5-Nitro-2,4-Dichloropyrimidine as an Universal Model for Low-Energy Electron Processes Relevant for Radiosensitization

. 2020 Oct 31 ; 21 (21) : . [epub] 20201031

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33142925

Grantová podpora
19-10995Y, 17-08066Y, 19-09212S Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_026/0008382 European Regional Development Fund
18-03-00179 Russian Foundation for Basic Research

We report experimental results of low-energy electron interactions with.

Zobrazit více v PubMed

Seiwert T.Y., Salama J.K., Vokes E.E. The concurrent chemoradiation paradigm—General principles. Nat. Clin. Pract. Oncol. 2007;4:86. doi: 10.1038/ncponc0714. PubMed DOI

Longley D., Harkin P., Johnston P. 5-Fluorouracil: Mechanisms of Action and Clinical Strategies. Nat. Rev. Cancer. 2003;3:330–338. doi: 10.1038/nrc1074. PubMed DOI

Wen Z., Peng J., Tuttle P.R., Ren Y., Garcia C., Debnath D., Rishi S., Hanson C., Ward S., Kumar A., et al. Electron-Mediated Aminyl and Iminyl Radicals from C5 Azido-Modified Pyrimidine Nucleosides Augment Radiation Damage to Cancer Cells. Org. Lett. 2018;20:7400–7404. doi: 10.1021/acs.orglett.8b03035. PubMed DOI PMC

Makurat S., Chomicz-Mańka L., Rak J. Electrophilic 5-Substituted Uracils as Potential Radiosensitizers: A Density Functional Theory Study. ChemPhysChem. 2016;17:2572–2578. doi: 10.1002/cphc.201600240. PubMed DOI

Zdrowowicz M., Chomicz L., Žyndul M., Wityk P., Rak J., Wiegand T.J., Hanson C.G., Adhikary A., Sevilla M.D. 5-Thiocyanato-2’-deoxyuridine as a possible radiosensitizer: Electron-induced formation of uracil-C5-thiyl radical and its dimerization. Phys. Chem. Chem. Phys. 2015;17:16907–16916. doi: 10.1039/C5CP02081F. PubMed DOI PMC

Gong L., Wei Y., Yu X., Peng J., Leng X. 3-Bromopyruvic Acid, A Hexokinase II Inhibitor, is an Effective Antitumor Agent on the Hepatoma Cells; in vitro and in vivo Findings. Anti-Cancer Agents Med. Chem. 2014:771–776. doi: 10.2174/1871520614666140416105309. PubMed DOI

Adams G.E., Flockhart I.R., Smithen C.E., Stratford I.J., Wardman P., Watts M.E. Electron-Affinic Sensitization: VII. A Correlation between Structures, One-Electron Reduction Potentials, and Efficiencies of Nitroimidazoles as Hypoxic Cell Radiosensitizers. Radiat. Res. 1976;67:9–20. doi: 10.2307/3574491. PubMed DOI

Overgaard J., Hansen H.S., Overgaard M., Bastholt L., Berthelsen A., Specht L., Lindeløv B., Jørgensen K. A randomized double-blind phase III study of nimorazole as a hypoxic radiosensitizer of primary radiotherapy in supraglottic larynx and pharynx carcinoma. Results of the Danish Head and Neck Cancer Study (DAHANCA) Protocol 5-85. Radiother. Oncol. 1998:135–146. doi: 10.1016/S0167-8140(97)00220-X. PubMed DOI

Sugie C., Shibamoto Y., Ito M., Ogino H., Suzuki H., Uto Y., Nagasawa H., Hori H. Reevaluation of the Radiosensitizing Effects of Sanazole and Nimorazole In Vitro and In Vivo. J. Radiat. Res. 2005;46:453–459. doi: 10.1269/jrr.46.453. PubMed DOI

Epelbaum R., Rosenblatt E., Nasrallah S., Faraggi D., Gaitini D., Mizrahi S., Kuten A. Phase II study of gemcitabine combined with radiation therapy in patients with localized, unresectable pancreatic cancer. J. Surg. Oncol. 2002;81:138–143. doi: 10.1002/jso.10159. PubMed DOI

Cihoric N., Tsikkinis A., Vlaskou Badra E., Glatzer M., Novak U., Scherz A., Shelan M., Soldatovic I., Yojena C.K.K., Aebersold D.M., et al. Highly conformal combined radiotherapy with cisplatin and gemcitabine for treatment of loco-regionally advanced cervical cancer—A retrospective study. Radiat. Oncol. 2017:202. doi: 10.1186/s13014-017-0938-1. PubMed DOI PMC

Boudaiffa B., Cloutier P., Hunting D., Huels M.A., Sanche L. Resonant Formation of DNA Strand Breaks by Low-Energy (3 to 20 eV) Electrons. Science. 2000;287:1658–1660. PubMed

Nguyen J., Ma Y., Luo T., Bristow R.G., Jaffray D.A., Lu Q.B. Direct Observation of Ultrafast-Electron-Transfer Reactions Unravels High Effectiveness of Reductive DNA Damage. Proc. Natl. Acad. Sci. USA. 2011;108:11778–11783. doi: 10.1073/pnas.1104367108. PubMed DOI PMC

Ma J., Kumar A., Muroya Y., Yamashita S., Sakurai T., Denisov S.A., Sevilla M.D., Adhikary A., Seki S., Mostafavi M. Observation of dissociative quasi-free electron attachment to nucleoside via excited anion radical in solution. Nat. Commun. 2019;10:102. doi: 10.1038/s41467-018-08005-z. PubMed DOI PMC

Schürmann R., Vogel S., Ebel K., Bald I. The Physico-Chemical Basis of DNA Radiosensitization: Implications for Cancer Radiation Therapy. Chem. A Eur. J. 2018;24:10271–10279. doi: 10.1002/chem.201800804. PubMed DOI

Fabrikant I.I., Eden S., Mason N.J., Fedor J. Recent Progress in Dissociative Electron Attachment. Adv. At. Mol. Opt. Phys. 2017:545–657. doi: 10.1016/Bs.Aamop.2017.02.002. DOI

Bald I., Čurík R., Kopyra J., Tarana M. Dissociative Electron Attachment to Biomolecules. In: Solov’yov A.V., editor. Nanoscale Insights into Ion-Beam Cancer Therapy. Springer International Publishing; Cham, Switzerland: 2017. pp. 159–207. DOI

Gorfinkiel J.D., Ptasinska S. Electron Scattering from Molecules and Molecular Aggregates of Biological Relevance. J. Phys. B At. Mol. Opt. Phys. 2017;50:182001. doi: 10.1088/1361-6455/aa8572. DOI

Chomicz L., Zdrowowicz M., Kasprzykowski F., Rak J., Buonaugurio A., Wang Y., Bowen K.H. How to Find Out Whether a 5-Substituted Uracil Could Be a Potential DNA Radiosensitizer. J. Phys. Chem. Lett. 2013;4:2853–2857. doi: 10.1021/jz401358w. DOI

von Sonntag C. Free-Radical-Induced DNA Damage and Its Repair. Springer; Berlin/Heidelberg, Germany: 2006.

Alizadeh E., Orlando T.M., Sanche L. Biomolecular Damage Induced by Ionizing Radiation: The Direct and Indirect Effects of Low-Energy Electrons on DNA. Annu. Rev. Phys. Chem. 2015;66:379–398. doi: 10.1146/annurev-physchem-040513-103605. PubMed DOI

Choudhari S.K., Chaudhary M., Bagde S., Gadbail A.R., Joshi V. Nitric oxide and cancer: A review. World J. Surg. Oncol. 2013;11:118. doi: 10.1186/1477-7819-11-118. PubMed DOI PMC

Huerta S., Chilka S., Bonavida B. Nitric oxide donors: Novel cancer therapeutics (Review) Int. J. Oncol. 2008;33:909–927. doi: 10.3892/ijo_00000079. PubMed DOI

Huang Z., Fu J., Zhang Y. Nitric Oxide Donor-Based Cancer Therapy: Advances and Prospects. J. Med. Chem. 2017;60:7617–7635. doi: 10.1021/acs.jmedchem.6b01672. PubMed DOI

Kopyra J., Koenig-Lehmann C., Bald I., Illenberger E. A Single Slow Electron Triggers the Loss of Both Chlorine Atoms from the Anticancer Drug Cisplatin: Implications for Chemoradiation Therapy. Angew. Chem. Int. Ed. 2009;48:7904–7907. doi: 10.1002/anie.200903874. PubMed DOI

Rak J., Chomicz L., Wiczk J., Westphal K., Zdrowowicz M., Wityk P., Żyndul M., Makurat S., Golon L. Mechanisms of Damage to DNA Labeled with Electrophilic Nucleobases Induced by Ionizing or UV Radiation. J. Phys. Chem. B. 2015;119:8227–8238. doi: 10.1021/acs.jpcb.5b03948. PubMed DOI

Wang C.R., Lu Q.B. Real-Time Observation of a Molecular Reaction Mechanism of Aqueous 5-Halo-2’-deoxyuridines under UV/Ionizing Radiation. Angew. Chem. Int. Ed. 2007;46:6316–6320. doi: 10.1002/anie.200701559. PubMed DOI

Lu Q.B., Kalantari S., Wang C.R. Electron Transfer Reaction Mechanism of Cisplatin with DNA at the Molecular Level. Mol. Pharm. 2007;4:624–628. doi: 10.1021/mp070040a. PubMed DOI

Kaplan H.S., Smith K.C., Tomlin P.A. Effect of Halogenated Pyrimidines on Radiosensitivity of E. coli. Radiat. Res. 1962;16:98–113. doi: 10.2307/3571134. PubMed DOI

Meißner R., Kočišek J., Feketeová L., Fedor J., Fárník M., Limão-Vieira P., Illenberger E., Denifl S. Low-energy electrons transform the nimorazole molecule into a radiosensitiser. Nat. Commun. 2019;10:2388. doi: 10.1038/s41467-019-10340-8. PubMed DOI PMC

Poštulka J., Slavíček P., Fedor J., Fárník M., Kočišek J. Energy Transfer in Microhydrated Uracil, 5-Fluorouracil, and 5-Bromouracil. J. Phys. Chem. B. 2017;121:8965–8974. doi: 10.1021/acs.jpcb.7b07390. PubMed DOI

Verkhovtsev A., Surdutovich E., Solov’yov A.V. Multiscale approach predictions for biological outcomes in ion-beam cancer therapy. Sci. Rep. 2016:27654. doi: 10.1038/srep27654. PubMed DOI PMC

Rezaee M., Hunting D.J., Sanche L. New Insights into the Mechanism Underlying the Synergistic Action of Ionizing Radiation With Platinum Chemotherapeutic Drugs: The Role of Low-Energy Electrons. Int. J. Radiat. Oncol. Biol. Phys. 2013:847–853. doi: 10.1016/j.ijrobp.2013.06.2037. PubMed DOI PMC

Reimitz D., Davídková M., Mestek O., Pinkas J., Kočišek J. Radiomodifying effects of RAPTA C and CDDP on DNA strand break induction. Radiat. Phys. Chem. 2017:229–234. doi: 10.1016/j.radphyschem.2017.07.015. DOI

Dong Y., Zhou L., Tian Q., Zheng Y., Sanche L. Chemoradiation Cancer Therapy: Molecular Mechanisms of Cisplatin Radiosensitization. J. Phys. Chem. C. 2017;121:17505–17513. doi: 10.1021/acs.jpcc.7b05271. DOI

Wagner C., Wagenknecht H.A. Reductive Electron Transfer in Phenothiazine-Modified DNA Is Dependent on the Base Sequence. Chem. A Eur. J. 2005;11:1871–1876. doi: 10.1002/chem.200401013. PubMed DOI

Xiao F., Luo X., Fu X., Zheng Y. Cleavage Enhancement of Specific Chemical Bonds in DNA by Cisplatin Radiosensitization. J. Phys. Chem. B. 2013;117:4893–4900. doi: 10.1021/jp400852p. PubMed DOI

Park Y., Polska K., Rak J., Wagner J.R., Sanche L. Fundamental Mechanisms of DNA Radiosensitization: Damage Induced by Low-Energy Electrons in Brominated Oligonucleotide Trimers. J. Phys. Chem. B. 2012;116:9676–9682. doi: 10.1021/jp304964r. PubMed DOI

Rezaee M., Sanche L., Hunting D.J. Cisplatin Enhances the Formation of DNA Single- and Double-Strand Breaks by Hydrated Electrons and Hydroxyl Radicals. Radiat. Res. 2013;179:323–331. doi: 10.1667/RR3185.1. PubMed DOI

Rackwitz J., Ranković M.L., Milosavljević A.R., Bald I. A novel setup for the determination of absolute cross sections for low-energy electron induced strand breaks in oligonucleotides—The effect of the radiosensitizer 5-fluorouracil*. Eur. Phys. J. D. 2017;32 doi: 10.1140/epjd/e2016-70608-4. DOI

Rackwitz J., Kopyra J., Dąbkowska I., Ebel K., Ranković M.L., Milosavljević A.R., Bald I. Sensitizing DNA Towards Low-Energy Electrons with 2-Fluoroadenine. Angew. Chem. Int. Ed. 2016;55:10248–10252. doi: 10.1002/anie.201603464. PubMed DOI

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., et al. Gaussian 09 Revision E.01. Gaussian Inc.; Wallingford, CT, USA: 2009.

Pshenichnyuk S.A., Vorob’ev A.S., Modelli A. Resonance electron attachment and long-lived negative ions of phthalimide and pyromellitic diimide. J. Chem. Phys. 2011;135:184301. doi: 10.1063/1.3658372. PubMed DOI

Asfandiarov N.L., Pshenichnyuk S.A., Rakhmeyev R.G., Tuktarov R.F., Zaitsev N.L., Vorob’ev A.S., Kočišek J., Fedor J., Modelli A. 4-Bromobiphenyl: Long-lived molecular anion formation and competition between electron detachment and dissociation. J. Chem. Phys. 2019;150:114304. doi: 10.1063/1.5082611. PubMed DOI

Kočišek J., Pysanenko A., Fárník M., Fedor J. Microhydration Prevents Fragmentation of Uracil and Thymine by Low-Energy Electrons. J. Phys. Chem. Lett. 2016;7:3401–3405. doi: 10.1021/acs.jpclett.6b01601. PubMed DOI

Asfandiarov N.L., Pshenichnyuk S.A., Vorob’ev A.S., Nafikova E.P., Elkin Y.N., Pelageev D.N., Koltsova E.A., Modelli A. Electron attachment to some naphthoquinone derivatives: Long-lived molecular anion formation. Rapid Commun. Mass Spectrom. 2014;28:1580–1590. doi: 10.1002/rcm.6934. PubMed DOI

Asfandiarov N.L., Pshenichnyuk S.A., Vorob’ev A.S., Nafikova E.P., Modelli A. Electron affinity evaluation for nitrobenzene derivatives using negative ion lifetime data. Rapid Commun. Mass Spectrom. 2015;29:910–912. doi: 10.1002/rcm.7162. PubMed DOI

Schürmann R., Tsering T., Tanzer K., Denifl S., Kumar S.V.K., Bald I. Resonant Formation of Strand Breaks in Sensitized Oligonucleotides Induced by Low-Energy Electrons (0.5–9 eV) Angew. Chem. Int. Ed. 2017;56:10952–10955. doi: 10.1002/anie.201705504. PubMed DOI

Chen E.C., Chen E.S. Electron affinities from gas chromatography electron capture detector and negative ion mass spectrometry responses and complementary methods. J. Chromatogr. A. 2018:1–17. doi: 10.1016/j.chroma.2018.08.041. PubMed DOI

Kočišek J., Grygoryeva K., Lengyel J., Fárník M., Fedor J. Effect of Cluster Environment on the Electron Attachment to 2-Nitrophenol. Eur. Phys. J. D. 2016;70:98. doi: 10.1140/epjd/e2016-70074-0. DOI

Wang C.R., Nguyen J., Lu Q.B. Bond Breaks of Nucleotides by Dissociative Electron Transfer of Nonequilibrium Prehydrated Electrons: A New Molecular Mechansim for Reductive DNA Damage. J. Am. Chem. Soc. 2009;131:11320–11322. doi: 10.1021/ja902675g. PubMed DOI

Lu Q.B. Effects and applications of ultrashort-lived prehydrated electrons in radiation biology and radiotherapy of cancer. Mutat. Res. Rev. Mutat. Res. 2010:190–199. doi: 10.1016/j.mrrev.2010.01.012. PubMed DOI

Vrána O., Brabec V. The Effect of Combined Treatment with Platinum Complexes and Ionizing Radiation on DNA in Vitro. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1986;50:995–1007. doi: 10.1080/09553008614551411. PubMed DOI

Berzinsh U., Gustafsson M., Hanstorp D., Klinkmüller A., Ljungblad U., Mårtensson-Pendrill A.M. Isotope shift in the electron affinity of chlorine. Phys. Rev. A. 1995;51:231–238. doi: 10.1103/PhysRevA.51.231. PubMed DOI

Ervin K.M., Ho J., Lineberger W.C. Ultraviolet photoelectron spectrum of nitrite anion. J. Phys. Chem. 1988;92:5405–5412. doi: 10.1021/j100330a017. DOI

Ma J., Wang F., Denisov S.A., Adhikary A., Mostafavi M. Reactivity of Prehydrated Electrons Toward Nucleobases and Nucleotides in Aqueous Solution. Sci. Adv. 2017;3:e1701669. doi: 10.1126/sciadv.1701669. PubMed DOI PMC

Spisz P., Zdrowowicz M., Kozak W., Chomicz-Mańka L., Falkiewicz K., Makurat S., Sikorski A., Wyrzykowski D., Rak J., Arthur-Baidoo E., et al. Uracil-5-yl O-Sulfamate: An Illusive Radiosensitizer. Pitfalls in Modeling the Radiosensitizing Derivatives of Nucleobases. J. Phys. Chem. B. 2020;124:5600–5613. doi: 10.1021/acs.jpcb.0c03844. PubMed DOI PMC

Neustetter M., Aysina J., da Silva F.F., Denifl S. The Effect of Solvation on Electron Attachment to Pure and Hydrated Pyrimidine Clusters. Angew. Chem. Int. Ed. 2015;54:9124–9126. doi: 10.1002/anie.201503733. PubMed DOI PMC

Kočišek J., Sedmidubská B., Indrajith S., Fárník M., Fedor J. Electron Attachment to Microhydrated Deoxycytidine Monophosphate. J. Phys. Chem. B. 2018;122:5212–5217. doi: 10.1021/acs.jpcb.8b03033. PubMed DOI

Kumar A., Walker J.A., Bartels D.M., Sevilla M.D. A Simple ab Initio Model for the Hydrated Electron That Matches Experiment. J. Phys. Chem. A. 2015;119:9148–9159. doi: 10.1021/acs.jpca.5b04721. PubMed DOI PMC

Egger A.E., Hartinger C.G., Hamidane H.B., Tsybin Y.O., Keppler B.K., Dyson P.J. High Resolution Mass Spectrometry for Studying the Interactions of Cisplatin with Oligonucleotides. Inorg. Chem. 2008;47:10626–10633. doi: 10.1021/ic801371r. PubMed DOI

Sørensen B.S., Busk M., Olthof N., Speel E.J., Horsman M.R., Alsner J., Overgaard J. Radiosensitivity and effect of hypoxia in HPV positive head and neck cancer cells. Radiother. Oncol. 2013:500–505. doi: 10.1016/j.radonc.2013.06.011. PubMed DOI

Wen J., Tong Y., Zu Y. Low Concentration DMSO Stimulates Cell Growth and In vitro Transformation of Human Multiple Myeloma Cells. JAMMR. 2014;5:65–74. doi: 10.9734/BJMMR/2015/5276. DOI

Singh M., McKenzie K., Xiaoling M. Effect of dimethyl sulfoxide on in vitro proliferation of skin fibroblast cells. J. Biotech Res. 2017;8:78–82.

Galvao J., Davis B., Tilley M., Normando E., Duchen M.R., Cordeiro M.F. Unexpected low-dose toxicity of the universal solvent DMSO. Faseb J. 2014;28:1317–1330. doi: 10.1096/fj.13-235440. PubMed DOI

Vondráček J., Souček K., Sheard M.A., Chramostová K., Andrysík Z., Hofmanová J., Kozubík A. Dimethyl sulfoxide potentiates death receptor-mediated apoptosis in the human myeloid leukemia U937 cell line through enhancement of mitochondrial membrane depolarization. Leuk. Res. 2006:81–89. doi: 10.1016/j.leukres.2005.05.016. PubMed DOI

Verheijen M., Lienhard M., Schrooders Y., Clayton O., Nudischer R., Boerno S., Timmermann B., Selevsek N., Schlapbach R., Gmuender H., et al. DMSO induces drastic changes in human cellular processes and epigenetic landscape in vitro. Sci. Rep. 2019;9:4641. doi: 10.1038/s41598-019-40660-0. PubMed DOI PMC

Roots R., Okada S. Protection of DNA Molecules of Cultured Mammalian Cells from Radiation-induced Single-strand Scissions by Various Alcohols and SH Compounds. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1972 doi: 10.1080/09553007214550401. PubMed DOI

Kashino G., Liu Y., Suzuki M., Masunaga S.I., Kinashi Y., Ono K., Tano K., Watanabe M. An Alternative Mechanism for Radioprotection by Dimethyl Sulfoxide; Possible Facilitation of DNA Double-strand Break Repair. J. Radiat. Res. 2010;51:733–740. doi: 10.1269/jrr.09106. PubMed DOI

Peng R., Zhang W., Zuo Z., Shan Y., Liu X., Tang Y., Yu Z., Wang L., Cong Y. Dimethyl sulfoxide, a potent oral radioprotective agent, confers radioprotection of hematopoietic stem and progenitor cells independent of apoptosis. Free Radic. Biol. Med. 2020:1–11. doi: 10.1016/j.freeradbiomed.2020.03.021. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace