Monomer and Dimer. Phys. Rev. Lett. 2007, 98, 123201.10.1103/PhysRevLett.98.123201. PubMed DOI

Keolopile Z. G.; Ryder M. R.; Calzada B.; Gutowski M.; Buytendyk A. M.; Graham J. D.; Bowen K. H. Electrophilicity of oxalic acid monomer is enhanced in the dimer by intermolecular proton transfer. Phys. Chem. Chem. Phys. 2017, 19, 29760–29766. 10.1039/C7CP00474E. PubMed DOI

Zawadzki M.; Ranković M.; Kočišek J.; Fedor J. Dissociative electron attachment and anion-induced dimerization in pyruvic acid. Phys. Chem. Chem. Phys. 2018, 20, 6838–6844. 10.1039/C7CP07472G. PubMed DOI

Flakus H. T.; Jabłońska M.; Kusz J. An anomalous linear dichroic effect in the polarized IR spectra of 2-furancarboxylic acid crystals: Proton transfer induced by co-operative interactions involving hydrogen bonds. Vib. Spectrosc. 2009, 49, 174–182. 10.1016/j.vibspec.2008.07.001. DOI

Ghalla H.; Issaoui N.; Oujia B. Theoretical study of the polarized infrared spectra of the hydrogen bond in 2-furoic acid crystal dimer. Int. J. Quantum Chem. 2012, 112, 1373–1383. 10.1002/qua.23117. DOI

Ghalla H.; Issaoui N.; Castillo M. V.; Brandán S. A.; Flakus H. T. A complete assignment of the vibrational spectra of 2-furoic acid based on the structures of the more stable monomer and dimer. Spectrochim. Acta, Part A 2014, 121, 623–631. 10.1016/j.saa.2013.11.001. PubMed DOI

Ptasińska S.; Denifl S.; Scheier P.; Märk T. D. Inelastic electron interaction (attachment/ionization) with deoxyribose. J. Chem. Phys. 2004, 120, 8505.10.1063/1.1690231. PubMed DOI

Kopyra J. Low energy electron attachment to the nucleotide deoxycytidine monophosphate: direct evidence for the molecular mechanisms of electron-induced DNA strand breaks. Phys. Chem. Chem. Phys. 2012, 14, 8287–8289. 10.1039/c2cp40847c. PubMed DOI

Kočišek J.; Janečková R.; Fedor J. Long-lived transient anion of c-C4F8O. J. Chem. Phys. 2018, 148, 074303.10.1063/1.5017478. PubMed DOI

Sommerfeld T.; Davis M. C. Ring-opening attachment as an explanation for the long lifetime of the octafluorooxolane anion. J. Chem. Phys. 2018, 149, 084305.10.1063/1.5045088. PubMed DOI

Wąsowicz T. J.; Łabuda M.; Pranszke B. Charge transfer, complexes formation and furan fragmentation induced by collisions with low-energy helium cations. Int. J. Mol. Sci. 2019, 20, 6022.10.3390/ijms20236022. PubMed DOI PMC

Erdmann E.; Łabuda M.; Aguirre N. F.; Díaz-Tendero S.; Alcamí M. Furan fragmentation in the gas phase: new Insights from statistical and molecular dynamics calculations. J. Phys. Chem. A 2018, 122, 4153.10.1021/acs.jpca.8b00881. PubMed DOI

Foroumadi A.; Soltani F.; Moallemzadeh-Haghighi H.; Shafiee A. Synthesis, in vitro- antimycobacterial activity and cytotoxicity of some alkyl α-(5-aryl-1, 3, 4-thiadiazole-2-ylthio)acetates. Arch. Pharm. 2005, 338, 112–116. 10.1002/ardp.200400926. PubMed DOI

Romano E.; Ladetto M. F.; Brandán S. A. Structural and vibrational studies of the potential anticancer agent, 5-difluoromethyl-1, 3, 4-thiadiazole-2-amino by DFT calculations. Comput. Theor. Chem. 2013, 1011, 57–64. 10.1016/j.comptc.2013.01.016. DOI

Hurd C. D.; Garrett J. W.; Osborne E. N. Furan reactions. IV. Furoic acid from furfural. J. Am. Chem. Soc. 1933, 55, 1082–1084. 10.1021/ja01330a032. DOI

Mariscal R.; Maireles-Torres P.; Ojeda M.; Sádaba I.; López Granados M. Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ. Sci. 2016, 9, 1144–1189. 10.1039/C5EE02666K. DOI

Carraher C. E. Jr Synthesis of furfuryl alcohol and furoic acid. J. Chem. Educ. 1978, 55, 269–270. 10.1021/ed055p269. DOI

Aaron C. S.; Harbach P. R.; Wiser S. K.; Grzegorczyk C. R.; Smith A. L. The in vitro unscheduled DNA synthesis (UDS) assay in rat primary hepatocytes: Evaluation of 2-furoic acid and 7 drug candidates. Mutat. Res., Genet. Toxicol. Test. 1989, 223, 163–169. 10.1016/0165-1218(89)90044-X. PubMed DOI

Hucker B.; Varelis P. Thermal decarboxylation of 2-furoic acid and its implication for the formation of furan in foods. Food Chem. 2011, 126, 1512–1513. 10.1016/j.foodchem.2010.12.017. DOI

Lopez G. M.; Martin A. D.. Furfural: An Entry Point of Lignocellulose in Biorefineries to Produce Renewable Chemicals, Polymers, and Biofuels; World Scientific Publishing Co. Pte. Ltd.: 2018; Vol. 2.

Uma B.; Murugesan K. S.; Krishnan S.; Das S. J.; Boaz B. M. Optical and dielectric studies on organic nonlinear optical 2-furoic acid single crystals. Optik (Munich, Ger.) 2013, 124, 2754.10.1016/j.ijleo.2012.08.075. DOI

Uma B.; Das S. J.; Krishnan S.; Boaz B. M. Growth, optical and thermal studies on organic nonlinear optical crystal: 2-Furoic acid. Phys. B 2011, 406, 2834–2839. 10.1016/j.physb.2011.04.038. DOI

Sajadi Z.; Abrishami M. M.; Paricher-Mohseni; Chapman J. M. Jr; Hall I. H. Synthesis and evaluation of the antitumor properties of esters of 2-furoic acid and 2-furylacrylic acid. J. Pharm. Sci. 1984, 73, 266–267. 10.1002/jps.2600730233. PubMed DOI

Schürmann R.; Vogel S.; Ebel K.; Bald I. The physico-chemical basis of DNA radiosensitization: Implications for cancer radiation therapy. Chem. - Eur. J. 2018, 24, 10271–10279. 10.1002/chem.201800804. PubMed DOI

Stepanović M.; Pariat Y.; Allan M. Dissociative electron attachment in cyclopentanone, γ-butyrolactone, ethylene carbonate, and ethylene carbonate-d4: Role of dipole-bound resonances. J. Chem. Phys. 1999, 110, 11376.10.1063/1.479078. DOI

Langer J.; Zawadzki M.; Fárník M.; Pinkas J.; Fedor J.; Kočišek J. Electron interactions with Bis(pentamethylcyclopentadienyl) titanium(IV) dichloride and difluoride. Eur. Phys. J. D 2018, 72, 112.10.1140/epjd/e2018-80794-6. DOI

Prabhudesai V. S.; Kelkar A. H.; Nandi D.; Krishnakumar E. Functional group dependent site specific fragmentation of molecules by low energy electrons. Phys. Rev. Lett. 2005, 95, 143202.10.1103/PhysRevLett.95.143202. PubMed DOI

Ptasińska S.; Bass A. D.; Sanche L. Low energy electron attachment to condensed formic acid. J. Phys. Conf. Ser. 2008, 115, 012018.10.1088/1742-6596/115/1/012018. DOI

Dressler R.; Allan M. Energy partitioning in the O–/CO2 dissociative attachment. Chem. Phys. 1985, 92, 449.10.1016/0301-0104(85)85038-2. DOI

Klar D.; Ruf M.-W.; Hotop H. Attachment of electrons to molecules at submillielectronvolt resolution. Chem. Phys. Lett. 1992, 189, 448.10.1016/0009-2614(92)85230-8. DOI

Matejčík Š.; Eichberger P.; Plunger B.; Kiendler A.; Stamatovic A.; Märk T. D. Dissociative electron attachment to SF6: production of SF5– at temperatures below 300 K. Int. J. Mass Spectrom. Ion Processes 1995, 144, L13–L17. 10.1016/0168-1176(95)04167-J. DOI

Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Mennucci B.; Petersson G. A.; et al.Gaussian 09, rev. D.01; Gaussian, Inc.: Wallingford, CT, 2009.

Becke A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A: At., Mol., Opt. Phys. 1988, 38, 3098.10.1103/PhysRevA.38.3098. PubMed DOI

Lee C.; Yang W.; Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785–789. 10.1103/PhysRevB.37.785. PubMed DOI

Janećková R.; May O.; Fedor J. Dissociative electron attachment to methylacetylene and dimethylacetylene: Symmetry versus proximity. Phys. Rev. A: At., Mol., Opt. Phys. 2012, 86, 052702.10.1103/PhysRevA.86.052702. DOI

Halasa A.; Lapinski L.; Reva I.; Rostkowska H.; Fausto R.; Nowak M. J. Three conformers of 2-Furoic acid: structure changes induced with near-IR laser light. J. Phys. Chem. A 2015, 119, 1037–1047. 10.1021/jp512302s. PubMed DOI

Zawadzki M.; Čížek M.; Houfek K.; Čurík R.; Ferus M.; Civiš S.; Kočišek J.; Fedor J. Resonances and Dissociative Electron Attachment in HNCO. Phys. Rev. Lett. 2018, 121, 143402.10.1103/PhysRevLett.121.143402. PubMed DOI

Zawadzki M.; Wierzbicka P.; Kopyra J. Dissociative electron attachment to benzoic acid (C7H6O2). J. Chem. Phys. 2020, 152, 174304.10.1063/1.5135383. PubMed DOI

Kopyra J.; König-Lehmann C.; Illenberger E.; Warneke J.; Swiderek P. Low energy electron induced reactions in fluorinated acetamide - probing negative ions and neutral stable counterparts. Eur. Phys. J. D 2016, 70, 140.10.1140/epjd/e2016-70143-4. DOI

Klapstein D.; MacPherson C. D.; O’Brien R. T. The photoelectron spectra and electronic structure of 2-carbonyl furans. Can. J. Chem. 1990, 68, 747–754. 10.1139/v90-118. DOI

Ibǎnescu B. C.; May O.; Monney A.; Allan M. Electron-induced chemistry of alcohols. Phys. Chem. Chem. Phys. 2007, 9, 3163–3173. 10.1039/B704656A. PubMed DOI

Ibanescu B. C.; Allan M. A dramatic difference between the electron-driven dissociation of alcohols and ethers and its relation to Rydberg states. Phys. Chem. Chem. Phys. 2008, 10, 5232–5237. 10.1039/b806578k. PubMed DOI

Ibanescu B. C.; Allan M. Selective cleavage of the C–O bonds in alcohols and asymmetric ethers by dissociative electron attachment. Phys. Chem. Chem. Phys. 2009, 11, 7640–7648. 10.1039/b904945b. PubMed DOI

Khvostenko V. I.; Vorob’yov A. S.; Khvostenko O. G. Inter-shell resonances in the interactions of electrons and polyatomic molecules. J. Phys. B: At., Mol. Opt. Phys. 1990, 23, 1975.10.1088/0953-4075/23/12/008. DOI

Li Z.; Ryszka M.; Dawley M. M.; Carmichael I.; Bravaya K. B.; Ptasińska S. Dipole-supported electronic resonances mediate electron-induced amide bond cleavage. Phys. Rev. Lett. 2019, 122, 073002.10.1103/PhysRevLett.122.073002. PubMed DOI

Fedor J. Comment on “Dipole-supported electronic resonances mediate electron-induced amide bond cleavage”. Phys. Rev. Lett. 2020, 124, 199301.10.1103/PhysRevLett.124.199301. PubMed DOI

Panelli G.; Moradmand A.; Griffin B.; Swanson K.; Weber Th.; Rescigno T. N.; McCurdy C. W.; Slaughter D. S.; Williams J. B.. Investigating resonant low-energy electron attachment to formamide: dynamics of model peptide bond dissociation and other fragmentation channels. Phys. Rev. Res. 2020,Published in ArXiV, 2020.

Sanche L.; Schulz G. Electron transmission spectroscopy: Rare gases. Phys. Rev. A: At., Mol., Opt. Phys. 1972, 5, 1672–1683. 10.1103/PhysRevA.5.1672. DOI

Schulz G. J. Resonances in electron impact on diatomic molecules. Rev. Mod. Phys. 1973, 45, 423–486. 10.1103/RevModPhys.45.423. DOI

Sanche L.; Schulz G. J. Electron transmission spectroscopy: Resonances in triatomic molecules and hydrocarbons. J. Chem. Phys. 1973, 58, 479–493. 10.1063/1.1679228. DOI

Spence D. Prediction of low energy molecular Rydberg states from Feshbach resonance spectra. J. Chem. Phys. 1977, 66, 669–674. 10.1063/1.433941. DOI

Prabhudesai V. S.; Nandi D.; Kelkar A. H.; Parajuli R.; Krishnakumar E. Dissociative electron attachment to formic acid. Chem. Phys. Lett. 2005, 405, 172–176. 10.1016/j.cplett.2005.01.128. DOI

Pelc A.; Sailer W.; Scheier P.; Probst M.; Mason N. J.; Illenberger E.; Märk T. D. Dissociative electron attachment to formic acid (HCOOH). Chem. Phys. Lett. 2002, 361, 277–284. 10.1016/S0009-2614(02)00925-9. DOI

Slaughter D. S.; Weber Th.; Belkacem A.; Trevisan C. S.; Lucchese R. R.; McCurdy C. W.; Rescigno T. N. Selective bond-breaking in formic acid by dissociative electron attachment. Phys. Chem. Chem. Phys. 2020, 22, 13893–13902. 10.1039/D0CP01522A. PubMed DOI

Aflatooni K.; Gallup G. A.; Burrow P. D. Electron attachment energies of the DNA bases. J. Phys. Chem. A 1998, 102, 6205–6207. 10.1021/jp980865n. DOI

Li Z.; Carmichael I.; Ptasińska S. Dissociative electron attachment induced ring opening in five-membered heterocyclic compounds. Phys. Chem. Chem. Phys. 2018, 20, 18271–18278. 10.1039/C8CP02718H. PubMed DOI

Kollipost F.; Wugt Larsen R.; Domanskaya A. V.; Norenberg M.; Suhm M. A. Communication: The highest frequency hydrogen bond vibration and an experimental value for the dissociation energy of formic acid dimer. J. Chem. Phys. 2012, 136, 151101.10.1063/1.4704827. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...