Ring Formation and Hydration Effects in Electron Attachment to Misonidazole
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
P 30332
Austrian Science Fund FWF - Austria
CZ.02.2.69/0.0/16_027/0008355
Ministerstvo Školství, Mládeže a Tělovýchovy
P30332
Austrian Science Fund
19-01159S
Grantová Agentura České Republiky
PubMed
31489947
PubMed Central
PMC6770096
DOI
10.3390/ijms20184383
PII: ijms20184383
Knihovny.cz E-zdroje
- Klíčová slova
- bond formation, clusters, electron attachment, low-energy electron, misonidazole,
- MeSH
- elektrony * MeSH
- misonidazol chemie MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- rozpouštědla MeSH
- spektrální analýza MeSH
- teoretické modely MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- misonidazol MeSH
- rozpouštědla MeSH
- voda MeSH
We study the reactivity of misonidazole with low-energy electrons in a water environment combining experiment and theoretical modelling. The environment is modelled by sequential hydration of misonidazole clusters in vacuum. The well-defined experimental conditions enable computational modeling of the observed reactions. While the NO 2 - dissociative electron attachment channel is suppressed, as also observed previously for other molecules, the OH - channel remains open. Such behavior is enabled by the high hydration energy of OH - and ring formation in the neutral radical co-fragment. These observations help to understand the mechanism of bio-reductive drug action. Electron-induced formation of covalent bonds is then important not only for biological processes but may find applications also in technology.
Zobrazit více v PubMed
Alizadeh E., Orlando T.M., Sanche L. Biomolecular Damage Induced by Ionizing Radiation: The Direct and Indirect Effects of Low-Energy Electrons on DNA. Annu. Rev. Phys. Chem. 2015;66:379–398. doi: 10.1146/annurev-physchem-040513-103605. PubMed DOI
Gomez-Tejedor G.G., Fuss M.C. Radiation Damage in Biomolecular Systems. Springer; Dordrecht, The Netherlands: 2012.
Alizadeh E., Sanche L. Precursors of Solvated Electrons in Radiobiological Physics and Chemistry. Chem. Rev. 2012;112:5578–5602. doi: 10.1021/cr300063r. PubMed DOI
Mucke M., Braune M., Barth S., Förstel M., Lischke T., Ulrich V., Arion T., Becker U., Bradshaw A., Hergenhahn U. A hitherto unrecognized source of low-energy electrons in water. Nat. Phys. 2010;6:143. doi: 10.1038/nphys1500. DOI
Kumar A., Walker J.A., Bartels D.M., Sevilla M.D. A Simple ab Initio Model for the Hydrated Electron That Matches Experiment. J. Phys. Chem. 2015;119:9148–9159. doi: 10.1021/acs.jpca.5b04721. PubMed DOI PMC
Chomicz L., Zdrowowicz M., Kasprzykowski F., Rak J., Buonaugurio A., Wang Y., Bowen K.H. How to Find Out Whether a 5-Substituted Uracil Could Be a Potential DNA Radiosensitizer. J. Phys. Chem. Lett. 2013;4:2853–2857. doi: 10.1021/jz401358w. DOI
Meißner R., Kočišek J., Feketeová L., Fedor J., Fárník M., Limao-Vieira P., Illenberger E., Denifl S. Low-energy electrons transform the nimorazole molecule into a radiosensitiser. Nat. Commun. 2019;10:2388. doi: 10.1038/s41467-019-10340-8. PubMed DOI PMC
Poštulka J., Slavíček P., Fedor J., Fárník M., Kočišek J. Energy Transfer in Microhydrated Uracil, 5-Fluorouracil, and 5-Bromouracil. J. Phys. Chem. 2017;121:8965–8974. doi: 10.1021/acs.jpcb.7b07390. PubMed DOI
Workman P., Strafford I.J. The experimental development of bioreductive drugs and their role in cancer therapy. Cancer Metastasis Rev. 1993;12:73–82. doi: 10.1007/BF00689802. PubMed DOI
Liu J.n., Bu W., Shi J. Chemical Design and Synthesis of Functionalized Probes for Imaging and Treating Tumor Hypoxia. Chem. Rev. 2017;117:6160–6224. doi: 10.1021/acs.chemrev.6b00525. PubMed DOI
Lopci E., Grassi I., Chiti A., Nanni C., Cicoria G., Toschi L., Fonti C., Lodi F., Mattioli S., Fanti S. PET radiopharmaceuticals for imaging of tumor hypoxia: A review of the evidence. Am. J. Nucl. Med. Mol. Imaging. 2014;4:365–384. PubMed PMC
Paterson I., Dawes P., Henk J., Moore J. Pilot study of radiotherapy with misonidazole in head and neck cancer. Clin. Radiol. 1981;32:225–229. doi: 10.1016/S0009-9260(81)80166-3. PubMed DOI
Fu K.K., Cooper J.S., Marcial V.A., Laramore G.E., Pajak T.F., Jacobs J., Al-Sarraf M., Forastiere A.A., Cox J.D. Evolution of the radiation therapy oncology group clinical trials for head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 1996;35:425–438. doi: 10.1016/S0360-3016(96)80003-4. PubMed DOI
Mason R.P., Holtzman J.L. Mechanism of microsomal and mitochondrial nitroreductase. Electron spin resonance evidence for nitroaromatic free radical intermediates. Biochemistry. 1975;14:1626–1632. doi: 10.1021/bi00679a013. PubMed DOI
Knox R.J., Knight R.C., Edwards D.I. Studies on the action of nitroimidazole drugs: The products of nitroimidazole reduction. Biochem. Pharmacol. 1983;32:2149–2156. doi: 10.1016/0006-2952(83)90220-4. PubMed DOI
Wardman P. The mechanism of radiosensitization by electron-affinic compounds. Int. J. Radiat. Appl. Instrum. Part Radiat. Phys. Chem. 1987;30:423–432. doi: 10.1016/1359-0197(87)90111-1. DOI
Varghese A.J., Whitmore G.F. Modification of Guanine Derivatives by Reduced 2-Nitroimidazoles. Cancer Res. 1983;43:78–82. PubMed
Edwards D.I. Reduction of nitroimidazoles in vitro and DNA damage. In: Alexander P., Gielen J., Sartorelli A.C., editors. Bioreduction in the Activation of Drugs. Pergamon Press Ltd.; Oxford, UK: 1986. p. 53. PubMed
Tanzer K., Feketeová L., Puschnigg B., Scheier P., Illenberger E., Denifl S. Reactions in Nitroimidazole Triggered by Low-Energy (0–2 eV) Electrons: Methylation at N1-H Completely Blocks Reactivity. Angew. Chem. Int. Ed. 2014;53:12240–12243. doi: 10.1002/anie.201407452. PubMed DOI PMC
Ribar A., Fink K., Probst M., Huber S.E., Feketeová L., Denifl S. Isomer Selectivity in Low-Energy Electron Attachment to Nitroimidazoles. Chem. Eur. J. 2017;23:12892–12899. doi: 10.1002/chem.201702644. PubMed DOI
Meißner R., Feketeová L., Illenberger E., Denifl S. Reactions in the Radiosensitiser Misonidazole Induced by Low-Energy (0–10 eV) Electrons. Int. J. Mol. Sci. 2019;20:3496. doi: 10.3390/ijms20143496. PubMed DOI PMC
Böhler E., Warneke J., Swiderek P. Control of chemical reactions and synthesis by low-energy electrons. Chem. Soc. Rev. 2013;42:9219–9231. doi: 10.1039/c3cs60180c. PubMed DOI
Lafosse A., Bertin M., Azria R. Electron driven processes in ices: Surface functionalization and synthesis reactions. Prog. Surf. Sci. 2009;84:177–198. doi: 10.1016/j.progsurf.2009.03.001. DOI
Sajeev Y. Cycloaddition of molecular dinitrogens: formation of tetrazete anion (N4-; D2h) through associative electron attachment. Mol. Phys. 2019;117:2162–2166. doi: 10.1080/00268976.2019.1607599. DOI
Davis D., Sajeev Y. Low energy electron catalyst: the electronic origin of catalytic strategies. Phys. Chem. Chem. Phys. 2016;18:27715–27720. doi: 10.1039/C6CP05480C. PubMed DOI
Lee S.H., Kim N., Ha D.G., Kim S.K. “Associative” Electron Attachment to Azabenzene-(CO2)n van der Waals Complexes: Stepwise Formation of Covalent Bonds with Additive Electron Affinities. J. Am. Chem. Soc. 2008;130:16241–16244. doi: 10.1021/ja8039103. PubMed DOI
Kočišek J., Pysanenko A., Fárník M., Fedor J. Microhydration Prevents Fragmentation of Uracil and Thymine by Low-Energy Electrons. J. Phys. Chem. Lett. 2016;7:3401–3405. doi: 10.1021/acs.jpclett.6b01601. PubMed DOI
Kočišek J., Lengyel J., Fárník M. Ionization of large homogeneous and heterogeneous clusters generated in acetylene–Ar expansions: Cluster ion polymerization. J. Chem. Phys. 2013;138:124306. doi: 10.1063/1.4796262. PubMed DOI
Fárník M., Lengyel J. Mass spectrometry of aerosol particle analogues in molecular beam experiments. Mass Spectrom. Rev. 2018;37:630–651. doi: 10.1002/mas.21554. PubMed DOI
Grimme S. Semiempirical GGA-type Density Functional Constructed with a Long-Range Dispersion Correction. J. Comput. Chem. 2006;27:1787–1799. doi: 10.1002/jcc.20495. PubMed DOI
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., et al. Gaussian 16 Revision A.03, 2016. Gaussian Inc.; Wallingford, CT, USA: 2016.
Hollas D., Svoboda O., Ončák M., Slavíček P. ABIN, Source Code. [(accessed on 1 September 2019)]; Available online: https://github.com/PHOTOX/ABIN.
Kočišek J., Grygoryeva K., Lengyel J., Fárník M., Fedor J. Effect of Cluster Environment on the Electron Attachment to 2-Nitrophenol. Eur. Phys. J. 2016;70:98. doi: 10.1140/epjd/e2016-70074-0. DOI
Smiglak M., Hines C.C., Reichert W.M., Vincek A.S., Katritzky A.R., Thrasher J.S., Sun L., McCrary P.D., Beasley P.A., Kelley S.P., et al. Synthesis, limitations, and thermal properties of energetically-substituted, protonated imidazolium picrate and nitrate salts and further comparison with their methylated analogs. New J. Chem. 2012;36:702–722. doi: 10.1039/C1NJ20677J. DOI
Solov’yov A.V., Surdutovich E., Scifoni E., Mishustin I., Greiner W. Physics of ion beam cancer therapy: A multiscale approach. Phys. Rev. E. 2009;79:011909. doi: 10.1103/PhysRevE.79.011909. PubMed DOI
Zou L., Wang H., He B., Zeng L., Tan T., Cao H., He X., Zhang Z., Guo S., Li Y. Current Approaches of Photothermal Therapy in Treating Cancer Metastasis with Nanotherapeutics. Theranostics. 2016;6:762–772. doi: 10.7150/thno.14988. PubMed DOI PMC
Feketeová L., Albright A.L., Sørensen B.S., Horsman M.R., White J., O’Hair R.A., Bassler N. Formation of radical anions of radiosensitizers and related model compounds via electrospray ionization. Int. J. Mass Spectrom. 2014;365–366:56–63. doi: 10.1016/j.ijms.2013.12.014. DOI
Overgaard J., Overgaard M., Nielsen O.S., Pedersen A.K., Timothy A.R. A comparative investigation of nimorazole and misonidazole as hypoxic radiosensitizers in a C3H mammary carcinoma in vivo. Br. J. Cancer. 1982;46:904–911. doi: 10.1038/bjc.1982.300. PubMed DOI PMC
Pshenichnyuk S.A., Modelli A., Komolov A.S. Interconnections between dissociative electron attachment and electron-driven biological processes. Int. Rev. Phys. Chem. 2018;37:125–170. doi: 10.1080/0144235X.2018.1461347. DOI
Fedor J., Cicman P., Coupier B., Feil S., Winkler M., Głuch K., Husarik J., Jaksch D., Farizon B., Mason N.J., et al. Fragmentation of Transient Water Anions Following Low-Energy Electron Capture by H2O/D2O. J. Phys. At. Mol. Opt. Phys. 2006;39:3935. doi: 10.1088/0953-4075/39/18/022. DOI
Kočišek J., Sedmidubská B., Indrajith S., Fárník M., Fedor J. Electron Attachment to Microhydrated Deoxycytidine Monophosphate. J. Phys. Chem. 2018;122:5212–5217. doi: 10.1021/acs.jpcb.8b03033. PubMed DOI
Low-Energy Electron Induced Reactions in Metronidazole at Different Solvation Conditions