Low-Energy Electron Induced Reactions in Metronidazole at Different Solvation Conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
I 5390
Austrian Science Fund FWF - Austria
CA18212
COST Action
LTC20067
Czech Ministry of Youth, Education and Sports
UMO-2020/02/Y/ST4/00110
National Science Center
P 30332
Austrian Science Fund FWF - Austria
P30332, I5390
FWF Austrian Science Fund
PubMed
35745620
PubMed Central
PMC9227036
DOI
10.3390/ph15060701
PII: ph15060701
Knihovny.cz E-zdroje
- Klíčová slova
- clusters, electron attachment, hydration, low-energy electron, metronidazole, radiosensitizer, reduction,
- Publikační typ
- časopisecké články MeSH
Metronidazole belongs to the class of nitroimidazole molecules and has been considered as a potential radiosensitizer for radiation therapy. During the irradiation of biological tissue, secondary electrons are released that may interact with molecules of the surrounding environment. Here, we present a study of electron attachment to metronidazole that aims to investigate possible reactions in the molecule upon anion formation. Another purpose is to elucidate the effect of microhydration on electron-induced reactions in metronidazole. We use two crossed electron/molecular beam devices with the mass-spectrometric analysis of formed anions. The experiments are supported by quantum chemical calculations on thermodynamic properties such as electron affinities and thresholds of anion formation. For the single molecule, as well as the microhydrated condition, we observe the parent radical anion as the most abundant product anion upon electron attachment. A variety of fragment anions are observed for the isolated molecule, with NO2- as the most abundant fragment species. NO2- and all other fragment anions except weakly abundant OH- are quenched upon microhydration. The relative abundances suggest the parent radical anion of metronidazole as a biologically relevant species after the physicochemical stage of radiation damage. We also conclude from the present results that metronidazole is highly susceptible to low-energy electrons.
Zobrazit více v PubMed
Leitsch D. A review on metronidazole: An old warhorse in antimicrobial chemotherapy. Parasitology. 2019;146:1167–1178. doi: 10.1017/S0031182017002025. PubMed DOI
Dingsdag S.A., Hunter N. Metronidazole: An update on metabolism, structure-cytotoxicity and resistance mechanisms. J. Antimicrob. Chemother. 2018;73:265–279. doi: 10.1093/jac/dkx351. PubMed DOI
Brown J.M., Wilson W.R. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer. 2004;4:437–447. doi: 10.1038/nrc1367. PubMed DOI
Edwards D.I. Nitroimidazole drugs-action and resistance mechanisms I. Mechanism of action. J. Antimicrob. Chemother. 1993;31:9–20. doi: 10.1093/jac/31.1.9. PubMed DOI
Wardman P. Some reactions and properties of nitro radical-anions important in biology and medicine. Environ. Health Perspect. 1985;64:309–320. doi: 10.1289/ehp.8564309. PubMed DOI PMC
Baumann M., Krause M., Overgaard J., Debus J., Bentzen S.M., Daartz J., Richter C., Zips D., Bortfeld T. Radiation oncology in the era of precision medicine. Nat. Rev. Cancer. 2016;16:234–249. doi: 10.1038/nrc.2016.18. PubMed DOI
Wang H., Mu X., He H., Zhang X.D. Cancer Radiosensitizers. Trends Pharmacol. Sci. 2018;39:24–48. doi: 10.1016/j.tips.2017.11.003. PubMed DOI
Wardman P. Chemical radiosensitizers for use in radiotherapy. Clin. Oncol. 2007;19:397–417. doi: 10.1016/j.clon.2007.03.010. PubMed DOI
Jackson R.K., Liew L.P., Hay M.P. Overcoming Radioresistance: Small Molecule Radiosensitisers and Hypoxia-activated Prodrugs. Clin. Oncol. 2019;31:290–302. doi: 10.1016/j.clon.2019.02.004. PubMed DOI
Yang C., Peng S., Sun Y., Miao H., Lyu M., Ma S., Luo Y., Xiong R., Xie C., Quan H. Development of a hypoxic nanocomposite containing high-Z element as 5-fluorouracil carrier activated self-amplified chemoradiotherapy co-enhancement. R. Soc. Open Sci. 2019;6:181790. doi: 10.1098/rsos.181790. PubMed DOI PMC
Ribar A., Fink K., Li Z., Ptasińska S., Carmichael I., Feketeová L., Denifl S. Stripping off hydrogens in imidazole triggered by the attachment of a single electron. Phys. Chem. Chem. Phys. 2017;19:6406–6415. doi: 10.1039/C6CP08773F. PubMed DOI
Ribar A., Fink K., Probst M., Huber S.E., Feketeová L., Denifl S. Isomer Selectivity in Low-Energy Electron Attachment to Nitroimidazoles. Chem. Eur. J. 2017;23:12892–12899. doi: 10.1002/chem.201702644. PubMed DOI
Feketeová L., Albright A.L., Sørensen B.S., Horsman M.R., White J., O’Hair R.A.J., Bassler N. Formation of radical anions of radiosensitizers and related model compounds via electrospray ionization. Int. J. Mass Spectrom. 2014;365–366:56–63. doi: 10.1016/j.ijms.2013.12.014. DOI
Meißner R., Kočišek J., Feketeová L., Fedor J., Fárník M., Limão-Vieira P., Illenberger E., Denifl S. Low-energy electrons transform the nimorazole molecule into a radiosensitiser. Nat. Commun. 2019;10:2388. doi: 10.1038/s41467-019-10340-8. PubMed DOI PMC
Ončák M., Meißner R., Arthur-Baidoo E., Denifl S., Luxford T.F.M., Pysanenko A., Fárník M., Pinkas J., Kočišek J. Ring formation and hydration effects in electron attachment to misonidazole. Int. J. Mol. Sci. 2019;20:4383. doi: 10.3390/ijms20184383. PubMed DOI PMC
Meißner R., Feketeová L., Illenberger E., Denifl S. Reactions in the Radiosensitizer Misonidazole Induced by Low-Energy (0–10 eV) Electrons. Int. J. Mol. Sci. 2019;20:3496. doi: 10.3390/ijms20143496. PubMed DOI PMC
Baccarelli I., Bald I., Gianturco F.A., Illenberger E., Kopyra J. Electron-induced damage of DNA and its components: Experiments and theoretical models. Phys. Rep. 2011;508:1–44. doi: 10.1016/j.physrep.2011.06.004. DOI
Meißner R., Feketeová L., Bayer A., Limão-Vieira P., Denifl S. Formation of negative and positive ions in the radiosensitizer nimorazole upon low-energy electron collisions. J. Chem. Phys. 2021;154:074306. doi: 10.1063/5.0040045. PubMed DOI
Fabrikant I.I. Electron attachment to molecules in a cluster environment: Suppression and enhancement effects. Eur. Phys. J. D. 2018;72:96. doi: 10.1140/epjd/e2018-90082-2. PubMed DOI
Gorfinkiel J.D. Electron collisions with molecules and molecular clusters. Eur. Phys. J. D. 2020;74:51. doi: 10.1140/epjd/e2020-100550-7. DOI
McAllister M., Kazemigazestane N., Henry L.T., Gu B., Fabrikant I., Tribello G.A., Kohanoff J. Solvation Effects on Dissociative Electron Attachment to Thymine. J. Phys. Chem. B. 2019;123:1537–1544. doi: 10.1021/acs.jpcb.8b11621. PubMed DOI
Pimblott S.M., LaVerne J.A. Production of low-energy electrons by ionizing radiation. Rad. Phys. Chem. 2007;76:1244–1247. doi: 10.1016/j.radphyschem.2007.02.012. DOI
Kumar A., Becker D., Adhikary A., Sevilla M.D. Reaction of Electrons with DNA: Radiation Damage to Radiosensitization. Int. J. Mol. Sci. 2019;20:3998. doi: 10.3390/ijms20163998. PubMed DOI PMC
Ma J., Denisov S.A., Adhikary A., Mostafavi M. Ultrafast Processes Occurring in Radiolysis of Highly Concentrated Solutions of Nucleosides/Tides. Int. J. Mol. Sci. 2019;20:4963. doi: 10.3390/ijms20194963. PubMed DOI PMC
Gorfinkiel J.D., Ptasinska S. Electron scattering from molecules and molecular aggregates of biological relevance. J. Phys. B At. Mol. Opt. Phys. 2017;50:182001. doi: 10.1088/1361-6455/aa8572. DOI
Bald I., Langer J., Tegeder P., Ingólfsson O. From isolated molecules through clusters and condensates to the building blocks of life. Int. J. Mass Spectrom. 2008;277:4–25. doi: 10.1016/j.ijms.2008.06.013. DOI
Schürmann R., Vogel S., Ebel K., Bald I. The Physico-Chemical Basis of DNA Radiosensitization: Implications for Cancer Radiation Therapy. Chem. A Eur. J. 2018;24:10271–10279. doi: 10.1002/chem.201800804. PubMed DOI
Ameixa J., Arthur-Baidoo E., Pereira-Da-Silva J., Ryszka M., Carmichael I., Cornetta L.M., Do M.T., Ferreira Da Silva F., Ptasińska S., Denifl S. Formation of resonances and anionic fragments upon electron attachment to benzaldehyde. Phys. Chem. Chem. Phys. 2020;22:8171–8181. doi: 10.1039/D0CP00029A. PubMed DOI
Pandeti S., Feketeová L., Reddy T.J., Abdoul-Carime H., Farizon B., Farizon M., Märk T.D. Nitroimidazolic radiosensitizers investigated by electrospray ionization time-of-flight mass spectrometry and density functional theory. RSC Adv. 2017;7:45211–45221. doi: 10.1039/C7RA08312B. PubMed DOI
NIST Chemistry WebBook. [(accessed on 22 April 2022)];2022 Available online: http//Webbook.Nist.Gov/Chemistry.
Kossoski F., Varella M.T.D.N. How does methylation suppress the electron-induced decomposition of 1-methyl-nitroimidazoles? J. Chem. Phys. 2017;147:164310. doi: 10.1063/1.5005604. PubMed DOI
Saqib M., Arthur-Baidoo E., Ončák M., Denifl S. Electron Attachment Studies with the Potential Radiosensitizer 2-Nitrofuran. Int. J. Mol. Sci. 2020;21:8906. doi: 10.3390/ijms21238906. PubMed DOI PMC
Poštulka J., Slavíček P., Fedor J., Fárník M., Kočišek J. Energy Transfer in Microhydrated Uracil, 5-Fluorouracil, and 5-Bromouracil. J. Phys. Chem. B. 2017;121:8965–8974. doi: 10.1021/acs.jpcb.7b07390. PubMed DOI
Kočišek J., Pysanenko A., Farník M., Fedor J. Microhydration prevents fragmentation of uracil and thymine by low-energy electrons. J. Phys. Chem. Lett. 2016;7:3401–3405. doi: 10.1021/acs.jpclett.6b01601. PubMed DOI
Denifl S., Zappa F., Mauracher A., Ferreira da Silva F., Bacher A., Echt O., Märk T.D., Bohme D.K., Scheier P. Dissociative Electron Attachment to DNA Bases Near Absolute Zero Temperature: Freezing Dissociation Intermediates. ChemPhysChem. 2008;9:1387–1389. doi: 10.1002/cphc.200800245. PubMed DOI
Kohanoff J., McAllister M., Tribello G.A., Gu B. Interactions between low energy electrons and DNA: A perspective from first-principles simulations. J. Phys. Condens. Matter. 2017;29:383001. doi: 10.1088/1361-648X/aa79e3. PubMed DOI
Meißner R., Feketeová L., Bayer A., Postler J., Limão-Vieira P., Denifl S. Positive and negative ions of the amino acid histidine formed in low-energy electron collisions. J. Mass Spectrom. 2019;54:802–816. doi: 10.1002/jms.4427. PubMed DOI PMC
Klar D., Ruf M.W., Hotop H. Dissociative electron attachment to CCl4 molecules at low electron energies with meV resolution. Int. J. Mass Spectrom. 2001;205:93–110. doi: 10.1016/S1387-3806(00)00271-2. DOI
Kočišek J., Lengyel J., Fárník M. Ionization of large homogeneous and heterogeneous clusters generated in acetylene-Ar expansions: Cluster ion polymerization. J. Chem. Phys. 2013;138:124306. doi: 10.1063/1.4796262. PubMed DOI
Zettergren H., Domaracka A., Schlathölter T., Bolognesi P., Díaz-Tendero S., Łabuda M., Tosic S., Maclot S., Johnsson P., Steber A., et al. Roadmap on dynamics of molecules and clusters in the gas phase. Eur. Phys. J. D. 2021;75:152. doi: 10.1140/epjd/s10053-021-00155-y. DOI
Zhao Y., Truhlar D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008;120:215–241. doi: 10.1007/s00214-007-0310-x. DOI
Kendall R.A., Dunning T.H., Harrison R.J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992;96:6796–6806. doi: 10.1063/1.462569. DOI
Woon D.E., Dunning T.H. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 1993;98:1358–1371. doi: 10.1063/1.464303. DOI
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., et al. Gaussian 09, Revision D.01. Gaussian Inc.; Wallingford, CT, USA: 2013.
Ochterski J.W. Thermochemistry in Gaussian. Volume 1 Gaussian Inc.; Wallingford, CT, USA: 2000.
Ameixa J., Arthur-Baidoo E., Meißner R., Makurat S., Kozak W., Butowska K., Ferreira da Silva F., Rak J., Denifl S. Low-energy electron-induced decomposition of 5-trifluoromethanesulfonyl-uracil: A potential radiosensitizer. J. Chem. Phys. 2018;149:164307. doi: 10.1063/1.5050594. PubMed DOI
Curtiss L.A., Redfern P.C., Raghavachari K. Gaussian-4 theory using reduced order perturbation theory. J. Chem. Phys. 2007;126:7221. doi: 10.1063/1.2770701. PubMed DOI
Meißner R., Makurat S., Kozak W., Limão-Vieira P., Rak J., Denifl S. Electron-Induced Dissociation of the Potential Radiosensitizer 5-Selenocyanato-2′-deoxyuridine. J. Phys. Chem. B. 2019;123:1274–1282. doi: 10.1021/acs.jpcb.8b11523. PubMed DOI
Ribar A., Huber S.E., Śmiałek M.A., Tanzer K., Neustetter M., Schürmann R., Bald I., Denifl S. Hydroperoxyl radical and formic acid formation from common DNA stabilizers upon low energy electron attachment. Phys. Chem. Chem. Phys. 2018;20:5578–5585. doi: 10.1039/C7CP07697E. PubMed DOI
Whillans D.W., Adams G.E., Neta P. Electron affinic sensitization. VI. A pulse radiolysis and ESR comparison of some 2 and 5 nitroimidazoles. Radiat. Res. 1975;62:407–421. doi: 10.2307/3574136. PubMed DOI
Chomicz L., Zdrowowicz M., Kasprzykowski F., Rak J., Buonaugurio A., Wang Y., Bowen K.H. How to find out whether a 5-substituted uracil could be a potential DNA radiosensitizer. J. Phys. Chem. Lett. 2013;4:2853–2857. doi: 10.1021/jz401358w. DOI