TREM-1 and TREM-2 Expression on Blood Monocytes Could Help Predict Survival in High-Grade Glioma Patients
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32684831
PubMed Central
PMC7350089
DOI
10.1155/2020/1798147
Knihovny.cz E-zdroje
- MeSH
- antigeny CD14 metabolismus MeSH
- dospělí MeSH
- gliom krev metabolismus mortalita MeSH
- interleukin-10 krev MeSH
- interleukin-6 krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- membránové glykoproteiny metabolismus MeSH
- monocyty metabolismus MeSH
- proporcionální rizikové modely MeSH
- protein HMGB1 krev MeSH
- receptor TREM-1 metabolismus MeSH
- receptory imunologické metabolismus MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny CD14 MeSH
- IL10 protein, human MeSH Prohlížeč
- interleukin-10 MeSH
- interleukin-6 MeSH
- membránové glykoproteiny MeSH
- protein HMGB1 MeSH
- receptor TREM-1 MeSH
- receptory imunologické MeSH
- TREM2 protein, human MeSH Prohlížeč
OBJECTIVE: In recent years, the role of the modern inflammatory markers TREM-1 (triggering receptors expressed on myeloid cells) and HMGB1 (high mobility group box 1 protein) in tumorigenesis has begun to be studied. Their role in gliomas is not clear. The aim of our study was to find the role of inflammation in gliomas. Patients and Methods. In 63 adult patients with gliomas and 31 healthy controls, the expressions of TREM-1 and TREM-2 on CD14+ blood cells (method: flow cytometry) and the levels of soluble sTREM-1, HMGB1, IL-6, and IL-10 (Elisa tests) were analyzed. RESULTS: Cox proportional hazard analysis showed that a TREM-1/TREM-2 ratio was associated with reduced overall survival (HR = 1.001, P = 0.023). Patients with a TREM-1/TREM-2 ratio above 125 survived significantly shorter than patients with a TREM-1/TREM-2 ratio below 125. The percentage of CD14+ TREM-1+ cells was strongly associated with a plasma IL-6/IL-10 ratio (positively) and with IL-10 (negatively). Conversely, we found a higher percentage of CD14+ TREM-2+ monocytes in better surviving patients; these cells could downregulate the exaggerated inflammation and potentiate the phagocytosis in the tumor. The serum levels of HMGB1 negatively correlated with the percentage of CD14+ TREM-1+ cells and with the TREM-1/TREM-2 ratio. The positive correlation between the serum levels of a late proinflammatory cytokine HMGB1 with the percentage of TREM2+ CD14+ monocytes can be explained as an effort for suppression of systemic inflammation by anti-inflammatory acting CD14+ TREM-2+ cells. CONCLUSION: We showed that the TREM-1/TREM-2 ratio (expression on the surface of blood monocytes) could help predict prognosis in patients with gliomas, especially in high-grade gliomas, and that systemic inflammation has an impact on the patient's overall survival. This is the first study that showed that TREM expression on monocytes in peripheral blood could help predict prognosis in patients with gliomas.
Alpha Medical Ltd Bratislava Slovakia
Cytopathos Ltd Bratislava Slovakia
Institute of Immunology Faculty of Medicine Comenius University Bratislava Slovakia
Zobrazit více v PubMed
Koshy M., Villano J. L., Dolecek T. A., et al. Improved survival time trends for glioblastoma using the SEER 17 population-based registries. Journal of Neuro-Oncology. 2012;107(1):207–212. doi: 10.1007/s11060-011-0738-7. PubMed DOI PMC
Cantrell J. N., Waddle M. R., Rotman M., et al. Progress toward long-term survivors of glioblastoma. Mayo Clinic Proceedings. 2019;94(7):1278–1286. doi: 10.1016/j.mayocp.2018.11.031. PubMed DOI
Tykocki T., Eltayeb M. Ten-year survival in glioblastoma. A systematic review. Journal of Clinical Neuroscience. 2018;54:7–13. doi: 10.1016/j.jocn.2018.05.002. PubMed DOI
Schreiber R. D., Old L. J., Smyth M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331(6024):1565–1570. doi: 10.1126/science.1203486. PubMed DOI
Hanahan D., Weinberg R. A. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI
Galvão R. P., Zong H. Inflammation and gliomagenesis: bi-directional communication at early and late stages of tumor progression. Current Pathobiology Reports. 2013;1(1):19–28. doi: 10.1007/s40139-012-0006-3. PubMed DOI PMC
Balkwill F. R., Mantovani A. Cancer-related inflammation: common themes and therapeutic opportunities. Seminars in Cancer Biology. 2012;22(1):33–40. doi: 10.1016/j.semcancer.2011.12.005. PubMed DOI
Grivennikov S. I., Greten F. R., Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–899. doi: 10.1016/j.cell.2010.01.025. PubMed DOI PMC
Grivennikov S. I., Karin M. Inflammation and oncogenesis: a vicious connection. Current Opinion in Genetics and Development. 2010;20(1):65–71. doi: 10.1016/j.gde.2009.11.004. PubMed DOI PMC
Mantovani A., Allavena P., Sica A., Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–444. doi: 10.1038/nature07205. PubMed DOI
Wilson E. H., Weninger W., Hunter C. A. Trafficking of immune cells in the central nervous system. Journal of Clinical Investigation. 2010;120(5):1368–1379. doi: 10.1172/JCI41911. PubMed DOI PMC
Chen P., Hsu W. H., Chang A., et al. Circadian regulator CLOCK recruits immune suppressive microglia into the GBM tumor microenvironment. Cancer Discovery. 2020;10(3):371–381. doi: 10.1158/2159-8290.CD-19-0400. PubMed DOI PMC
Gieryng A., Pszczolkowska D., Walentynowicz K. A., Rajan W. D., Kaminska B. Immune microenvironment of gliomas. Laboratory Investigation. 2017;97(5):498–518. doi: 10.1038/labinvest.2017.19. PubMed DOI
Giometto B., Bozza F., Faresin F., Alessio L., Mingrino S., Tavolato B. Immune infiltrates and cytokines in gliomas. Acta Neurochirurgica. 1996;138(1):50–56. doi: 10.1007/BF01411724. PubMed DOI
Scheurer M. E., Amirian E. S., Davlin S. L., Rice T., Wrensch M., Bondy M. L. Effects of antihistamine and anti‐inflammatory medication use on risk of specific glioma histologies. International Journal of Cancer. 2011;129(9):2290–2296. doi: 10.1002/ijc.25883. PubMed DOI PMC
Badie B., Schartner J., Klaver J., Vorpahl J. In vitro modulation of microglia motility by glioma cells is mediated by hepatocyte growth factor/scatter factor. Neurosurgery. 1999;44(5):1077–1082. doi: 10.1097/00006123-199905000-00075. PubMed DOI
Pelham C. J., Agrawal D. K. Emerging roles for triggering receptor expressed on myeloid cells receptor family signaling in inflammatory diseases. Expert Review of Clinical Immunology. 2014;10(2):243–256. doi: 10.1586/1744666X.2014.866519. PubMed DOI
Bouchon A., Dietrich J., Colonna M. Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. Journal of Immunology. 2000;164(10):4991–4995. doi: 10.4049/jimmunol.164.10.4991. PubMed DOI
Determann R. M., Weisfelt M., de Gans J., van der Ende A., Schultz M. J., van de Beek D. Soluble triggering receptor expressed on myeloid cells 1: a biomarker for bacterial meningitis. Intensive Care Medicine. 2006;32(8):1243–1247. doi: 10.1007/s00134-006-0240-4. PubMed DOI
Ho C. C., Liao W. Y., Wang C. Y., et al. TREM-1 expression in tumor-associated macrophages and clinical outcome in lung cancer. American Journal of Respiratory and Critical Care Medicine. 2008;177(7):763–770. doi: 10.1164/rccm.200704-641OC. PubMed DOI
Naglova H., Bucova M. HMGB1 and its physiological and pathological roles. Bratislava Medical Journal. 2012;113(3):163–171. doi: 10.4149/BLL_2012_039. PubMed DOI
Kang R., Zhang Q., Zeh H. J., Lotze M. T., Tang D. HMGB1 in cancer: good, bad, or both? Clinical Cancer Research. 2013;19(15):4046–4057. doi: 10.1158/1078-0432.CCR-13-0495. PubMed DOI PMC
Jiao Y., Wang H. C., Fan S. J. Growth suppression and radiosensitivity increase by HMGB1 in breast cancer. Acta Pharmacologica Sinica. 2007;28(12):1957–1967. doi: 10.1111/j.1745-7254.2007.00669.x. PubMed DOI
Subramanian S., Pallati P. K., Sharma P., Agrawal D. K., Nandipati K. C. Significant association of TREM-1 with HMGB1, TLRs and RAGE in the pathogenesis of insulin resistance in obese diabetic populations. American Journal of Translational Research. 2017;9(7):3224–3244. PubMed PMC
Tammaro A., Derive M., Gibot S., Leemans J. C., Florquin S., Dessing M. C. TREM-1 and its potential ligands in non-infectious diseases: from biology to clinical perspectives. Pharmacology and Therapeutics. 2017;177:81–95. doi: 10.1016/j.pharmthera.2017.02.043. PubMed DOI
Lo T. H., Tseng K. Y., Tsao W. S., et al. TREM-1 regulates macrophage polarization in ureteral obstruction. Kidney International. 2014;86(6):1174–1186. doi: 10.1038/ki.2014.205. PubMed DOI
Sharif O., Knapp S. From expression to signaling: roles of TREM-1 and TREM-2 in innate immunity and bacterial infection. Immunobiology. 2008;213(9-10):701–713. doi: 10.1016/j.imbio.2008.07.008. PubMed DOI
Takahashi K., Rochford C. D. P., Neumann H. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. Journal of Experimental Medicine. 2005;201(4):647–657. doi: 10.1084/jem.20041611. PubMed DOI PMC
Turnbull I. R., Gilfillan S., Cella M., et al. Cutting edge: TREM-2 attenuates macrophage activation. Journal of Immunology. 2006;177(6):3520–3524. doi: 10.4049/jimmunol.177.6.3520. PubMed DOI
Suchankova M., Bucova M., Tibenska E., et al. Triggering receptor expressed on myeloid cells‐1 and 2 in bronchoalveolar lavage fluid in pulmonary sarcoidosis. Respirology. 2013;18(3):455–462. doi: 10.1111/resp.12028. PubMed DOI
Bucova M., Suchankova M., Tibenska E., et al. TREM-2 receptor expression increases with 25(OH)D vitamin serum levels in patients with pulmonary sarcoidosis. Mediators of Inflammation. 2015;2015:7. doi: 10.1155/2015/181986.181986 PubMed DOI PMC
Balkwill F., Mantovani A. Inflammation and cancer: back to Virchow? The Lancet. 2001;357(9255):539–545. doi: 10.1016/S0140-6736(00)04046-0. PubMed DOI
Yao D., Dong M., Dai C., Wu S. Inflammation and inflammatory cytokine contribute to the initiation and development of ulcerative colitis and its associated cancer. Inflammatory Bowel Diseases. 2019;25(10):1595–1602. doi: 10.1093/ibd/izz149. PubMed DOI
Coussens L. M., Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–867. doi: 10.1038/nature01322. PubMed DOI PMC
Zhou W., Bao S. Reciprocal supportive interplay between glioblastoma and tumor-associated macrophages. Cancers. 2014;6(2):723–740. doi: 10.3390/cancers6020723. PubMed DOI PMC
Hitchcock E. R., Morris C. S. Mononuclear cell infiltration in central portions of human astrocytomas. Journal of Neurosurgery. 1988;68(3):432–437. doi: 10.3171/jns.1988.68.3.0432. PubMed DOI
Roggendorf W., Strupp S., Paulus W. Distribution and characterization of microglia/macrophages in human brain tumors. Acta Neuropathologica. 1996;92(3):288–293. doi: 10.1007/s004010050520. PubMed DOI
Mitchem J. B., Brennan D. J., Knolhoff B. L., et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Research. 2013;73(3):1128–1141. doi: 10.1158/0008-5472.CAN-12-2731. PubMed DOI PMC
Wu J., Li J., Salcedo R., Mivechi N. F., Trinchieri G., Horuzsko A. The proinflammatory myeloid cell receptor TREM-1 controls Kupffer cell activation and development of hepatocellular carcinoma. Cancer Research. 2012;72(16):3977–3986. doi: 10.1158/0008-5472.CAN-12-0938. PubMed DOI PMC
Duan M., Wang Z. C., Wang X. Y., et al. TREM-1, an inflammatory modulator, is expressed in hepatocellular carcinoma cells and significantly promotes tumor progression. Annals of Surgical Oncology. 2015;22(9):3121–3129. doi: 10.1245/s10434-014-4191-7. PubMed DOI
Anaya-Prado R., Norzgaray-Ibarra F. G., Bravo-Cuéllar A., Pérez-Avila C. E., Schadegg-Peña D., Anaya-Fernández M. M. Expression of TREM-1 in patients with invasive cervical cancer and precursor lesions. Revista Médica del Instituto Mexicano del Seguro Social. 2015;53(6):722–727. PubMed
Saurer L., Zysset D., Rihs S., et al. TREM-1 promotes intestinal tumorigenesis. Scientific Reports. 2017;7(1, article 14870) doi: 10.1038/s41598-017-14516-4. PubMed DOI PMC
Nguyen A. H., Koenck C., Quirk S. K., et al. Triggering receptor expressed on myeloid cells in cutaneous melanoma. Clinical and Translational Science. 2015;8(5):441–444. doi: 10.1111/cts.12308. PubMed DOI PMC
Yuan Z., Mehta H. J., Mohammed K., et al. TREM-1 is induced in tumor associated macrophages by cyclo-oxygenase pathway in human non-small cell lung cancer. Public Library of Science One. 2014;9(5, article e94241) doi: 10.1371/journal.pone.0094241. PubMed DOI PMC
Wang X. Q., Tao B. B., Li B., et al. Overexpression of TREM2 enhances glioma cell proliferation and invasion: a therapeutic target in human glioma. Oncotarget. 2016;7(3):2354–2366. doi: 10.18632/oncotarget.6221. PubMed DOI PMC
Yao Y., Li H., Chen J., et al. TREM-2 serves as a negative immune regulator through Syk pathway in an IL-10 dependent manner in lung cancer. Oncotarget. 2016;7(20):29620–29634. doi: 10.18632/oncotarget.8813. PubMed DOI PMC
Zhang X., Wang W., Li P., Wang X., Ni K. High TREM2 expression correlates with poor prognosis in gastric cancer. Human Pathology. 2018;72:91–99. doi: 10.1016/j.humpath.2017.10.026. PubMed DOI
Zhang H., Sheng L., Tao J., et al. Depletion of the triggering receptor expressed on myeloid cells 2 inhibits progression of renal cell carcinoma via regulating related protein expression and PTEN-PI3K/Akt pathway. International Journal of Oncology. 2016;49(6):2498–2506. doi: 10.3892/ijo.2016.3740. PubMed DOI
Tang W., Lv B., Yang B., et al. TREM2 acts as a tumor suppressor in hepatocellular carcinoma by targeting the PI3K/Akt/β-catenin pathway. Oncogene. 2019;8(2):p. 9. doi: 10.1038/s41389-018-0115-x. PubMed DOI PMC
Gu J., Xu R., Li Y., Zhang J., Wang S. MicroRNA-218 modulates activities of glioma cells by targeting HMGB1. American Journal of Translational Research. 2016;8(9):3780–3790. PubMed PMC
Cheng P., Ma Y., Gao Z., Duan L. High mobility group box 1 (HMGB1) predicts invasion and poor prognosis of glioblastoma multiforme via activating AKT signaling in an autocrine pathway. Medical Science Monitor. 2018;24:8916–8924. doi: 10.12659/MSM.912104. PubMed DOI PMC
Jia L., Song Y., Song H., et al. Overexpression of high mobility group box 1 (HMGB1) has no correlation with the prognosis in glioma. Biomarkers in Medicine. 2019;13(10):851–863. doi: 10.2217/bmm-2019-0031. PubMed DOI
Karapanagiotou E. M., Pelekanou E., Charpidou A., et al. Soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) detection in cancer patients: a prognostic marker for lung metastases from solid malignancies. Anticancer Research. 2008;28(2B):1411–1415. PubMed
Kuemmel A., Alflen A., Schmidt L. H., et al. Soluble triggering receptor expressed on myeloid cells 1 in lung cancer. Scientific Reports. 2018;8(1, article 10766) doi: 10.1038/s41598-018-28971-0. PubMed DOI PMC
Huang L. Y., Shi H. Z., Liang Q. L., Wu Y. B., Qin X. J., Chen Y. Q. Expression of soluble triggering receptor expression on myeloid cells-1 in pleural effusion. Chinese Medical Journal. 2008;121(17):1656–1661. doi: 10.1097/00029330-200809010-00012. PubMed DOI
Ornatowska M., Azim A. C., Wang X., et al. Functional genomics of silencing TREM-1 on TLR4 signaling in macrophages. American Journal of Physiology Lung Cellular and Molecular Physiology. 2007;293(6):L1377–L1384. doi: 10.1152/ajplung.00140.2007. PubMed DOI PMC
Dower K., Ellis D. K., Saraf K., Jelinsky S. A., Lin L. L. Innate immune responses to TREM-1 activation: overlap, divergence, and positive and negative cross-talk with bacterial lipopolysaccharide. Journal of Immunology. 2008;180(5):3520–3534. doi: 10.4049/jimmunol.180.5.3520. PubMed DOI