Selecting Initial Conditions for Trajectory-Based Nonadiabatic Simulations

. 2025 Jan 21 ; 58 (2) : 261-270. [epub] 20250109

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39787317

ConspectusPhotochemical reactions have always been the source of a great deal of mystery. While classified as a type of chemical reaction, no doubts are allowed that the general tenets of ground-state chemistry do not directly apply to photochemical reactions. For a typical chemical reaction, understanding the critical points of the ground-state potential (free) energy surface and embedding them in a thermodynamics framework is often enough to infer reaction yields or characteristic time scales. A general working principle is that the energy profile along the minimum energy paths provides the key information to characterize the reaction. These well-developed concepts, unfortunately, rarely stretch to processes involving the formation of a nonstationary state for a molecular system after light absorption.Upon photoexcitation, a molecule is likely to undergo internal conversion processes, that is, changes of electronic states mediated by couplings between nuclear and electronic motion, precisely what the celebrated Born-Oppenheimer approximation neglects. These coupled electron-nuclear processes, coined nonadiabatic processes, allow for the molecule to decay from one electronic state to the other nonradiatively. Understanding the intricate nonadiabatic dynamics is pivotal to rationalizing and predicting the outcome of a molecular photoexcitation and providing insights for experiments conducted, for example, in advanced light sources such as free-electron lasers.Nowadays, most simulations in nonadiabatic molecular dynamics are based on approximations that invoke a near-classical depiction of the nuclei. This reliance is due to practical constraints, and the classical equations of motion for the nuclei must be supplemented by techniques such as surface hopping to account for nonadiabatic transitions between electronic states. A critical but often overlooked aspect of these simulations is the selection of initial conditions, specifically the choice of initial nuclear positions and momenta for the nonadiabatic dynamics, which can significantly influence how well the simulations mimic real quantum systems across various experimental scenarios. The conventional approach for generating initial conditions for nonadiabatic dynamics typically maps the initial state onto a nuclear phase space using a Wigner quasiprobability function within a harmonic approximation, followed by a second approximation where the molecule undergoes a sudden excitation.In this Account, we aim to warn the experienced or potential user of nonadiabatic molecular dynamics about the possible limitations of this strategy for initial-condition generation and its inability to accurately describe the photoexcitation of a molecule. More specifically, we argue that the initial phase-space distribution can be more accurately represented through molecular dynamics simulations by using a quantum thermostat. This method offers a robust framework that can be applied to large, flexible, or even solvated molecular systems. Furthermore, the reliability of this strategy can be benchmarked against more rigorous approaches such as path integral molecular dynamics. Additionally, the commonly used sudden approximation, which assumes a vertical and sudden excitation of a molecule, rarely reflects the excitation triggered by laser pulses used in actual photochemical and spectroscopic experiments. We discuss here a more general approach that can generate initial conditions for any type of laser pulse. We also discuss strategies to tackle excitation triggered by a continuous-wave laser.

Zobrazit více v PubMed

Suchan J.; Hollas D.; Curchod B. F. E.; Slavíček P. On the Importance of Initial Conditions for Excited-State Dynamics. Faraday Discuss. 2018, 212, 307–330. 10.1039/C8FD00088C. PubMed DOI

Prlj A.; Marsili E.; Hutton L.; Hollas D.; Shchepanovska D.; Glowacki D. R.; Slavíček P.; Curchod B. F. E. Calculating Photoabsorption Cross-Sections for Atmospheric Volatile Organic Compounds. ACS Earth and Space Chemistry 2022, 6, 207–217. 10.1021/acsearthspacechem.1c00355. PubMed DOI PMC

Prlj A.; Hollas D.; Curchod B. F. E. Deciphering the Influence of Ground-State Distributions on the Calculation of Photolysis Observables. J. Phys. Chem. A 2023, 127, 7400–7409. 10.1021/acs.jpca.3c02333. PubMed DOI PMC

Janoš J.; Slavíček P.; Curchod B. F. E. Including photoexcitation explicitly in trajectory-based nonadiabatic dynamics at no cost. J. Phys. Chem. Lett. 2024, 15, 10614–10622. 10.1021/acs.jpclett.4c02549. PubMed DOI PMC

González L.; Lindh R.. Quantum chemistry and dynamics of excited states: methods and applications; Wiley, Hoboken, NJ, 2021.

Agostini F.; Curchod B. F. E. Different flavors of nonadiabatic molecular dynamics. WIREs Comput. Mol. Sci. 2019, 9, e141710.1002/wcms.1417. DOI

Meyer H.-D.; Gatti F.; Worth G. A.. Multidimensional quantum dynamics; John Wiley & Sons, 2009.

Richings G.; Polyak I.; Spinlove K.; Worth G.; Burghardt I.; Lasorne B. Quantum dynamics simulations using Gaussian wavepackets: the vMCG method. Int. Rev. Phys. Chem. 2015, 34, 269–308. 10.1080/0144235X.2015.1051354. DOI

Makhov D.; Symonds C.; Fernandez-Alberti S.; Shalashilin D. Ab initio quantum direct dynamics simulations of ultrafast photochemistry with Multiconfigurational Ehrenfest approach. Chem. Phys. 2017, 493, 200.10.1016/j.chemphys.2017.04.003. DOI

Curchod B. F. E.; Martínez T. J. Ab initio nonadiabatic quantum molecular dynamics. Chem. Rev. 2018, 118, 3305–3336. 10.1021/acs.chemrev.7b00423. PubMed DOI

Agostini F. An exact-factorization perspective on quantum-classical approaches to excited-state dynamics. Euro. Phys. J. B 2018, 91, 143.10.1140/epjb/e2018-90085-9. DOI

Crespo-Otero R.; Barbatti M. Recent Advances and Perspectives on Nonadiabatic Mixed Quantum–Classical Dynamics. Chem. Rev. 2018, 118, 7026–7068. 10.1021/acs.chemrev.7b00577. PubMed DOI

Tully J. C. Molecular dynamics with electronic transitions. J. Chem. Phys. 1990, 93, 1061–1071. 10.1063/1.459170. DOI

Mori T.; Glover W. J.; Schuurman M. S.; Martínez T. J. Role of Rydberg states in the photochemical dynamics of ethylene. J. Phys. Chem. A 2012, 116, 2808–2818. 10.1021/jp2097185. PubMed DOI

Glover W. J.; Mori T.; Schuurman M. S.; Boguslavskiy A. E.; Schalk O.; Stolow A.; Martínez T. J. Excited state non-adiabatic dynamics of the smallest polyene, trans 1, 3-butadiene. II. Ab initio multiple spawning simulations. J. Chem. Phys. 2018, 148, 164303.10.1063/1.5018130. PubMed DOI

List N. H.; Dempwolff A. L.; Dreuw A.; Norman P.; Martínez T. J. Probing competing relaxation pathways in malonaldehyde with transient X-ray absorption spectroscopy. Chemical science 2020, 11, 4180–4193. 10.1039/D0SC00840K. PubMed DOI PMC

Figueira Nunes J. P.; et al. Monitoring the Evolution of Relative Product Populations at Early Times during a Photochemical Reaction. J. Am. Chem. Soc. 2024, 146, 4134–4143. 10.1021/jacs.3c13046. PubMed DOI PMC

Chakraborty P.; Matsika S. Time-resolved photoelectron spectroscopy via trajectory surface hopping. Wiley Interdisciplinary Reviews: Computational Molecular Science 2024, 14, e171510.1002/wcms.1715. DOI

Rolles D. Time-resolved experiments on gas-phase atoms and molecules with XUV and X-ray free-electron lasers. Advances in Physics: X 2023, 8, 2132182.10.1080/23746149.2022.2132182. DOI

Prediction Challenge : Cyclobutanone Photochemistry. https://pubs.aip.org/collection/16531/Prediction-Challenge-Cyclobutanone-Photochemistry, Accessed: 2024-07-18.

Tannor D. J.Introduction to quantum mechanics, a time-dependent perspective; University Science Books: Sausalito, CA, 2007.

Ibele L. M.; Curchod B. F. E.; Agostini F. A photochemical reaction in different theoretical representations. J. Phys. Chem. A 2022, 126, 1263–1281. 10.1021/acs.jpca.1c09604. PubMed DOI PMC

Wigner E. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 1932, 40, 749.10.1103/PhysRev.40.749. DOI

Persico M.; Granucci G. An overview of nonadiabatic dynamics simulations methods, with focus on the direct approach versus the fitting of potential energy surfaces. Theor. Chem. Acc. 2014, 133, 1526.10.1007/s00214-014-1526-1. DOI

Schleich W. P.Quantum optics in phase space; John Wiley & Sons, 2015.

Schinke R.Photodissociation Dynamics: Spectroscopy and Fragmentation of Small Polyatomic Molecules; Cambridge University Press, Cambridge, 1995; p 436.

Crespo-Otero R.; Barbatti M. Spectrum simulation and decomposition with nuclear ensemble: formal derivation and application to benzene, furan and 2-phenylfuran. Theor. Chem. Acc. 2012, 131, 1237.10.1007/s00214-012-1237-4. DOI

Sršeň Š.; Sita J.; Slavíček P.; Ladányi V.; Heger D. Limits of the Nuclear Ensemble Method for Electronic Spectra Simulations: Temperature Dependence of the (E)-Azobenzene Spectrum. J. Chem. Theory Comput. 2020, 16, 6428–6438. 10.1021/acs.jctc.0c00579. PubMed DOI

McCoy A. B. The role of electrical anharmonicity in the association band in the water spectrum. J. Phys. Chem. B 2014, 118, 8286–8294. 10.1021/jp501647e. PubMed DOI

Ončák M.; Slavíček P.; Poterya V.; Fárník M.; Buck U. Emergence of Charge-Transfer-to-Solvent Band in the Absorption Spectra of Hydrogen Halides on Ice Nanoparticles: Spectroscopic Evidence for Acidic Dissociation. J. Phys. Chem. A 2008, 112, 5344–5353. 10.1021/jp8012305. PubMed DOI

Svoboda O.; Ončák M.; Slavíček P. Simulations of light induced processes in water based on ab initio path integrals molecular dynamics. I. Photoabsorption. J. Chem. Phys. 2011, 135, 154301.10.1063/1.3649942. PubMed DOI

Ončák M.; Lischka H.; Slavíček P. Photostability and solvation: photodynamics of microsolvated zwitterionic glycine. Phys. Chem. Chem. Phys. 2010, 12, 4906–4914. 10.1039/b925246k. PubMed DOI

Favero L.; Granucci G.; Persico M. Dynamics of acetone photodissociation: a surface hopping study. Phys. Chem. Chem. Phys. 2013, 15, 20651–20661. 10.1039/c3cp54016b. PubMed DOI

Send R.; Furche F. First-order nonadiabatic couplings from time-dependent hybrid density functional response theory: Consistent formalism, implementation, and performance. J. Chem. Phys. 2010, 132, 044107.10.1063/1.3292571. PubMed DOI

Ceriotti M.; Bussi G.; Parrinello M. Nuclear quantum effects in solids using a colored-noise thermostat. Phys. Rev. Lett. 2009, 103, 030603.10.1103/PhysRevLett.103.030603. PubMed DOI

Ceriotti M.; Bussi G.; Parrinello M. Colored-noise thermostats à la carte. J. Chem. Theory Comput. 2010, 6, 1170–1180. 10.1021/ct900563s. DOI

Huppert S.; Plé T.; Bonella S.; Depondt P.; Finocchi F. Simulation of Nuclear Quantum Effects in Condensed Matter Systems via Quantum Baths. Appl. Sci. 2022, 12, 4756.10.3390/app12094756. DOI

Hollas D.; Pohl M. N.; Seidel R.; Aziz E. F.; Slavíček P.; Winter B. Aqueous solution chemistry of ammonium cation in the auger time window. Sci. Rep. 2017, 7, 756.10.1038/s41598-017-00756-x. PubMed DOI PMC

Basire M.; Borgis D.; Vuilleumier R. Computing Wigner distributions and time correlation functions using the quantum thermal bath method: application to proton transfer spectroscopy. Phys. Chem. Chem. Phys. 2013, 15, 12591–12601. 10.1039/c3cp50493j. PubMed DOI

Svoboda O.; Hollas D.; Ončák M.; Slavíček P. Reaction selectivity in an ionized water dimer: nonadiabatic ab initio dynamics simulations. Phys. Chem. Chem. Phys. 2013, 15, 11531–11542. 10.1039/c3cp51440d. PubMed DOI

Hollas D.; Svoboda O.; Slavíček P. Fragmentation of HCl–water clusters upon ionization: Non-adiabatic ab initio dynamics study. Chem. Phys. Lett. 2015, 622, 80–85. 10.1016/j.cplett.2015.01.019. DOI

Pieroni C.; Becuzzi F.; Creatini L.; Granucci G.; Persico M. Effect of Initial Conditions Sampling on Surface Hopping Simulations in the Ultrashort and Picosecond Time Range. Azomethane Photodissociation as a Case Study. J. Chem. Theory Comput. 2023, 19, 2430–2445. 10.1021/acs.jctc.3c00024. PubMed DOI

Bonhommeau D.; Truhlar D. G. Mixed quantum/classical investigation of the photodissociation of NH3(Ã) and a practical method for maintaining zero-point energy in classical trajectories. J. Chem. Phys. 2008, 129, 014302.10.1063/1.2943213. PubMed DOI

Mukherjee S.; Barbatti M. A Hessian-Free Method to Prevent Zero-Point Energy Leakage in Classical Trajectories. J. Chem. Theory Comput. 2022, 18, 4109–4116. 10.1021/acs.jctc.2c00216. PubMed DOI

Wang S.; Zhao Y.; Chan A. W.; Yao M.; Chen Z.; Abbatt J. P. Organic Peroxides in Aerosol: Key Reactive Intermediates for Multiphase Processes in the Atmosphere. Chem. Rev. 2023, 123, 1635–1679. 10.1021/acs.chemrev.2c00430. PubMed DOI

Janoš J.; Madea D.; Mahvidi S.; Mujawar T.; Švenda J.; Suchan J.; Slavíček P.; Klán P. Conformational Control of the Photodynamics of a Bilirubin Dipyrrinone Subunit: Femtosecond Spectroscopy Combined with Nonadiabatic Simulations. J. Phys. Chem. A 2020, 124, 10457–10471. 10.1021/acs.jpca.0c08945. PubMed DOI

Sekhar A. R.; Chitose Y.; Janoš J.; Dangoor S. I.; Ramundo A.; Satchi-Fainaro R.; Slavíček P.; Klán P.; Weinstain R. Porphyrin as a versatile visible-light-activatable organic/metal hybrid photoremovable protecting group. Nat. Commun. 2022, 13, 3614.10.1038/s41467-022-31288-2. PubMed DOI PMC

Janoš J.; Figueira Nunes J. P.; Hollas D.; Slavíček P.; Curchod B. F. E. Predicting the photodynamics of cyclobutanone triggered by a laser pulse at 200 nm and its MeV-UED signals—A trajectory surface hopping and XMS-CASPT2 perspective. J. Chem. Phys. 2024, 160, 144305.10.1063/5.0203105. PubMed DOI

Vaghjiani G. L.; Ravishankara A. R. Photodissociation of H2O2 and CH3OOH at 248 nm and 298 K: Quantum yields for OH, O(3P) and H(2S). J. Chem. Phys. 1990, 92, 996–1003. 10.1063/1.458081. DOI

Blitz M. A.; Heard D. E.; Pilling M. J. Wavelength dependent photodissociation of CH3OOH: Quantum yields for CH3O and OH, and measurement of the OH+CH3OOH rate coefficient. J. Photochem. Photobiol. A: Chemistry 2005, 176, 107–113. 10.1016/j.jphotochem.2005.09.017. DOI

Bajo J. J.; Granucci G.; Persico M. Interplay of radiative and nonradiative transitions in surface hopping with radiation-molecule interactions. J. Chem. Phys. 2014, 140, 044113.10.1063/1.4862738. PubMed DOI

Mignolet B.; Curchod B. F. E. Excited-State Molecular Dynamics Triggered by Light Pulses–Ab Initio Multiple Spawning vs Trajectory Surface Hopping. J. Phys. Chem. A 2019, 123, 3582.10.1021/acs.jpca.9b00940. PubMed DOI

Mitrić R.; Petersen J.; Bonačić-Kouteckỳ V. Laser-field-induced surface-hopping method for the simulation and control of ultrafast photodynamics. Physical Review A 2009, 79, 053416.10.1103/PhysRevA.79.053416. DOI

Tavernelli I.; Curchod B. F. E.; Rothlisberger U. Mixed quantum-classical dynamics with time-dependent external fields: A time-dependent density-functional-theory approach. Physical Review A 2010, 81, 052508.10.1103/PhysRevA.81.052508. DOI

Richter M.; Marquetand P.; González-Vázquez J.; Sola I.; González L. SHARC: ab initio molecular dynamics with surface hopping in the adiabatic representation including arbitrary couplings. J. Chem. Theory Comput. 2011, 7, 1253–1258. 10.1021/ct1007394. PubMed DOI

Mignolet B.; Curchod B. F. E.; Martínez T. J. Communication: XFAIMS—eXternal Field Ab Initio Multiple Spawning for electron-nuclear dynamics triggered by short laser pulses. J. Chem. Phys. 2016, 145, 191104.10.1063/1.4967761. PubMed DOI

Makhov D. V.; Shalashilin D. V. Floquet Hamiltonian for incorporating electronic excitation by a laser pulse into simulations of non-adiabatic dynamics. Chem. Phys. 2018, 515, 46–51. 10.1016/j.chemphys.2018.07.048. DOI

Penfold T.; Pápai M.; Møller K.; Worth G. Excited state dynamics initiated by an electromagnetic field within the Variational Multi-Configurational Gaussian (vMCG) method. Computational and Theoretical Chemistry 2019, 1160, 24–30. 10.1016/j.comptc.2019.05.012. DOI

Barbatti M.; Pittner J.; Pederzoli M.; Werner U.; Mitrić R.; Bonačić-Kouteckỳ V.; Lischka H. Non-adiabatic dynamics of pyrrole: Dependence of deactivation mechanisms on the excitation energy. Chem. Phys. 2010, 375, 26–34. 10.1016/j.chemphys.2010.07.014. DOI

Prlj A.; Ibele L. M.; Marsili E.; Curchod B. F. E. On the Theoretical Determination of Photolysis Properties for Atmospheric Volatile Organic Compounds. J. Phys. Chem. Lett. 2020, 11, 5418–5425. 10.1021/acs.jpclett.0c01439. PubMed DOI PMC

Barbatti M. Simulation of excitation by sunlight in mixed quantum-classical dynamics. J. Chem. Theory Comput. 2020, 16, 4849–4856. 10.1021/acs.jctc.0c00501. PubMed DOI PMC

Mukherjee S.; Pinheiro M.; Demoulin B.; Barbatti M. Simulations of molecular photodynamics in long timescales. Philosophical Transactions of the Royal Society A 2022, 380, 20200382.10.1098/rsta.2020.0382. PubMed DOI PMC

Heller E. J.The semiclassical way to dynamics and spectroscopy; Princeton University Press, 2018.

Rubešová M.; Jurásková V.; Slavíček P. Efficient modeling of liquid phase photoemission spectra and reorganization energies: Difficult case of multiply charged anions. J. Comput. Chem. 2017, 38, 427–437. 10.1002/jcc.24696. PubMed DOI

Drużbicki K.; Krzystyniak M.; Hollas D.; Kapil V.; Slavíček P.; Romanelli G.; Fernandez-Alonso F. Hydrogen dynamics in solid formic acid: insights from simulations with quantum colored-noise thermostats. Journal of Physics: Conference Series 2018, 1055, 012003.10.1088/1742-6596/1055/1/012003. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace