Carboxylation Enhances Fragmentation of Furan upon Resonant Electron Attachment
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
33125242
PubMed Central
PMC7667636
DOI
10.1021/acs.jpca.0c07283
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
We report a dissociative electron attachment study to 2-furoic acid (C5H4O3) isolated in a gas phase, which is a model molecule consisting of a carboxylic group and a furan ring. Dissociation of furan by low energy electrons is accessible only via electronic excited Feshbach resonances at energies of incident electrons above 5 eV. On the other hand, carboxylic acids are well-known to dissociate via attachment of electrons at subexcitation energies. Here we elucidate how the electron and proton transfer reactions induced by carboxylation influence stability of the furan ring. Overlap of the furan and carboxyl π orbitals results in transformation of the nondissociative π2 resonance of the furan ring to a dissociative resonance. The interpretation of hydrogen transfer reactions is supported by experimental studies of 3-methyl-2-furoic and 5-methyl-2-furoic acids (C6H6O3) and density functional theory (DFT) calculations.
See more in PubMed
Sulzer P.; Ptasińska S.; Zappa F.; Mielewska B.; Milosavljevic A. R.; Scheier P.; Märk T. D.; Bald I.; Gohlke S.; Huels M. A.; et al. Dissociative electron attachment to furan, tetrahydrofuran, and fructose. J. Chem. Phys. 2006, 125, 044304.10.1063/1.2222370. PubMed DOI
Janečková R.; May O.; Milosavljević A. R.; Fedor J. Partial cross sections for dissociative electron attachment to tetrahydrofuran reveal a dynamics-driven rich fragmentation pattern. Int. J. Mass Spectrom. 2014, 365, 163–168. 10.1016/j.ijms.2014.01.017. DOI
Baccarelli I.; Bald I.; Gianturco F. A.; Illenberger E.; Kopyra J. Electron-induced damage of DNA and its components: Experiments and theoretical models. Phys. Rep. 2011, 508, 1–44. 10.1016/j.physrep.2011.06.004. DOI
Milosavljević A. R.; Kočišek J.; Papp P.; Kubala D.; Marinković B. P.; Mach P.; Urban J.; Matejčík Š. Electron impact ionization of furanose alcohols. J. Chem. Phys. 2010, 132, 104308.10.1063/1.3352422. PubMed DOI
Maljković J. B.; Blanco F.; Čurík R.; García G.; Marinković B. P.; Milosavljević A. R. Absolute cross sections for electron scattering from furan. J. Chem. Phys. 2012, 137, 064312.10.1063/1.4742759. PubMed DOI
Khakoo M. A.; Muse J.; Ralphs K.; da Costa R. F.; Bettega M. H. F.; Lima M. A. P. Low-energy elastic electron scattering from furan. Phys. Rev. A: At., Mol., Opt. Phys. 2010, 81, 062716.10.1103/PhysRevA.81.062716. DOI
Dampc M.; Linert I.; Zubek M. Ionization and fragmentation of furan molecules by electron collisions. J. Phys. B: At., Mol. Opt. Phys. 2015, 48, 165202.10.1088/0953-4075/48/16/165202. DOI
Regeta K.; Allan M. Absolute cross sections for electronic excitation of furan by electron impact. Phys. Rev. A: At., Mol., Opt. Phys. 2015, 91, 012707.10.1103/PhysRevA.91.012707. PubMed DOI
Wolff W.; Rudek B.; da Silva L. A.; Hilgers G.; Montenegro E. C.; Homem M. G. P. Absolute ionization and dissociation cross sections of tetrahydrofuran: Fragmentation-ion production mechanisms. J. Chem. Phys. 2019, 151, 064304.10.1063/1.5115403. DOI
Boudaiffa B.; Cloutier P.; Hunting D.; Huels M. A.; Sanche L. Resonant Formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science 2000, 287, 1658–1660. 10.1126/science.287.5458.1658. PubMed DOI
Gorfinkiel J. D.; Ptasińska S. Electron scattering from molecules and molecular aggregates of biological relevance. J. Phys. B: At., Mol. Opt. Phys. 2017, 50, 182001.10.1088/1361-6455/aa8572. DOI
Alizadeh E.; Orlando T. M.; Sanche L. Biomolecular damage induced by ionizing radiation: the direct and indirect effects of low-energy electrons on DNA. Annu. Rev. Phys. Chem. 2015, 66, 379–398. 10.1146/annurev-physchem-040513-103605. PubMed DOI
Low-Energy Electron Scattering from Molecules, Biomolecules and Surfaces; Čársky P., Čurik R., Eds.; CRC Press: Boca Raton, FL, 2012.
Vasil’ev Y. V.; Figard B. J.; Voinov V. G.; Barofsky D. F.; Deinzer M. L. Resonant electron capture by some amino acids and their methyl esters. J. Am. Chem. Soc. 2006, 128, 5506–5515. 10.1021/ja058464q. PubMed DOI
Bald I.; Langer J.; Tegeder P.; Ingólfsson O. From isolated molecules through clusters and condensates to the building blocks of life. Int. J. Mass Spectrom. 2008, 277, 4–25. 10.1016/j.ijms.2008.06.013. DOI
Fabrikant I. I.; Eden S.; Mason N. J.; Fedor J. Recent progress in dissociative electron attachment: From diatomics to biomolecules. Adv. At., Mol., Opt. Phys. 2017, 66, 545.10.1016/bs.aamop.2017.02.002. DOI
Kambara O.; Tominaga K.; Nishizawa J.; Sasaki T.; Wang H.; Hayashi M. Mode assignment of vibrational bands of 2-furoic acid in the terahertz frequency region. Chem. Phys. Lett. 2010, 498, 86–89. 10.1016/j.cplett.2010.08.047. DOI
Bachorz R. A.; Harańczyk M.; Dąbkowska I.; Rak J.; Gutowski M. Anion of the formic acid dimer as a model for intermolecular proton transfer induced by a π* excess electron. J. Chem. Phys. 2005, 122, 204304.10.1063/1.1899144. PubMed DOI
Keolopile Z. G.; Gutowski M.; Buonaugurio A.; Collins E.; Zhang X.; Erb J.; Lectka T.; Bowen K. H.; Allan M. Importance of Time Scale and Local Environment in Electron-Driven Proton Transfer. The Anion of Acetoacetic Acid. J. Am. Chem. Soc. 2015, 137, 14329–14340. 10.1021/jacs.5b08134. PubMed DOI
Allan M. Electron Collisions with Formic Acid Monomer and Dimer. Phys. Rev. Lett. 2007, 98, 123201.10.1103/PhysRevLett.98.123201. PubMed DOI
Keolopile Z. G.; Ryder M. R.; Calzada B.; Gutowski M.; Buytendyk A. M.; Graham J. D.; Bowen K. H. Electrophilicity of oxalic acid monomer is enhanced in the dimer by intermolecular proton transfer. Phys. Chem. Chem. Phys. 2017, 19, 29760–29766. 10.1039/C7CP00474E. PubMed DOI
Zawadzki M.; Ranković M.; Kočišek J.; Fedor J. Dissociative electron attachment and anion-induced dimerization in pyruvic acid. Phys. Chem. Chem. Phys. 2018, 20, 6838–6844. 10.1039/C7CP07472G. PubMed DOI
Flakus H. T.; Jabłońska M.; Kusz J. An anomalous linear dichroic effect in the polarized IR spectra of 2-furancarboxylic acid crystals: Proton transfer induced by co-operative interactions involving hydrogen bonds. Vib. Spectrosc. 2009, 49, 174–182. 10.1016/j.vibspec.2008.07.001. DOI
Ghalla H.; Issaoui N.; Oujia B. Theoretical study of the polarized infrared spectra of the hydrogen bond in 2-furoic acid crystal dimer. Int. J. Quantum Chem. 2012, 112, 1373–1383. 10.1002/qua.23117. DOI
Ghalla H.; Issaoui N.; Castillo M. V.; Brandán S. A.; Flakus H. T. A complete assignment of the vibrational spectra of 2-furoic acid based on the structures of the more stable monomer and dimer. Spectrochim. Acta, Part A 2014, 121, 623–631. 10.1016/j.saa.2013.11.001. PubMed DOI
Ptasińska S.; Denifl S.; Scheier P.; Märk T. D. Inelastic electron interaction (attachment/ionization) with deoxyribose. J. Chem. Phys. 2004, 120, 8505.10.1063/1.1690231. PubMed DOI
Kopyra J. Low energy electron attachment to the nucleotide deoxycytidine monophosphate: direct evidence for the molecular mechanisms of electron-induced DNA strand breaks. Phys. Chem. Chem. Phys. 2012, 14, 8287–8289. 10.1039/c2cp40847c. PubMed DOI
Kočišek J.; Janečková R.; Fedor J. Long-lived transient anion of c-C4F8O. J. Chem. Phys. 2018, 148, 074303.10.1063/1.5017478. PubMed DOI
Sommerfeld T.; Davis M. C. Ring-opening attachment as an explanation for the long lifetime of the octafluorooxolane anion. J. Chem. Phys. 2018, 149, 084305.10.1063/1.5045088. PubMed DOI
Wąsowicz T. J.; Łabuda M.; Pranszke B. Charge transfer, complexes formation and furan fragmentation induced by collisions with low-energy helium cations. Int. J. Mol. Sci. 2019, 20, 6022.10.3390/ijms20236022. PubMed DOI PMC
Erdmann E.; Łabuda M.; Aguirre N. F.; Díaz-Tendero S.; Alcamí M. Furan fragmentation in the gas phase: new Insights from statistical and molecular dynamics calculations. J. Phys. Chem. A 2018, 122, 4153.10.1021/acs.jpca.8b00881. PubMed DOI
Foroumadi A.; Soltani F.; Moallemzadeh-Haghighi H.; Shafiee A. Synthesis, in vitro- antimycobacterial activity and cytotoxicity of some alkyl α-(5-aryl-1, 3, 4-thiadiazole-2-ylthio)acetates. Arch. Pharm. 2005, 338, 112–116. 10.1002/ardp.200400926. PubMed DOI
Romano E.; Ladetto M. F.; Brandán S. A. Structural and vibrational studies of the potential anticancer agent, 5-difluoromethyl-1, 3, 4-thiadiazole-2-amino by DFT calculations. Comput. Theor. Chem. 2013, 1011, 57–64. 10.1016/j.comptc.2013.01.016. DOI
Hurd C. D.; Garrett J. W.; Osborne E. N. Furan reactions. IV. Furoic acid from furfural. J. Am. Chem. Soc. 1933, 55, 1082–1084. 10.1021/ja01330a032. DOI
Mariscal R.; Maireles-Torres P.; Ojeda M.; Sádaba I.; López Granados M. Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ. Sci. 2016, 9, 1144–1189. 10.1039/C5EE02666K. DOI
Carraher C. E. Jr Synthesis of furfuryl alcohol and furoic acid. J. Chem. Educ. 1978, 55, 269–270. 10.1021/ed055p269. DOI
Aaron C. S.; Harbach P. R.; Wiser S. K.; Grzegorczyk C. R.; Smith A. L. The in vitro unscheduled DNA synthesis (UDS) assay in rat primary hepatocytes: Evaluation of 2-furoic acid and 7 drug candidates. Mutat. Res., Genet. Toxicol. Test. 1989, 223, 163–169. 10.1016/0165-1218(89)90044-X. PubMed DOI
Hucker B.; Varelis P. Thermal decarboxylation of 2-furoic acid and its implication for the formation of furan in foods. Food Chem. 2011, 126, 1512–1513. 10.1016/j.foodchem.2010.12.017. DOI
Lopez G. M.; Martin A. D.. Furfural: An Entry Point of Lignocellulose in Biorefineries to Produce Renewable Chemicals, Polymers, and Biofuels; World Scientific Publishing Co. Pte. Ltd.: 2018; Vol. 2.
Uma B.; Murugesan K. S.; Krishnan S.; Das S. J.; Boaz B. M. Optical and dielectric studies on organic nonlinear optical 2-furoic acid single crystals. Optik (Munich, Ger.) 2013, 124, 2754.10.1016/j.ijleo.2012.08.075. DOI
Uma B.; Das S. J.; Krishnan S.; Boaz B. M. Growth, optical and thermal studies on organic nonlinear optical crystal: 2-Furoic acid. Phys. B 2011, 406, 2834–2839. 10.1016/j.physb.2011.04.038. DOI
Sajadi Z.; Abrishami M. M.; Paricher-Mohseni; Chapman J. M. Jr; Hall I. H. Synthesis and evaluation of the antitumor properties of esters of 2-furoic acid and 2-furylacrylic acid. J. Pharm. Sci. 1984, 73, 266–267. 10.1002/jps.2600730233. PubMed DOI
Schürmann R.; Vogel S.; Ebel K.; Bald I. The physico-chemical basis of DNA radiosensitization: Implications for cancer radiation therapy. Chem. - Eur. J. 2018, 24, 10271–10279. 10.1002/chem.201800804. PubMed DOI
Stepanović M.; Pariat Y.; Allan M. Dissociative electron attachment in cyclopentanone, γ-butyrolactone, ethylene carbonate, and ethylene carbonate-d4: Role of dipole-bound resonances. J. Chem. Phys. 1999, 110, 11376.10.1063/1.479078. DOI
Langer J.; Zawadzki M.; Fárník M.; Pinkas J.; Fedor J.; Kočišek J. Electron interactions with Bis(pentamethylcyclopentadienyl) titanium(IV) dichloride and difluoride. Eur. Phys. J. D 2018, 72, 112.10.1140/epjd/e2018-80794-6. DOI
Prabhudesai V. S.; Kelkar A. H.; Nandi D.; Krishnakumar E. Functional group dependent site specific fragmentation of molecules by low energy electrons. Phys. Rev. Lett. 2005, 95, 143202.10.1103/PhysRevLett.95.143202. PubMed DOI
Ptasińska S.; Bass A. D.; Sanche L. Low energy electron attachment to condensed formic acid. J. Phys. Conf. Ser. 2008, 115, 012018.10.1088/1742-6596/115/1/012018. DOI
Dressler R.; Allan M. Energy partitioning in the O–/CO2 dissociative attachment. Chem. Phys. 1985, 92, 449.10.1016/0301-0104(85)85038-2. DOI
Klar D.; Ruf M.-W.; Hotop H. Attachment of electrons to molecules at submillielectronvolt resolution. Chem. Phys. Lett. 1992, 189, 448.10.1016/0009-2614(92)85230-8. DOI
Matejčík Š.; Eichberger P.; Plunger B.; Kiendler A.; Stamatovic A.; Märk T. D. Dissociative electron attachment to SF6: production of SF5– at temperatures below 300 K. Int. J. Mass Spectrom. Ion Processes 1995, 144, L13–L17. 10.1016/0168-1176(95)04167-J. DOI
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Mennucci B.; Petersson G. A.; et al.Gaussian 09, rev. D.01; Gaussian, Inc.: Wallingford, CT, 2009.
Becke A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A: At., Mol., Opt. Phys. 1988, 38, 3098.10.1103/PhysRevA.38.3098. PubMed DOI
Lee C.; Yang W.; Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785–789. 10.1103/PhysRevB.37.785. PubMed DOI
Janećková R.; May O.; Fedor J. Dissociative electron attachment to methylacetylene and dimethylacetylene: Symmetry versus proximity. Phys. Rev. A: At., Mol., Opt. Phys. 2012, 86, 052702.10.1103/PhysRevA.86.052702. DOI
Halasa A.; Lapinski L.; Reva I.; Rostkowska H.; Fausto R.; Nowak M. J. Three conformers of 2-Furoic acid: structure changes induced with near-IR laser light. J. Phys. Chem. A 2015, 119, 1037–1047. 10.1021/jp512302s. PubMed DOI
Zawadzki M.; Čížek M.; Houfek K.; Čurík R.; Ferus M.; Civiš S.; Kočišek J.; Fedor J. Resonances and Dissociative Electron Attachment in HNCO. Phys. Rev. Lett. 2018, 121, 143402.10.1103/PhysRevLett.121.143402. PubMed DOI
Zawadzki M.; Wierzbicka P.; Kopyra J. Dissociative electron attachment to benzoic acid (C7H6O2). J. Chem. Phys. 2020, 152, 174304.10.1063/1.5135383. PubMed DOI
Kopyra J.; König-Lehmann C.; Illenberger E.; Warneke J.; Swiderek P. Low energy electron induced reactions in fluorinated acetamide - probing negative ions and neutral stable counterparts. Eur. Phys. J. D 2016, 70, 140.10.1140/epjd/e2016-70143-4. DOI
Klapstein D.; MacPherson C. D.; O’Brien R. T. The photoelectron spectra and electronic structure of 2-carbonyl furans. Can. J. Chem. 1990, 68, 747–754. 10.1139/v90-118. DOI
Ibǎnescu B. C.; May O.; Monney A.; Allan M. Electron-induced chemistry of alcohols. Phys. Chem. Chem. Phys. 2007, 9, 3163–3173. 10.1039/B704656A. PubMed DOI
Ibanescu B. C.; Allan M. A dramatic difference between the electron-driven dissociation of alcohols and ethers and its relation to Rydberg states. Phys. Chem. Chem. Phys. 2008, 10, 5232–5237. 10.1039/b806578k. PubMed DOI
Ibanescu B. C.; Allan M. Selective cleavage of the C–O bonds in alcohols and asymmetric ethers by dissociative electron attachment. Phys. Chem. Chem. Phys. 2009, 11, 7640–7648. 10.1039/b904945b. PubMed DOI
Khvostenko V. I.; Vorob’yov A. S.; Khvostenko O. G. Inter-shell resonances in the interactions of electrons and polyatomic molecules. J. Phys. B: At., Mol. Opt. Phys. 1990, 23, 1975.10.1088/0953-4075/23/12/008. DOI
Li Z.; Ryszka M.; Dawley M. M.; Carmichael I.; Bravaya K. B.; Ptasińska S. Dipole-supported electronic resonances mediate electron-induced amide bond cleavage. Phys. Rev. Lett. 2019, 122, 073002.10.1103/PhysRevLett.122.073002. PubMed DOI
Fedor J. Comment on “Dipole-supported electronic resonances mediate electron-induced amide bond cleavage”. Phys. Rev. Lett. 2020, 124, 199301.10.1103/PhysRevLett.124.199301. PubMed DOI
Panelli G.; Moradmand A.; Griffin B.; Swanson K.; Weber Th.; Rescigno T. N.; McCurdy C. W.; Slaughter D. S.; Williams J. B.. Investigating resonant low-energy electron attachment to formamide: dynamics of model peptide bond dissociation and other fragmentation channels. Phys. Rev. Res. 2020,Published in ArXiV, 2020.
Sanche L.; Schulz G. Electron transmission spectroscopy: Rare gases. Phys. Rev. A: At., Mol., Opt. Phys. 1972, 5, 1672–1683. 10.1103/PhysRevA.5.1672. DOI
Schulz G. J. Resonances in electron impact on diatomic molecules. Rev. Mod. Phys. 1973, 45, 423–486. 10.1103/RevModPhys.45.423. DOI
Sanche L.; Schulz G. J. Electron transmission spectroscopy: Resonances in triatomic molecules and hydrocarbons. J. Chem. Phys. 1973, 58, 479–493. 10.1063/1.1679228. DOI
Spence D. Prediction of low energy molecular Rydberg states from Feshbach resonance spectra. J. Chem. Phys. 1977, 66, 669–674. 10.1063/1.433941. DOI
Prabhudesai V. S.; Nandi D.; Kelkar A. H.; Parajuli R.; Krishnakumar E. Dissociative electron attachment to formic acid. Chem. Phys. Lett. 2005, 405, 172–176. 10.1016/j.cplett.2005.01.128. DOI
Pelc A.; Sailer W.; Scheier P.; Probst M.; Mason N. J.; Illenberger E.; Märk T. D. Dissociative electron attachment to formic acid (HCOOH). Chem. Phys. Lett. 2002, 361, 277–284. 10.1016/S0009-2614(02)00925-9. DOI
Slaughter D. S.; Weber Th.; Belkacem A.; Trevisan C. S.; Lucchese R. R.; McCurdy C. W.; Rescigno T. N. Selective bond-breaking in formic acid by dissociative electron attachment. Phys. Chem. Chem. Phys. 2020, 22, 13893–13902. 10.1039/D0CP01522A. PubMed DOI
Aflatooni K.; Gallup G. A.; Burrow P. D. Electron attachment energies of the DNA bases. J. Phys. Chem. A 1998, 102, 6205–6207. 10.1021/jp980865n. DOI
Li Z.; Carmichael I.; Ptasińska S. Dissociative electron attachment induced ring opening in five-membered heterocyclic compounds. Phys. Chem. Chem. Phys. 2018, 20, 18271–18278. 10.1039/C8CP02718H. PubMed DOI
Kollipost F.; Wugt Larsen R.; Domanskaya A. V.; Norenberg M.; Suhm M. A. Communication: The highest frequency hydrogen bond vibration and an experimental value for the dissociation energy of formic acid dimer. J. Chem. Phys. 2012, 136, 151101.10.1063/1.4704827. PubMed DOI
Low-Energy Electron-Induced Dissociation of the Radiosensitizing Agent Sanazole
Electron Energy Loss Processes in Methyl Methacrylate: Excitation and Bond Breaking