Impact of environment on transmission of antibiotic-resistant superbugs in humans and strategies to lower dissemination of antibiotic resistance

. 2023 Oct ; 68 (5) : 657-675. [epub] 20230817

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37589876
Odkazy

PubMed 37589876
DOI 10.1007/s12223-023-01083-7
PII: 10.1007/s12223-023-01083-7
Knihovny.cz E-zdroje

Antibiotics are the most efficient type of therapy developed in the twentieth century. From the early 1960s to the present, the rate of discovery of new and therapeutically useful classes of antibiotics has significantly decreased. As a result of antibiotic use, novel strains emerge that limit the efficiency of therapies in patients, resulting in serious consequences such as morbidity or mortality, as well as clinical difficulties. Antibiotic resistance has created major concern and has a greater impact on global health. Horizontal and vertical gene transfers are two mechanisms involved in the spread of antibiotic resistance genes (ARGs) through environmental sources such as wastewater treatment plants, agriculture, soil, manure, and hospital-associated area discharges. Mobile genetic elements have an important part in microbe selection pressure and in spreading their genes into new microbial communities; additionally, it establishes a loop between the environment, animals, and humans. This review contains antibiotics and their resistance mechanisms, diffusion of ARGs, prevention of ARG transmission, tactics involved in microbiome identification, and therapies that aid to minimize infection, which are explored further below. The emergence of ARGs and antibiotic-resistant bacteria (ARB) is an unavoidable threat to global health. The discovery of novel antimicrobial agents derived from natural products shifts the focus from chemical modification of existing antibiotic chemical composition. In the future, metagenomic research could aid in the identification of antimicrobial resistance genes in the environment. Novel therapeutics may reduce infection and the transmission of ARGs.

Zobrazit více v PubMed

Abushaheen MA, Muzaheed Fatani AJ, Alosaimi M, Mansy W, George M, Acharya S, Rathod S, Divakar DD, Jhugroo C, Vellappally S, Khan AA, Shaik J, Jhugroo P (2020) Antimicrobial resistance, mechanisms and its clinical significance. Dis Mon 66:100971. https://doi.org/10.1016/j.disamonth.2020.100971 PubMed DOI

Adegoke AA, Faleye AC, Singh G, Stenström TA (2016) Antibiotic resistant superbugs: assessment of the interrelationship of occurrence in clinical settings and environmental niches. Molecules 22:29. https://doi.org/10.3390/molecules22010029 PubMed DOI PMC

Agathokleous E, Kitao M, Calabrese EJ (2018) Human and veterinary antibiotics induce hormesis in plants: scientific and regulatory issues and an environmental perspective. Environ Int 120:489–495. https://doi.org/10.1016/j.envint.2018.08.035 PubMed DOI

Arango-Argoty G, Garner E, Pruden A, Heath LS, Vikesland P, Zhang L (2018) DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome 6:23. https://doi.org/10.1186/s40168-018-0401-z PubMed DOI PMC

Aruguete DM, Kim B, Hochella MF Jr, MaY CY, Hoegh A, Liu J, Pruden A (2013) Antimicrobial nanotechnology: its potential for the effective management of microbial drug resistance and implications for research needs in microbial nanotoxicology. Environ Sci Process Impacts 15:93–102. https://doi.org/10.1039/c2em30692a PubMed DOI

Awad YM, Kim SC, Abd El-Azeem SAM et al (2014) Veterinary antibiotics contamination in water, sediment, and soil near a swine manure composting facility. Environ Earth Sci 71:1433–1440. https://doi.org/10.1007/s12665-013-2548-z DOI

Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV (2006) Co-selection of antibiotic and metal resistance. Trends Microbiol 14:176–182. https://doi.org/10.1016/J.TIM.2006.02.006 PubMed DOI

Balcázar JL, Subirats J, Borrego CM (2015) The role of biofilms as environmental reservoirs of antibiotic resistance. Front Microbiol 6:1216. https://doi.org/10.3389/fmicb.2015.01216 PubMed DOI PMC

Bang CS, Kinnunen A, Karlsson M, Önnberg A, Söderquist B, Persson K (2014) The antibacterial effect of nitric oxide against ESBL-producing uropathogenic E. coli is improved by combination with miconazole and polymyxin B nonapeptide. BMC Microbiol 14:65. https://doi.org/10.1186/1471-2180-14-65 PubMed DOI PMC

Baquero F, Martínez JL, Cantón R (2008) Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol 19:260–265. https://doi.org/10.1016/J.COPBIO.2008.05.006 PubMed DOI

Barancheshme F, Munir M (2018) Strategies to combat antibiotic resistance in the wastewater treatment plants. Front Microbiol 8:2603. https://doi.org/10.3389/fmicb.2017.02603 PubMed DOI PMC

Batchelder AR (1982) Chlorotetracycline and oxytetracycline effects on plant growth and development in soil systems. J Environ Qual 11:675–678. https://doi.org/10.2134/jeq1982.00472425001100040023x DOI

Benjamin L, Atwill ER, Jay-Russell M, Cooley M, Carychao D, Gorski L, Mandrell RE (2013) Occurrence of generic Escherichia coli, E. coli O157 and Salmonella spp. in water and sediment from leafy green produce farms and streams on the Central California coast. Int J Food Microbiol 165:65–76. https://doi.org/10.1016/j.ijfoodmicro.2013.04.003 PubMed DOI

Benveniste R, Davies J (1973) Mechanisms of antibiotic resistance in bacteria. Annu Rev Biochem 42:471–506. https://doi.org/10.1146/annurev.bi.42.070173.002351 PubMed DOI

Berendsen BJA, Wegh RS, Memelink J, Zuidema T, Stolker LAM (2015) The analysis of animal faeces as a tool to monitor antibiotic usage. Talanta 132:258–268. https://doi.org/10.1016/J.TALANTA.2014.09.022 PubMed DOI

Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X, Fischetti VA, Marraffini LA (2014) Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol 32:1146–1150. https://doi.org/10.1038/nbt.3043 PubMed DOI PMC

Checcucci A, Trevisi P, Luise D, Modesto M, Blasioli S, Braschi I, Mattarelli P (2020) Exploring the animal waste resistome: the spread of antimicrobial resistance genes through the use of livestock manure. Front Microbiol 11:1416. https://doi.org/10.3389/fmicb.2020.01416 PubMed DOI PMC

Chen J, Ying GG, Wei XD, Liu YS, Liu SS, Hu LX, He LY, Chen ZF, Chen FR, Yang YQ (2016) Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: effect of flow configuration and plant species. Sci Total Environ 571:974–982. https://doi.org/10.1016/j.scitotenv.2016.07.085 PubMed DOI

Comber S, Gardner M, Jones V, Ellor B (2015) Source apportionment of trace contaminants in urban sewer catchments. Environ Technol 36(5–8):573–587. https://doi.org/10.1080/09593330.2014.953599 PubMed DOI

Corinaldesi C, Beolchini F, Dell’Anno A (2008) Damage and degradation rates of extracellular DNA in marine sediments: implications for the preservation of gene sequences. Mol Ecol 17:3939–3951 PubMed DOI

Crofts TS, Gasparrini AJ, Dantas G (2017) Next-generation approaches to understand and combat the antibiotic resistome. Nat Rev Microbiol 15:422–434. https://doi.org/10.1038/nrmicro.2017.28 PubMed DOI PMC

Cycoń M, Mrozik A, Piotrowska-Seget Z (2019) Antibiotics in the soil environment-degradation and their impact on microbial activity and diversity. Front Microbiol 10:338. https://doi.org/10.3389/fmicb.2019.00338 PubMed DOI PMC

D’Accolti M, Soffritti I, Mazzacane S, Caselli E (2019) Fighting AMR in the healthcare environment: microbiome-based sanitation approaches and monitoring tools. Int J Mol Sci 20:1535. https://doi.org/10.3390/ijms20071535 PubMed DOI PMC

Dantas G, Sommer MOA, Oluwasegun RD, Church GM (2008) Bacteria subsisting on antibiotics. Science 320:100–103. https://doi.org/10.1126/SCIENCE.1155157 PubMed DOI

Du J, Geng J, Ren H, Ding L, Xu K, Zhang Y (2015) Variation of antibiotic resistance genes in municipal wastewater treatment plant with A(2)O-MBR system. Environ Sci Pollut Res Int 22:3715–3726. https://doi.org/10.1007/s11356-014-3552-x PubMed DOI

Duan M, Zhang Y, Zhou B, Wang Q, Gu J, Liu G, Qin Z, Li Z (2019) Changes in antibiotic resistance genes and mobile genetic elements during cattle manure composting after inoculation with Bacillus subtilis. Bioresour Technol 292:122011. https://doi.org/10.1016/j.biortech.2019.122011 PubMed DOI

Ezugworie FN, Igbokwe VC, Onwosi CO (2021) Proliferation of antibiotic-resistant microorganisms and associated genes during composting: an overview of the potential impacts on public health, management and future. Sci Total Environ 784:147191. https://doi.org/10.1016/j.scitotenv.2021.147191 PubMed DOI

Fang H, Zhang Q, Nie X, Chen B, Xiao Y, Zhou Q, Liao W, Liang X (2017) Occurrence and elimination of antibiotic resistance genes in a long-term operation integrated surface flow constructed wetland. Chemosphere 173:99–106. https://doi.org/10.1016/j.chemosphere.2017.01.027 PubMed DOI

Farkas MH, Berry JO, Aga DS (2007) Chlortetracycline detoxification in maize via induction of glutathione S-transferases after antibiotic exposure. Environ Sci Technol 41:1450–1456. https://doi.org/10.1021/es061651j PubMed DOI

Fournier PE, Vallenet D, Barbe V, Audic S, Ogata H, Poirel L, Richet H, Robert C, Mangenot S, Abergel C, Nordmann P, Weissenbach J, Raoult D, Claverie JM (2006) Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet 2:62–72. https://doi.org/10.1371/JOURNAL.PGEN.0020007 DOI

Franklin AM, Brinkman NE, Jahne MA, Keely SP (2021) Twenty-first century molecular methods for analyzing antimicrobial resistance in surface waters to support One Health assessments. J Microbiol Methods 184:106174. https://doi.org/10.1016/j.mimet.2021.106174 PubMed DOI PMC

Fux CA, Casterton JW, Stewart PS, Stoodley P (2005) Survival strategies of infectious biofilms. Trends Microbiol 13:34–40. https://doi.org/10.1016/J.TIM.2004.11.010 PubMed DOI

Garneau-Tsodikova S, Labby KJ (2016) Mechanisms of resistance to aminoglycoside antibiotics: overview and perspectives. MedChemComm 7:11–27. https://doi.org/10.1039/C5MD00344J PubMed DOI

Guardabassi L, Lo Fo Wong DM, Dalsgaard A (2002) The effects of tertiary wastewater treatment on the prevalence of antimicrobial resistant bacteria. Water Res 36(8):1955–1964. https://doi.org/10.1016/s0043-1354(01)00429-8 PubMed DOI

Guo H, Gu J, Wang X, Nasir M, Yu J, Lei L, Wang Q (2020) Elucidating the effect of microbial inoculum and ferric chloride as additives on the removal of antibiotic resistance genes from chicken manure during aerobic composting. Bioresour Technol 309:122802. https://doi.org/10.1016/j.biortech.2020.122802 PubMed DOI

Hatosy SM, Martiny AC (2015) The ocean as a global reservoir of antibiotic resistance genes. Appl Environ Microbiol 81:7593–7599. https://doi.org/10.1128/AEM.00736-15 PubMed DOI PMC

Hu X, Zhou Q, Luo Y (2010) Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environ Pollut 158(9):2992–2998. https://doi.org/10.1016/j.envpol.2010.05.023 PubMed DOI

Hu Y, Liu F, Lin IYC, Gao GF, Zhu B (2016) Dissemination of the mcr-1 colistin resistance gene. Lancet Infect Dis 16:146–147. https://doi.org/10.1016/S1473-3099(15)00533-2 PubMed DOI

Hu Y, Gao GF, Zhu B (2017) The antibiotic resistome: gene flow in environments, animals and human beings. Frontiers of Medicine 11:161–168. https://doi.org/10.1007/S11684-017-0531-X PubMed DOI

Jechalke S, Heuer H, Siemens J, Amelung W, Smalla K (2014) Fate and effects of veterinary antibiotics in soil. Trends Microbiol 22:536–545. https://doi.org/10.1016/j.tim.2014.05.005 PubMed DOI

Ji X, Shen Q, Liu F, Ma J, Xu G, Wang Y, Wu M (2012) Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China. J Hazard Mater 235–236:178–185. https://doi.org/10.1016/J.JHAZMAT.2012.07.040 PubMed DOI

Jones AD, Bruland GL, Agrawal SG, Vasudevan D (2005) Factors influencing the sorption of oxytetracycline to soils. Environ Toxicol Chem 24(4):761–770. https://doi.org/10.1897/04-037r.1 PubMed DOI

Kang YK, Kwon K, Ryu JS, Lee HN, Park C, Chung HJ (2017) Nonviral genome editing based on a polymer-derivatized CRISPR nanocomplex for targeting bacterial pathogens and antibiotic Resistance. Bioconjug Chem 28:957–967. https://doi.org/10.1021/acs.bioconjchem.6b00676 PubMed DOI

Karkman A, Do TT, Walsh F, Virta M (2018) Antibiotic-resistance genes in waste water. Trends Microbiol 26:220–228. https://doi.org/10.1016/j.tim.2017.09.005 PubMed DOI

Keegan KP, Glass EM, Meyer F (2016) MG-RAST, a metagenomics service for analysis of microbial community structure and function. Methods Mol Biol 1399:207–233. https://doi.org/10.1007/978-1-4939-3369-3_13 PubMed DOI

Khoruts A, Staley C, Sadowsky MJ (2021) Faecal microbiota transplantation for Clostridioides difficile: mechanisms and pharmacology. Nat Rev Gastroenterol Hepatol 18:67–80. https://doi.org/10.1038/s41575-020-0350-4 PubMed DOI

Kim DW, Cha CJ (2021) Antibiotic resistome from the one-health perspective: understanding and controlling antimicrobial resistance transmission. Exp Mol Med 53:301–309. https://doi.org/10.1038/s12276-021-00569-z PubMed DOI PMC

Knapp CW, Callan AC, Aitken B, Shearn R, Koenders A, Hinwood A (2017) Relationship between antibiotic resistance genes and metals in residential soil samples from Western Australia. Environ Sci Pollut Res Int 24:2484–2494. https://doi.org/10.1007/s11356-016-7997-y PubMed DOI

Kumar SB, Arnipalli SR, Ziouzenkova O (2020) Antibiotics in food Chain: the consequences for antibiotic resistance. Antibiotics (basel) 9:688. https://doi.org/10.3390/antibiotics9100688 PubMed DOI

Kumar M, Sarma DK, Shubham S, Kumawat M, Verma V, Nina PB, Jp D, Kumar S, Singh B, Tiwari RR (2021) Futuristic non-antibiotic therapies to combat antibiotic resistance: a review. Front Microbiol 12:609459. https://doi.org/10.3389/fmicb.2021.609459 PubMed DOI PMC

Kümmerer K (2004) Resistance in the environment. J Antimicrob Chemother 54:311–320. https://doi.org/10.1093/jac/dkh325 PubMed DOI

Lee S, Mir RA, Park SH, Kim D, Kim HY, Boughton RK, Morris JG Jr, Jeong KC (2020) Prevalence of extended-spectrum β-lactamases in the local farm environment and livestock: challenges to mitigate antimicrobial resistance. Crit Rev Microbiol 46(1):1–14. https://doi.org/10.1080/1040841X.2020.1715339 PubMed DOI

Li N, Sheng GP, LuYZ ZRJ, Yu HQ (2017) Removal of antibiotic resistance genes from wastewater treatment plant effluent by coagulation. Water Res 111:204–212. https://doi.org/10.1016/j.watres.2017.01.010 PubMed DOI

Lim MY, Cho Y, Rho M (2018) Diverse distribution of resistomes in the human and environmental microbiomes. Curr Genomics 19:701–711. https://doi.org/10.2174/1389202919666180911130845 PubMed DOI PMC

Liu Y, Chen X, Wang D, Li H, Huang J, Zhang Z, Qiao Y, Zhang H, Zeng Y, Tang C, Yang S, Wan X, Chen YH, Zhang Y (2018) Hemofiltration successfully eliminates severe cytokine release syndrome following CD19 CAR-T-Cell therapy. J Immunother 41(9):406–410. https://doi.org/10.1097/CJI.0000000000000243 PubMed DOI PMC

Liu M, Cao J, Wang C (2020a) Bioremediation by earthworms on soil microbial diversity and partial nitrification processes in oxytetracycline-contaminated soil. Ecotoxicol Environ Saf 189:109996. https://doi.org/10.1016/j.ecoenv.2019.109996 PubMed DOI

Liu Y, Cheng D, Xue J, Weaver L, Wakelin SA, Feng Y, Li Z (2020b) Changes in microbial community structure during pig manure composting and its relationship to the fate of antibiotics and antibiotic resistance genes. J Hazard Mater 389:122082. https://doi.org/10.1016/j.jhazmat.2020.122082 PubMed DOI

Liu B, Yu K, Ahmed I, Gin K, Xi B, Wei Z, He Y, Zhang B (2021) Key factors driving the fate of antibiotic resistance genes and controlling strategies during aerobic composting of animal manure: a review. Sci Total Environ 791:148372. https://doi.org/10.1016/j.scitotenv.2021.148372 PubMed DOI

Luo T, WangY PP (2021) The removal of moisture and antibiotic resistance genes in dairy manure by microwave treatment. Environ Sci Pollut Res Int 28:6675–6683. https://doi.org/10.1007/s11356-020-10986-8 PubMed DOI

Makowska N, Koczura R, Mokracka J (2016) Class 1 integrase, sulfonamide and tetracycline resistance genes in wastewater treatment plant and surfacewater. Chemosphere 144:1665–1673. https://doi.org/10.1016/j.chemosphere.2015.10.044 PubMed DOI

Manaia CM, Rocha J, Scaccia N, Marano R, Radu E, Biancullo F, Cerqueira F, Fortunato G, Iakovides IC, Zammit I, Kampouris I, Vaz-Moreira I, Nunes OC (2018) Antibiotic resistance in wastewater treatment plants: tackling the black box. Environ Int 115:312–324. https://doi.org/10.1016/j.envint.2018.03.044 PubMed DOI

Maus CE, Plikaytis BB, Shinnick TM (2005) Molecular analysis of cross-resistance to capreomycin, kanamycin, amikacin, and viomycin in Mycobacterium tuberculosis. Antimicrob Agents Chemother 49:3192–3197. https://doi.org/10.1128/AAC.49.8.3192-3197.2005 PubMed DOI PMC

Migliore L, Cozzolino S, Fiori M (2000) Phytotoxicity to and uptake of flumequine used in intensive aquaculture on the aquatic weed, Lythrum salicaria L. Chemosphere 40(7):741–750. https://doi.org/10.1016/s0045-6535(99)00448-8 PubMed DOI

Migliore L, Cozzolino S, Fiori M (2003) Phytotoxicity to and uptake of enrofloxacin in crop plants. Chemosphere 52:1233–1244. https://doi.org/10.1016/S0045-6535(03)00272-8 PubMed DOI

Modi SR, Collins JJ, Relman DA (2014) Antibiotics and the gut microbiota. J Clin Investig 124:4212–4218. https://doi.org/10.1172/JCI72333 PubMed DOI PMC

Montassier E, Valdés-Mas R, Batard E, Zmora N, Dori-Bachash M, Suez J, Elinav E (2021) Probiotics impact the antibiotic resistance gene reservoir along the human GI tract in a person-specific and antibiotic-dependent manner. Nat Microbiol 6:1043–1054. https://doi.org/10.1038/s41564-021-00920-0 PubMed DOI PMC

Muhammad J, Khan S, Su J, Hesham A, Ditta A, Nawab J, Ali A (2019) Antibiotics in poultry manure and their associated health issues: a systematic review. J Soils Sediments 20:486–497. https://doi.org/10.1007/s11368-019-02360-0 DOI

Munir M, Wong K, Xagoraraki I (2011) Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Res 45:681–693. https://doi.org/10.1016/j.watres.2010.08.033 PubMed DOI

Nguyen AQ, Vu HP, Nguyen LN, Wang Q, Djordjevic SP, Donner E, Yin H, Nghiem LD (2021) Monitoring antibiotic resistance genes in wastewater treatment: current strategies and future challenges. Sci Total Environ 783:146964. https://doi.org/10.1016/j.scitotenv.2021.146964 PubMed DOI

Padayachee T, Klugman KP (1999) Novel expansions of the gene encoding dihydropteroate synthase in trimethoprim-sulfamethoxazole-resistant Streptococcus pneumoniae. Antimicrob Agents Chemother 43:2225–2230. https://doi.org/10.1128/AAC.43.9.2225 PubMed DOI PMC

Pan M, Chu LM (2017) Fate of antibiotics in soil and their uptake by edible crops. Sci Total Environ 599–600:500–512. https://doi.org/10.1016/j.scitotenv.2017.04.214 PubMed DOI

Panacek A, Kvítek L, Prucek R, Kolar M, Vecerova R, Pizúrova N, SharmaVK NevecnaT, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253. https://doi.org/10.1021/jp063826h PubMed DOI

Petrin S, Patuzzi I, di Cesare A, Tiengo A, Sette G, Biancotto G, Corno G, Drigo M, Losasso C, Cibin V (2019) Evaluation and quantification of antimicrobial residues and antimicrobial resistance genes in two Italian swine farms. Environ Pollut 255:113183. https://doi.org/10.1016/J.ENVPOL.2019.113183 PubMed DOI

Pires SM, Duarte AS, Hald T (2018) Source attribution and risk assessment of antimicrobial resistance. Microbiol Spectr 6.  https://doi.org/10.1128/microbiolspec.ARBA-0027-2017

Pu Q, Wang HT, Pan T, Li H, Su JQ (2020) Enhanced removal of ciprofloxacin and reduction of antibiotic resistance genes by earthworm Metaphire vulgaris in soil. Sci Total Environ 742:140409. https://doi.org/10.1016/j.scitotenv.2020.140409 PubMed DOI

Ramirez MS, Tolmasky ME (2010) Aminoglycoside modifying enzymes. Drug Resist Update 13:151–171. https://doi.org/10.1016/J.DRUP.2010.08.003 PubMed DOI

Roberts MC (2019) Antibiotics and resistance in the environment. In: Fong IW, Shlaes D, Drlica K (eds) Antimicrobial resistance in the 21st century, pp 383–408. https://doi.org/10.1007/978-3-319-78538-7_12

Saeki EK, Kobayashi R, Nakazato G (2020) Quorum sensing system: target to control the spread of bacterial infections. Microb Pathog 142:104068. https://doi.org/10.1016/j.micpath.2020.104068 PubMed DOI

Samreen AI, Malak HA, Abulreesh HH (2021) Environmental antimicrobial resistance and its drivers: a potential threat to public health. J Glob Antimicrob Resist 27:101–111. https://doi.org/10.1016/J.JGAR.2021.08.001 PubMed DOI

Sanganyado E, Gwenzi W (2019) Antibiotic resistance in drinking water systems: occurrence, removal, and human health risks. Sci Total Environ 669:785–797. https://doi.org/10.1016/j.scitotenv.2019.03.162 PubMed DOI

Schwarz S, Noble WC (1999) Aspects of bacterial resistance to antimicrobials used in veterinary dermatological practice. Vet Dermatol 10:163–176. https://doi.org/10.1046/J.1365-3164.1999.00170.X PubMed DOI

Sharma VK, Johnson N, Cizmas L, McDonald TJ, Kim H (2016) A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes. Chemosphere 150:702–714. https://doi.org/10.1016/j.chemosphere.2015.12.084 PubMed DOI

Singer AC, Shaw H, RhodesV HA (2016) Review of antimicrobial resistance in the environment and its relevance to environmental regulators. Front Microbiol 7:1728. https://doi.org/10.3389/fmicb.2016.01728 PubMed DOI PMC

Sivalingam P, Poté J, Prabakar K (2020) Extracellular DNA (eDNA): neglected and potential sources of antibiotic resistant genes (ARGs) in the aquatic environments. Pathogens 9:874. https://doi.org/10.3390/pathogens9110874 PubMed DOI PMC

Sköld O (2001) Resistance to trimethoprim and sulfonamides. Vet Res 32:261–273. https://doi.org/10.1051/vetres:2001123 PubMed DOI

Sommer MOA, Dantas G, Church GM (2009) Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 325(5944):1128–1131. https://doi.org/10.1126/science.1176950 PubMed DOI PMC

Stanley D, Batacan R Jr, Bajagai YS (2022) Rapid growth of antimicrobial resistance: the role of agriculture in the problem and the solutions. Appl Microbiol Biotechnol 106:6953–6962. https://doi.org/10.1007/s00253-022-12193-6 PubMed DOI PMC

Stekel D (2018) First report of antimicrobial resistance pre-dates penicillin. Nature 562:192. https://doi.org/10.1038/D41586-018-06983-0 PubMed DOI

Su JQ, Wei B, Ou-Yang WY, Huang FY, Zhao Y, Xu HJ, Zhu YG (2015) Antibiotic resistome and its association with bacterial communities during sewage sludge composting. Environ Sci Technol 49:7356–7363. https://doi.org/10.1021/acs.est.5b01012 PubMed DOI

Surette MD, Wright GD (2017) Lessons from the environmental antibiotic resistome. Annu Rev Microbiol 71:309–329. https://doi.org/10.1146/annurev-micro-090816-093420 PubMed DOI

Szczepanowski R, Linke B, Krahn I, Gartemann KH, Gützkow T, Eichler W, Pühler A, Schlüter A (2009) Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics. Microbiology (reading) 155:2306–2319. https://doi.org/10.1099/mic.0.028233-0 PubMed DOI

Tavares L, Silva C, de Souza V, da Silva V, Diniz C, Santos M (2013) Strategies and molecular tools to fight antimicrobial resistance: resistome, transcriptome, and antimicrobial peptides. Front Microbiol 4. https://doi.org/10.3389/fmicb.2013.00412

Tang Z, Xi B, Huang C, Tan W, Li W, Zhao X, Liu K, Xia X (2020) Mobile genetic elements in potential host microorganisms are the key hindrance for the removal of antibiotic resistance genes in industrial-scale composting with municipal solid waste. Bioresour Technol 301:122723. https://doi.org/10.1016/j.biortech.2019.122723 PubMed DOI

Tenover FC (2006) Mechanisms of antimicrobial resistance in bacteria. Am J Infect Control 34(5 Suppl 1). https://doi.org/10.1016/J.AJIC.2006.05.219

Torti A, Lever MA, Jørgensen BB (2015) Origin, dynamics, and implications of extracellular DNA pools in marine sediments. Mar Genomics 24(Pt 3):185–196. https://doi.org/10.1016/j.margen.2015.08.007 . (PMID: 26452301) PubMed DOI

van den Bogaard AE, Willems R, London N, Top J, Stobberingh EE (2002) Antibiotic resistance of faecal enterococci in poultry, poultry farmers and poultry slaughterers. J Antimicrob Chemother 49:497–505. https://doi.org/10.1093/jac/49.3.497 PubMed DOI

Van den Meersche T, Rasschaert GH, Van Coillie F, Herman E, Van Weyenberg L, Daeseleire S, E, Heyndrickx M. (2019) Presence and fate of antibiotic residues, antibiotic resistance genes and zoonotic bacteria during biological swine manure treatment. Ecotoxicol Environ Saf 175:29–38. https://doi.org/10.1016/j.ecoenv.2019.01.127 PubMed DOI

van Duijkeren E, Schink AK, Roberts MC, Wang Y, Schwarz S (2018) Mechanisms of bacterial resistance to antimicrobial agents. Microbiol Spectrum 6:186–198. https://doi.org/10.1128/MICROBIOLSPEC.ARBA-0019-2017 DOI

Vikesland P, Garner E, Gupta S, Kang S, Maile-Moskowitz A, Zhu N (2019) Differential drivers of antimicrobial resistance across the world. Acc Chem Res 52:916–924. https://doi.org/10.1021/acs.accounts.8b00643 PubMed DOI

Wang G, Li X, Wang Z (2009) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 37(Database issue):D933–D937. https://doi.org/10.1093/nar/gkn823 PubMed DOI

Waseem H, Jameel S, Ali J, Jamal A, Ali MI (2020) Recent advances in treatment technologies for antibiotics and antimicrobial resistance genes. In: Hashmi MZ (ed) Antibiotics and antimicrobial resistance genes, pp 395–414. https://doi.org/10.1007/978-3-030-40422-2_18

Waseem H, Jameel S, Ali J, Saleem Ur Rehman H, Tauseef I, Farooq U, Jamal A, Ali MI (2019) Contributions and challenges of high throughput qPCR for determining antimicrobial resistance in the environment: a critical review. Molecules 24:163. https://doi.org/10.3390/molecules24010163 PubMed DOI PMC

Weisblum B (1998) Macrolide Resistance Drug Resistance Updates 1:29–41. https://doi.org/10.1016/S1368-7646(98)80212-4 PubMed DOI

Xu Y, Zhou X, Jiang Z, Qi Y, Ed-Dra A, Yue M (2020) Epidemiological investigation and antimicrobial resistance profiles of Salmonella isolated from breeder chicken hatcheries in Henan, China. Front Cell Infect Microbiol 10:497. https://doi.org/10.3389/fcimb.2020.00497 PubMed DOI PMC

Xia H, Chen J, Chen X, Huang K, Wu Y (2019) Effects of tetracycline residuals on humification, microbial profile and antibiotic resistance genes during vermicomposting of dewatered sludge. Environ Pollut 252:1068–1077. https://doi.org/10.1016/j.envpol.2019.06.048 PubMed DOI

Yang S, Zhao L, Chang X, Pan Z, Zhou B, Sun Y, Li X, Weng L, Li Y (2021) Removal of chlortetracycline and antibiotic resistance genes in soil by earthworms (epigeic Eisenia fetida and endogeic Metaphire guillelmi). Sci Total Environ 781:146679. https://doi.org/10.1016/j.scitotenv.2021.146679 PubMed DOI

Yin F, Dong H, Zhang W, Zhu Z, Shang B (2020) Additional function of pasteurisation pretreatment in combination with anaerobic digestion on antibiotic removal. Bioresour Technol 297:122414. https://doi.org/10.1016/j.biortech.2019.122414 PubMed DOI

Zalewska-Piątek B, Piątek R (2021) Bacteriophages as potential tools for use in antimicrobial therapy and vaccine development. Pharmaceuticals (basel) 14:331. https://doi.org/10.3390/ph14040331 PubMed DOI

Zapun A, Contreras-Martel C, Vernet T (2008) Penicillin-binding proteins and beta-lactam resistance. FEMS Microbiol Rev 32:361–385. https://doi.org/10.1111/J.1574-6976.2007.00095.X PubMed DOI

Zhang Y, Song K, Zhang J, Xu X, Ye G, Cao H, Chen M, Cai S, Cao X, Zheng X, LvW, (2022) Removal of sulfamethoxazole and antibiotic resistance genes in paddy soil by earthworms (Pheretima guillelmi): intestinal detoxification and stimulation of indigenous soil bacteria. Sci Total Environ 851:158075. https://doi.org/10.1016/j.scitotenv.2022.158075 PubMed DOI

Zhao X, Yu Z, Ding T (2020) Quorum-sensing regulation of antimicrobial resistance in bacteria. Microorganisms 8:425. https://doi.org/10.3390/microorganisms8030425 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...