5-Nitro-2,4-Dichloropyrimidine as an Universal Model for Low-Energy Electron Processes Relevant for Radiosensitization
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-10995Y, 17-08066Y, 19-09212S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_026/0008382
European Regional Development Fund
18-03-00179
Russian Foundation for Basic Research
PubMed
33142925
PubMed Central
PMC7662275
DOI
10.3390/ijms21218173
PII: ijms21218173
Knihovny.cz E-zdroje
- Klíčová slova
- dissociative electron attachment, low-energy electrons, pyrimidine, radiosensitizer,
- MeSH
- chemické modely MeSH
- dlaždicobuněčné karcinomy hlavy a krku chemie farmakoterapie radioterapie MeSH
- dusíkaté sloučeniny chemie farmakologie MeSH
- elektrony * MeSH
- ionizující záření MeSH
- lidé MeSH
- molekulární modely MeSH
- nádorové buněčné linie MeSH
- nádory hypofaryngu chemie farmakoterapie radioterapie MeSH
- pyrimidiny chemie farmakologie MeSH
- radiosenzibilizující látky chemie farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 2,4-dichloropyrimidine MeSH Prohlížeč
- dusíkaté sloučeniny MeSH
- pyrimidiny MeSH
- radiosenzibilizující látky MeSH
We report experimental results of low-energy electron interactions with.
Zobrazit více v PubMed
Seiwert T.Y., Salama J.K., Vokes E.E. The concurrent chemoradiation paradigm—General principles. Nat. Clin. Pract. Oncol. 2007;4:86. doi: 10.1038/ncponc0714. PubMed DOI
Longley D., Harkin P., Johnston P. 5-Fluorouracil: Mechanisms of Action and Clinical Strategies. Nat. Rev. Cancer. 2003;3:330–338. doi: 10.1038/nrc1074. PubMed DOI
Wen Z., Peng J., Tuttle P.R., Ren Y., Garcia C., Debnath D., Rishi S., Hanson C., Ward S., Kumar A., et al. Electron-Mediated Aminyl and Iminyl Radicals from C5 Azido-Modified Pyrimidine Nucleosides Augment Radiation Damage to Cancer Cells. Org. Lett. 2018;20:7400–7404. doi: 10.1021/acs.orglett.8b03035. PubMed DOI PMC
Makurat S., Chomicz-Mańka L., Rak J. Electrophilic 5-Substituted Uracils as Potential Radiosensitizers: A Density Functional Theory Study. ChemPhysChem. 2016;17:2572–2578. doi: 10.1002/cphc.201600240. PubMed DOI
Zdrowowicz M., Chomicz L., Žyndul M., Wityk P., Rak J., Wiegand T.J., Hanson C.G., Adhikary A., Sevilla M.D. 5-Thiocyanato-2’-deoxyuridine as a possible radiosensitizer: Electron-induced formation of uracil-C5-thiyl radical and its dimerization. Phys. Chem. Chem. Phys. 2015;17:16907–16916. doi: 10.1039/C5CP02081F. PubMed DOI PMC
Gong L., Wei Y., Yu X., Peng J., Leng X. 3-Bromopyruvic Acid, A Hexokinase II Inhibitor, is an Effective Antitumor Agent on the Hepatoma Cells; in vitro and in vivo Findings. Anti-Cancer Agents Med. Chem. 2014:771–776. doi: 10.2174/1871520614666140416105309. PubMed DOI
Adams G.E., Flockhart I.R., Smithen C.E., Stratford I.J., Wardman P., Watts M.E. Electron-Affinic Sensitization: VII. A Correlation between Structures, One-Electron Reduction Potentials, and Efficiencies of Nitroimidazoles as Hypoxic Cell Radiosensitizers. Radiat. Res. 1976;67:9–20. doi: 10.2307/3574491. PubMed DOI
Overgaard J., Hansen H.S., Overgaard M., Bastholt L., Berthelsen A., Specht L., Lindeløv B., Jørgensen K. A randomized double-blind phase III study of nimorazole as a hypoxic radiosensitizer of primary radiotherapy in supraglottic larynx and pharynx carcinoma. Results of the Danish Head and Neck Cancer Study (DAHANCA) Protocol 5-85. Radiother. Oncol. 1998:135–146. doi: 10.1016/S0167-8140(97)00220-X. PubMed DOI
Sugie C., Shibamoto Y., Ito M., Ogino H., Suzuki H., Uto Y., Nagasawa H., Hori H. Reevaluation of the Radiosensitizing Effects of Sanazole and Nimorazole In Vitro and In Vivo. J. Radiat. Res. 2005;46:453–459. doi: 10.1269/jrr.46.453. PubMed DOI
Epelbaum R., Rosenblatt E., Nasrallah S., Faraggi D., Gaitini D., Mizrahi S., Kuten A. Phase II study of gemcitabine combined with radiation therapy in patients with localized, unresectable pancreatic cancer. J. Surg. Oncol. 2002;81:138–143. doi: 10.1002/jso.10159. PubMed DOI
Cihoric N., Tsikkinis A., Vlaskou Badra E., Glatzer M., Novak U., Scherz A., Shelan M., Soldatovic I., Yojena C.K.K., Aebersold D.M., et al. Highly conformal combined radiotherapy with cisplatin and gemcitabine for treatment of loco-regionally advanced cervical cancer—A retrospective study. Radiat. Oncol. 2017:202. doi: 10.1186/s13014-017-0938-1. PubMed DOI PMC
Boudaiffa B., Cloutier P., Hunting D., Huels M.A., Sanche L. Resonant Formation of DNA Strand Breaks by Low-Energy (3 to 20 eV) Electrons. Science. 2000;287:1658–1660. PubMed
Nguyen J., Ma Y., Luo T., Bristow R.G., Jaffray D.A., Lu Q.B. Direct Observation of Ultrafast-Electron-Transfer Reactions Unravels High Effectiveness of Reductive DNA Damage. Proc. Natl. Acad. Sci. USA. 2011;108:11778–11783. doi: 10.1073/pnas.1104367108. PubMed DOI PMC
Ma J., Kumar A., Muroya Y., Yamashita S., Sakurai T., Denisov S.A., Sevilla M.D., Adhikary A., Seki S., Mostafavi M. Observation of dissociative quasi-free electron attachment to nucleoside via excited anion radical in solution. Nat. Commun. 2019;10:102. doi: 10.1038/s41467-018-08005-z. PubMed DOI PMC
Schürmann R., Vogel S., Ebel K., Bald I. The Physico-Chemical Basis of DNA Radiosensitization: Implications for Cancer Radiation Therapy. Chem. A Eur. J. 2018;24:10271–10279. doi: 10.1002/chem.201800804. PubMed DOI
Fabrikant I.I., Eden S., Mason N.J., Fedor J. Recent Progress in Dissociative Electron Attachment. Adv. At. Mol. Opt. Phys. 2017:545–657. doi: 10.1016/Bs.Aamop.2017.02.002. DOI
Bald I., Čurík R., Kopyra J., Tarana M. Dissociative Electron Attachment to Biomolecules. In: Solov’yov A.V., editor. Nanoscale Insights into Ion-Beam Cancer Therapy. Springer International Publishing; Cham, Switzerland: 2017. pp. 159–207. DOI
Gorfinkiel J.D., Ptasinska S. Electron Scattering from Molecules and Molecular Aggregates of Biological Relevance. J. Phys. B At. Mol. Opt. Phys. 2017;50:182001. doi: 10.1088/1361-6455/aa8572. DOI
Chomicz L., Zdrowowicz M., Kasprzykowski F., Rak J., Buonaugurio A., Wang Y., Bowen K.H. How to Find Out Whether a 5-Substituted Uracil Could Be a Potential DNA Radiosensitizer. J. Phys. Chem. Lett. 2013;4:2853–2857. doi: 10.1021/jz401358w. DOI
von Sonntag C. Free-Radical-Induced DNA Damage and Its Repair. Springer; Berlin/Heidelberg, Germany: 2006.
Alizadeh E., Orlando T.M., Sanche L. Biomolecular Damage Induced by Ionizing Radiation: The Direct and Indirect Effects of Low-Energy Electrons on DNA. Annu. Rev. Phys. Chem. 2015;66:379–398. doi: 10.1146/annurev-physchem-040513-103605. PubMed DOI
Choudhari S.K., Chaudhary M., Bagde S., Gadbail A.R., Joshi V. Nitric oxide and cancer: A review. World J. Surg. Oncol. 2013;11:118. doi: 10.1186/1477-7819-11-118. PubMed DOI PMC
Huerta S., Chilka S., Bonavida B. Nitric oxide donors: Novel cancer therapeutics (Review) Int. J. Oncol. 2008;33:909–927. doi: 10.3892/ijo_00000079. PubMed DOI
Huang Z., Fu J., Zhang Y. Nitric Oxide Donor-Based Cancer Therapy: Advances and Prospects. J. Med. Chem. 2017;60:7617–7635. doi: 10.1021/acs.jmedchem.6b01672. PubMed DOI
Kopyra J., Koenig-Lehmann C., Bald I., Illenberger E. A Single Slow Electron Triggers the Loss of Both Chlorine Atoms from the Anticancer Drug Cisplatin: Implications for Chemoradiation Therapy. Angew. Chem. Int. Ed. 2009;48:7904–7907. doi: 10.1002/anie.200903874. PubMed DOI
Rak J., Chomicz L., Wiczk J., Westphal K., Zdrowowicz M., Wityk P., Żyndul M., Makurat S., Golon L. Mechanisms of Damage to DNA Labeled with Electrophilic Nucleobases Induced by Ionizing or UV Radiation. J. Phys. Chem. B. 2015;119:8227–8238. doi: 10.1021/acs.jpcb.5b03948. PubMed DOI
Wang C.R., Lu Q.B. Real-Time Observation of a Molecular Reaction Mechanism of Aqueous 5-Halo-2’-deoxyuridines under UV/Ionizing Radiation. Angew. Chem. Int. Ed. 2007;46:6316–6320. doi: 10.1002/anie.200701559. PubMed DOI
Lu Q.B., Kalantari S., Wang C.R. Electron Transfer Reaction Mechanism of Cisplatin with DNA at the Molecular Level. Mol. Pharm. 2007;4:624–628. doi: 10.1021/mp070040a. PubMed DOI
Kaplan H.S., Smith K.C., Tomlin P.A. Effect of Halogenated Pyrimidines on Radiosensitivity of E. coli. Radiat. Res. 1962;16:98–113. doi: 10.2307/3571134. PubMed DOI
Meißner R., Kočišek J., Feketeová L., Fedor J., Fárník M., Limão-Vieira P., Illenberger E., Denifl S. Low-energy electrons transform the nimorazole molecule into a radiosensitiser. Nat. Commun. 2019;10:2388. doi: 10.1038/s41467-019-10340-8. PubMed DOI PMC
Poštulka J., Slavíček P., Fedor J., Fárník M., Kočišek J. Energy Transfer in Microhydrated Uracil, 5-Fluorouracil, and 5-Bromouracil. J. Phys. Chem. B. 2017;121:8965–8974. doi: 10.1021/acs.jpcb.7b07390. PubMed DOI
Verkhovtsev A., Surdutovich E., Solov’yov A.V. Multiscale approach predictions for biological outcomes in ion-beam cancer therapy. Sci. Rep. 2016:27654. doi: 10.1038/srep27654. PubMed DOI PMC
Rezaee M., Hunting D.J., Sanche L. New Insights into the Mechanism Underlying the Synergistic Action of Ionizing Radiation With Platinum Chemotherapeutic Drugs: The Role of Low-Energy Electrons. Int. J. Radiat. Oncol. Biol. Phys. 2013:847–853. doi: 10.1016/j.ijrobp.2013.06.2037. PubMed DOI PMC
Reimitz D., Davídková M., Mestek O., Pinkas J., Kočišek J. Radiomodifying effects of RAPTA C and CDDP on DNA strand break induction. Radiat. Phys. Chem. 2017:229–234. doi: 10.1016/j.radphyschem.2017.07.015. DOI
Dong Y., Zhou L., Tian Q., Zheng Y., Sanche L. Chemoradiation Cancer Therapy: Molecular Mechanisms of Cisplatin Radiosensitization. J. Phys. Chem. C. 2017;121:17505–17513. doi: 10.1021/acs.jpcc.7b05271. DOI
Wagner C., Wagenknecht H.A. Reductive Electron Transfer in Phenothiazine-Modified DNA Is Dependent on the Base Sequence. Chem. A Eur. J. 2005;11:1871–1876. doi: 10.1002/chem.200401013. PubMed DOI
Xiao F., Luo X., Fu X., Zheng Y. Cleavage Enhancement of Specific Chemical Bonds in DNA by Cisplatin Radiosensitization. J. Phys. Chem. B. 2013;117:4893–4900. doi: 10.1021/jp400852p. PubMed DOI
Park Y., Polska K., Rak J., Wagner J.R., Sanche L. Fundamental Mechanisms of DNA Radiosensitization: Damage Induced by Low-Energy Electrons in Brominated Oligonucleotide Trimers. J. Phys. Chem. B. 2012;116:9676–9682. doi: 10.1021/jp304964r. PubMed DOI
Rezaee M., Sanche L., Hunting D.J. Cisplatin Enhances the Formation of DNA Single- and Double-Strand Breaks by Hydrated Electrons and Hydroxyl Radicals. Radiat. Res. 2013;179:323–331. doi: 10.1667/RR3185.1. PubMed DOI
Rackwitz J., Ranković M.L., Milosavljević A.R., Bald I. A novel setup for the determination of absolute cross sections for low-energy electron induced strand breaks in oligonucleotides—The effect of the radiosensitizer 5-fluorouracil*. Eur. Phys. J. D. 2017;32 doi: 10.1140/epjd/e2016-70608-4. DOI
Rackwitz J., Kopyra J., Dąbkowska I., Ebel K., Ranković M.L., Milosavljević A.R., Bald I. Sensitizing DNA Towards Low-Energy Electrons with 2-Fluoroadenine. Angew. Chem. Int. Ed. 2016;55:10248–10252. doi: 10.1002/anie.201603464. PubMed DOI
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., et al. Gaussian 09 Revision E.01. Gaussian Inc.; Wallingford, CT, USA: 2009.
Pshenichnyuk S.A., Vorob’ev A.S., Modelli A. Resonance electron attachment and long-lived negative ions of phthalimide and pyromellitic diimide. J. Chem. Phys. 2011;135:184301. doi: 10.1063/1.3658372. PubMed DOI
Asfandiarov N.L., Pshenichnyuk S.A., Rakhmeyev R.G., Tuktarov R.F., Zaitsev N.L., Vorob’ev A.S., Kočišek J., Fedor J., Modelli A. 4-Bromobiphenyl: Long-lived molecular anion formation and competition between electron detachment and dissociation. J. Chem. Phys. 2019;150:114304. doi: 10.1063/1.5082611. PubMed DOI
Kočišek J., Pysanenko A., Fárník M., Fedor J. Microhydration Prevents Fragmentation of Uracil and Thymine by Low-Energy Electrons. J. Phys. Chem. Lett. 2016;7:3401–3405. doi: 10.1021/acs.jpclett.6b01601. PubMed DOI
Asfandiarov N.L., Pshenichnyuk S.A., Vorob’ev A.S., Nafikova E.P., Elkin Y.N., Pelageev D.N., Koltsova E.A., Modelli A. Electron attachment to some naphthoquinone derivatives: Long-lived molecular anion formation. Rapid Commun. Mass Spectrom. 2014;28:1580–1590. doi: 10.1002/rcm.6934. PubMed DOI
Asfandiarov N.L., Pshenichnyuk S.A., Vorob’ev A.S., Nafikova E.P., Modelli A. Electron affinity evaluation for nitrobenzene derivatives using negative ion lifetime data. Rapid Commun. Mass Spectrom. 2015;29:910–912. doi: 10.1002/rcm.7162. PubMed DOI
Schürmann R., Tsering T., Tanzer K., Denifl S., Kumar S.V.K., Bald I. Resonant Formation of Strand Breaks in Sensitized Oligonucleotides Induced by Low-Energy Electrons (0.5–9 eV) Angew. Chem. Int. Ed. 2017;56:10952–10955. doi: 10.1002/anie.201705504. PubMed DOI
Chen E.C., Chen E.S. Electron affinities from gas chromatography electron capture detector and negative ion mass spectrometry responses and complementary methods. J. Chromatogr. A. 2018:1–17. doi: 10.1016/j.chroma.2018.08.041. PubMed DOI
Kočišek J., Grygoryeva K., Lengyel J., Fárník M., Fedor J. Effect of Cluster Environment on the Electron Attachment to 2-Nitrophenol. Eur. Phys. J. D. 2016;70:98. doi: 10.1140/epjd/e2016-70074-0. DOI
Wang C.R., Nguyen J., Lu Q.B. Bond Breaks of Nucleotides by Dissociative Electron Transfer of Nonequilibrium Prehydrated Electrons: A New Molecular Mechansim for Reductive DNA Damage. J. Am. Chem. Soc. 2009;131:11320–11322. doi: 10.1021/ja902675g. PubMed DOI
Lu Q.B. Effects and applications of ultrashort-lived prehydrated electrons in radiation biology and radiotherapy of cancer. Mutat. Res. Rev. Mutat. Res. 2010:190–199. doi: 10.1016/j.mrrev.2010.01.012. PubMed DOI
Vrána O., Brabec V. The Effect of Combined Treatment with Platinum Complexes and Ionizing Radiation on DNA in Vitro. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1986;50:995–1007. doi: 10.1080/09553008614551411. PubMed DOI
Berzinsh U., Gustafsson M., Hanstorp D., Klinkmüller A., Ljungblad U., Mårtensson-Pendrill A.M. Isotope shift in the electron affinity of chlorine. Phys. Rev. A. 1995;51:231–238. doi: 10.1103/PhysRevA.51.231. PubMed DOI
Ervin K.M., Ho J., Lineberger W.C. Ultraviolet photoelectron spectrum of nitrite anion. J. Phys. Chem. 1988;92:5405–5412. doi: 10.1021/j100330a017. DOI
Ma J., Wang F., Denisov S.A., Adhikary A., Mostafavi M. Reactivity of Prehydrated Electrons Toward Nucleobases and Nucleotides in Aqueous Solution. Sci. Adv. 2017;3:e1701669. doi: 10.1126/sciadv.1701669. PubMed DOI PMC
Spisz P., Zdrowowicz M., Kozak W., Chomicz-Mańka L., Falkiewicz K., Makurat S., Sikorski A., Wyrzykowski D., Rak J., Arthur-Baidoo E., et al. Uracil-5-yl O-Sulfamate: An Illusive Radiosensitizer. Pitfalls in Modeling the Radiosensitizing Derivatives of Nucleobases. J. Phys. Chem. B. 2020;124:5600–5613. doi: 10.1021/acs.jpcb.0c03844. PubMed DOI PMC
Neustetter M., Aysina J., da Silva F.F., Denifl S. The Effect of Solvation on Electron Attachment to Pure and Hydrated Pyrimidine Clusters. Angew. Chem. Int. Ed. 2015;54:9124–9126. doi: 10.1002/anie.201503733. PubMed DOI PMC
Kočišek J., Sedmidubská B., Indrajith S., Fárník M., Fedor J. Electron Attachment to Microhydrated Deoxycytidine Monophosphate. J. Phys. Chem. B. 2018;122:5212–5217. doi: 10.1021/acs.jpcb.8b03033. PubMed DOI
Kumar A., Walker J.A., Bartels D.M., Sevilla M.D. A Simple ab Initio Model for the Hydrated Electron That Matches Experiment. J. Phys. Chem. A. 2015;119:9148–9159. doi: 10.1021/acs.jpca.5b04721. PubMed DOI PMC
Egger A.E., Hartinger C.G., Hamidane H.B., Tsybin Y.O., Keppler B.K., Dyson P.J. High Resolution Mass Spectrometry for Studying the Interactions of Cisplatin with Oligonucleotides. Inorg. Chem. 2008;47:10626–10633. doi: 10.1021/ic801371r. PubMed DOI
Sørensen B.S., Busk M., Olthof N., Speel E.J., Horsman M.R., Alsner J., Overgaard J. Radiosensitivity and effect of hypoxia in HPV positive head and neck cancer cells. Radiother. Oncol. 2013:500–505. doi: 10.1016/j.radonc.2013.06.011. PubMed DOI
Wen J., Tong Y., Zu Y. Low Concentration DMSO Stimulates Cell Growth and In vitro Transformation of Human Multiple Myeloma Cells. JAMMR. 2014;5:65–74. doi: 10.9734/BJMMR/2015/5276. DOI
Singh M., McKenzie K., Xiaoling M. Effect of dimethyl sulfoxide on in vitro proliferation of skin fibroblast cells. J. Biotech Res. 2017;8:78–82.
Galvao J., Davis B., Tilley M., Normando E., Duchen M.R., Cordeiro M.F. Unexpected low-dose toxicity of the universal solvent DMSO. Faseb J. 2014;28:1317–1330. doi: 10.1096/fj.13-235440. PubMed DOI
Vondráček J., Souček K., Sheard M.A., Chramostová K., Andrysík Z., Hofmanová J., Kozubík A. Dimethyl sulfoxide potentiates death receptor-mediated apoptosis in the human myeloid leukemia U937 cell line through enhancement of mitochondrial membrane depolarization. Leuk. Res. 2006:81–89. doi: 10.1016/j.leukres.2005.05.016. PubMed DOI
Verheijen M., Lienhard M., Schrooders Y., Clayton O., Nudischer R., Boerno S., Timmermann B., Selevsek N., Schlapbach R., Gmuender H., et al. DMSO induces drastic changes in human cellular processes and epigenetic landscape in vitro. Sci. Rep. 2019;9:4641. doi: 10.1038/s41598-019-40660-0. PubMed DOI PMC
Roots R., Okada S. Protection of DNA Molecules of Cultured Mammalian Cells from Radiation-induced Single-strand Scissions by Various Alcohols and SH Compounds. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1972 doi: 10.1080/09553007214550401. PubMed DOI
Kashino G., Liu Y., Suzuki M., Masunaga S.I., Kinashi Y., Ono K., Tano K., Watanabe M. An Alternative Mechanism for Radioprotection by Dimethyl Sulfoxide; Possible Facilitation of DNA Double-strand Break Repair. J. Radiat. Res. 2010;51:733–740. doi: 10.1269/jrr.09106. PubMed DOI
Peng R., Zhang W., Zuo Z., Shan Y., Liu X., Tang Y., Yu Z., Wang L., Cong Y. Dimethyl sulfoxide, a potent oral radioprotective agent, confers radioprotection of hematopoietic stem and progenitor cells independent of apoptosis. Free Radic. Biol. Med. 2020:1–11. doi: 10.1016/j.freeradbiomed.2020.03.021. PubMed DOI