Low-Energy Electron Induced Reactions in Metronidazole at Different Solvation Conditions

. 2022 Jun 02 ; 15 (6) : . [epub] 20220602

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35745620

Grantová podpora
I 5390 Austrian Science Fund FWF - Austria
CA18212 COST Action
LTC20067 Czech Ministry of Youth, Education and Sports
UMO-2020/02/Y/ST4/00110 National Science Center
P 30332 Austrian Science Fund FWF - Austria
P30332, I5390 FWF Austrian Science Fund

Metronidazole belongs to the class of nitroimidazole molecules and has been considered as a potential radiosensitizer for radiation therapy. During the irradiation of biological tissue, secondary electrons are released that may interact with molecules of the surrounding environment. Here, we present a study of electron attachment to metronidazole that aims to investigate possible reactions in the molecule upon anion formation. Another purpose is to elucidate the effect of microhydration on electron-induced reactions in metronidazole. We use two crossed electron/molecular beam devices with the mass-spectrometric analysis of formed anions. The experiments are supported by quantum chemical calculations on thermodynamic properties such as electron affinities and thresholds of anion formation. For the single molecule, as well as the microhydrated condition, we observe the parent radical anion as the most abundant product anion upon electron attachment. A variety of fragment anions are observed for the isolated molecule, with NO2- as the most abundant fragment species. NO2- and all other fragment anions except weakly abundant OH- are quenched upon microhydration. The relative abundances suggest the parent radical anion of metronidazole as a biologically relevant species after the physicochemical stage of radiation damage. We also conclude from the present results that metronidazole is highly susceptible to low-energy electrons.

Zobrazit více v PubMed

Leitsch D. A review on metronidazole: An old warhorse in antimicrobial chemotherapy. Parasitology. 2019;146:1167–1178. doi: 10.1017/S0031182017002025. PubMed DOI

Dingsdag S.A., Hunter N. Metronidazole: An update on metabolism, structure-cytotoxicity and resistance mechanisms. J. Antimicrob. Chemother. 2018;73:265–279. doi: 10.1093/jac/dkx351. PubMed DOI

Brown J.M., Wilson W.R. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer. 2004;4:437–447. doi: 10.1038/nrc1367. PubMed DOI

Edwards D.I. Nitroimidazole drugs-action and resistance mechanisms I. Mechanism of action. J. Antimicrob. Chemother. 1993;31:9–20. doi: 10.1093/jac/31.1.9. PubMed DOI

Wardman P. Some reactions and properties of nitro radical-anions important in biology and medicine. Environ. Health Perspect. 1985;64:309–320. doi: 10.1289/ehp.8564309. PubMed DOI PMC

Baumann M., Krause M., Overgaard J., Debus J., Bentzen S.M., Daartz J., Richter C., Zips D., Bortfeld T. Radiation oncology in the era of precision medicine. Nat. Rev. Cancer. 2016;16:234–249. doi: 10.1038/nrc.2016.18. PubMed DOI

Wang H., Mu X., He H., Zhang X.D. Cancer Radiosensitizers. Trends Pharmacol. Sci. 2018;39:24–48. doi: 10.1016/j.tips.2017.11.003. PubMed DOI

Wardman P. Chemical radiosensitizers for use in radiotherapy. Clin. Oncol. 2007;19:397–417. doi: 10.1016/j.clon.2007.03.010. PubMed DOI

Jackson R.K., Liew L.P., Hay M.P. Overcoming Radioresistance: Small Molecule Radiosensitisers and Hypoxia-activated Prodrugs. Clin. Oncol. 2019;31:290–302. doi: 10.1016/j.clon.2019.02.004. PubMed DOI

Yang C., Peng S., Sun Y., Miao H., Lyu M., Ma S., Luo Y., Xiong R., Xie C., Quan H. Development of a hypoxic nanocomposite containing high-Z element as 5-fluorouracil carrier activated self-amplified chemoradiotherapy co-enhancement. R. Soc. Open Sci. 2019;6:181790. doi: 10.1098/rsos.181790. PubMed DOI PMC

Ribar A., Fink K., Li Z., Ptasińska S., Carmichael I., Feketeová L., Denifl S. Stripping off hydrogens in imidazole triggered by the attachment of a single electron. Phys. Chem. Chem. Phys. 2017;19:6406–6415. doi: 10.1039/C6CP08773F. PubMed DOI

Ribar A., Fink K., Probst M., Huber S.E., Feketeová L., Denifl S. Isomer Selectivity in Low-Energy Electron Attachment to Nitroimidazoles. Chem. Eur. J. 2017;23:12892–12899. doi: 10.1002/chem.201702644. PubMed DOI

Feketeová L., Albright A.L., Sørensen B.S., Horsman M.R., White J., O’Hair R.A.J., Bassler N. Formation of radical anions of radiosensitizers and related model compounds via electrospray ionization. Int. J. Mass Spectrom. 2014;365–366:56–63. doi: 10.1016/j.ijms.2013.12.014. DOI

Meißner R., Kočišek J., Feketeová L., Fedor J., Fárník M., Limão-Vieira P., Illenberger E., Denifl S. Low-energy electrons transform the nimorazole molecule into a radiosensitiser. Nat. Commun. 2019;10:2388. doi: 10.1038/s41467-019-10340-8. PubMed DOI PMC

Ončák M., Meißner R., Arthur-Baidoo E., Denifl S., Luxford T.F.M., Pysanenko A., Fárník M., Pinkas J., Kočišek J. Ring formation and hydration effects in electron attachment to misonidazole. Int. J. Mol. Sci. 2019;20:4383. doi: 10.3390/ijms20184383. PubMed DOI PMC

Meißner R., Feketeová L., Illenberger E., Denifl S. Reactions in the Radiosensitizer Misonidazole Induced by Low-Energy (0–10 eV) Electrons. Int. J. Mol. Sci. 2019;20:3496. doi: 10.3390/ijms20143496. PubMed DOI PMC

Baccarelli I., Bald I., Gianturco F.A., Illenberger E., Kopyra J. Electron-induced damage of DNA and its components: Experiments and theoretical models. Phys. Rep. 2011;508:1–44. doi: 10.1016/j.physrep.2011.06.004. DOI

Meißner R., Feketeová L., Bayer A., Limão-Vieira P., Denifl S. Formation of negative and positive ions in the radiosensitizer nimorazole upon low-energy electron collisions. J. Chem. Phys. 2021;154:074306. doi: 10.1063/5.0040045. PubMed DOI

Fabrikant I.I. Electron attachment to molecules in a cluster environment: Suppression and enhancement effects. Eur. Phys. J. D. 2018;72:96. doi: 10.1140/epjd/e2018-90082-2. PubMed DOI

Gorfinkiel J.D. Electron collisions with molecules and molecular clusters. Eur. Phys. J. D. 2020;74:51. doi: 10.1140/epjd/e2020-100550-7. DOI

McAllister M., Kazemigazestane N., Henry L.T., Gu B., Fabrikant I., Tribello G.A., Kohanoff J. Solvation Effects on Dissociative Electron Attachment to Thymine. J. Phys. Chem. B. 2019;123:1537–1544. doi: 10.1021/acs.jpcb.8b11621. PubMed DOI

Pimblott S.M., LaVerne J.A. Production of low-energy electrons by ionizing radiation. Rad. Phys. Chem. 2007;76:1244–1247. doi: 10.1016/j.radphyschem.2007.02.012. DOI

Kumar A., Becker D., Adhikary A., Sevilla M.D. Reaction of Electrons with DNA: Radiation Damage to Radiosensitization. Int. J. Mol. Sci. 2019;20:3998. doi: 10.3390/ijms20163998. PubMed DOI PMC

Ma J., Denisov S.A., Adhikary A., Mostafavi M. Ultrafast Processes Occurring in Radiolysis of Highly Concentrated Solutions of Nucleosides/Tides. Int. J. Mol. Sci. 2019;20:4963. doi: 10.3390/ijms20194963. PubMed DOI PMC

Gorfinkiel J.D., Ptasinska S. Electron scattering from molecules and molecular aggregates of biological relevance. J. Phys. B At. Mol. Opt. Phys. 2017;50:182001. doi: 10.1088/1361-6455/aa8572. DOI

Bald I., Langer J., Tegeder P., Ingólfsson O. From isolated molecules through clusters and condensates to the building blocks of life. Int. J. Mass Spectrom. 2008;277:4–25. doi: 10.1016/j.ijms.2008.06.013. DOI

Schürmann R., Vogel S., Ebel K., Bald I. The Physico-Chemical Basis of DNA Radiosensitization: Implications for Cancer Radiation Therapy. Chem. A Eur. J. 2018;24:10271–10279. doi: 10.1002/chem.201800804. PubMed DOI

Ameixa J., Arthur-Baidoo E., Pereira-Da-Silva J., Ryszka M., Carmichael I., Cornetta L.M., Do M.T., Ferreira Da Silva F., Ptasińska S., Denifl S. Formation of resonances and anionic fragments upon electron attachment to benzaldehyde. Phys. Chem. Chem. Phys. 2020;22:8171–8181. doi: 10.1039/D0CP00029A. PubMed DOI

Pandeti S., Feketeová L., Reddy T.J., Abdoul-Carime H., Farizon B., Farizon M., Märk T.D. Nitroimidazolic radiosensitizers investigated by electrospray ionization time-of-flight mass spectrometry and density functional theory. RSC Adv. 2017;7:45211–45221. doi: 10.1039/C7RA08312B. PubMed DOI

NIST Chemistry WebBook. [(accessed on 22 April 2022)];2022 Available online: http//Webbook.Nist.Gov/Chemistry.

Kossoski F., Varella M.T.D.N. How does methylation suppress the electron-induced decomposition of 1-methyl-nitroimidazoles? J. Chem. Phys. 2017;147:164310. doi: 10.1063/1.5005604. PubMed DOI

Saqib M., Arthur-Baidoo E., Ončák M., Denifl S. Electron Attachment Studies with the Potential Radiosensitizer 2-Nitrofuran. Int. J. Mol. Sci. 2020;21:8906. doi: 10.3390/ijms21238906. PubMed DOI PMC

Poštulka J., Slavíček P., Fedor J., Fárník M., Kočišek J. Energy Transfer in Microhydrated Uracil, 5-Fluorouracil, and 5-Bromouracil. J. Phys. Chem. B. 2017;121:8965–8974. doi: 10.1021/acs.jpcb.7b07390. PubMed DOI

Kočišek J., Pysanenko A., Farník M., Fedor J. Microhydration prevents fragmentation of uracil and thymine by low-energy electrons. J. Phys. Chem. Lett. 2016;7:3401–3405. doi: 10.1021/acs.jpclett.6b01601. PubMed DOI

Denifl S., Zappa F., Mauracher A., Ferreira da Silva F., Bacher A., Echt O., Märk T.D., Bohme D.K., Scheier P. Dissociative Electron Attachment to DNA Bases Near Absolute Zero Temperature: Freezing Dissociation Intermediates. ChemPhysChem. 2008;9:1387–1389. doi: 10.1002/cphc.200800245. PubMed DOI

Kohanoff J., McAllister M., Tribello G.A., Gu B. Interactions between low energy electrons and DNA: A perspective from first-principles simulations. J. Phys. Condens. Matter. 2017;29:383001. doi: 10.1088/1361-648X/aa79e3. PubMed DOI

Meißner R., Feketeová L., Bayer A., Postler J., Limão-Vieira P., Denifl S. Positive and negative ions of the amino acid histidine formed in low-energy electron collisions. J. Mass Spectrom. 2019;54:802–816. doi: 10.1002/jms.4427. PubMed DOI PMC

Klar D., Ruf M.W., Hotop H. Dissociative electron attachment to CCl4 molecules at low electron energies with meV resolution. Int. J. Mass Spectrom. 2001;205:93–110. doi: 10.1016/S1387-3806(00)00271-2. DOI

Kočišek J., Lengyel J., Fárník M. Ionization of large homogeneous and heterogeneous clusters generated in acetylene-Ar expansions: Cluster ion polymerization. J. Chem. Phys. 2013;138:124306. doi: 10.1063/1.4796262. PubMed DOI

Zettergren H., Domaracka A., Schlathölter T., Bolognesi P., Díaz-Tendero S., Łabuda M., Tosic S., Maclot S., Johnsson P., Steber A., et al. Roadmap on dynamics of molecules and clusters in the gas phase. Eur. Phys. J. D. 2021;75:152. doi: 10.1140/epjd/s10053-021-00155-y. DOI

Zhao Y., Truhlar D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008;120:215–241. doi: 10.1007/s00214-007-0310-x. DOI

Kendall R.A., Dunning T.H., Harrison R.J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992;96:6796–6806. doi: 10.1063/1.462569. DOI

Woon D.E., Dunning T.H. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 1993;98:1358–1371. doi: 10.1063/1.464303. DOI

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., et al. Gaussian 09, Revision D.01. Gaussian Inc.; Wallingford, CT, USA: 2013.

Ochterski J.W. Thermochemistry in Gaussian. Volume 1 Gaussian Inc.; Wallingford, CT, USA: 2000.

Ameixa J., Arthur-Baidoo E., Meißner R., Makurat S., Kozak W., Butowska K., Ferreira da Silva F., Rak J., Denifl S. Low-energy electron-induced decomposition of 5-trifluoromethanesulfonyl-uracil: A potential radiosensitizer. J. Chem. Phys. 2018;149:164307. doi: 10.1063/1.5050594. PubMed DOI

Curtiss L.A., Redfern P.C., Raghavachari K. Gaussian-4 theory using reduced order perturbation theory. J. Chem. Phys. 2007;126:7221. doi: 10.1063/1.2770701. PubMed DOI

Meißner R., Makurat S., Kozak W., Limão-Vieira P., Rak J., Denifl S. Electron-Induced Dissociation of the Potential Radiosensitizer 5-Selenocyanato-2′-deoxyuridine. J. Phys. Chem. B. 2019;123:1274–1282. doi: 10.1021/acs.jpcb.8b11523. PubMed DOI

Ribar A., Huber S.E., Śmiałek M.A., Tanzer K., Neustetter M., Schürmann R., Bald I., Denifl S. Hydroperoxyl radical and formic acid formation from common DNA stabilizers upon low energy electron attachment. Phys. Chem. Chem. Phys. 2018;20:5578–5585. doi: 10.1039/C7CP07697E. PubMed DOI

Whillans D.W., Adams G.E., Neta P. Electron affinic sensitization. VI. A pulse radiolysis and ESR comparison of some 2 and 5 nitroimidazoles. Radiat. Res. 1975;62:407–421. doi: 10.2307/3574136. PubMed DOI

Chomicz L., Zdrowowicz M., Kasprzykowski F., Rak J., Buonaugurio A., Wang Y., Bowen K.H. How to find out whether a 5-substituted uracil could be a potential DNA radiosensitizer. J. Phys. Chem. Lett. 2013;4:2853–2857. doi: 10.1021/jz401358w. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...