Including Photoexcitation Explicitly in Trajectory-Based Nonadiabatic Dynamics at No Cost

. 2024 Oct 24 ; 15 (42) : 10614-10622. [epub] 20241015

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39405399

Over the last decades, theoretical photochemistry has produced multiple techniques to simulate the nonadiabatic dynamics of molecules. Surprisingly, much less effort has been devoted to adequately describing the first step of a photochemical or photophysical process: photoexcitation. Here, we propose a formalism to include the effect of a laser pulse in trajectory-based nonadiabatic dynamics at the level of the initial conditions, with no additional cost. The promoted density approach (PDA) decouples the excitation from the nonadiabatic dynamics by defining a new set of initial conditions, which include an excitation time. PDA with surface hopping leads to nonadiabatic dynamics simulations in excellent agreement with quantum dynamics using an explicit laser pulse and highlights the strong impact of a laser pulse on the resulting photodynamics and the limits of the (sudden) vertical excitation. Combining PDA with trajectory-based nonadiabatic methods is possible for any arbitrary-sized molecules using a code provided in this work.

Zobrazit více v PubMed

Centurion M.; Wolf T. J.; Yang J. Ultrafast Imaging of Molecules with Electron Diffraction. Annu. Rev. Phys. Chem. 2022, 73, 21–42. 10.1146/annurev-physchem-082720-010539. PubMed DOI

Schuurman M. S.; Blanchet V. Time-resolved photoelectron spectroscopy: the continuing evolution of a mature technique. Phys. Chem. Chem. Phys. 2022, 24, 20012–20024. 10.1039/D1CP05885A. PubMed DOI

Zhang M.; Guo Z.; Mi X.; Li Z.; Liu Y. Ultrafast Imaging of Molecular Dynamics Using Ultrafast Low-Frequency Lasers, X-ray Free Electron Lasers, and Electron Pulses. J. Phys. Chem. Lett. 2022, 13, 1668–1680. 10.1021/acs.jpclett.1c03916. PubMed DOI

Rolles D. Time-resolved experiments on gas-phase atoms and molecules with XUV and X-ray free-electron lasers. Advances in Physics: X 2023, 8, 2132182.10.1080/23746149.2022.2132182. DOI

Nisoli M.; Decleva P.; Calegari F.; Palacios A.; Martín F. Attosecond Electron Dynamics in Molecules. Chem. Rev. 2017, 117, 10760–10825. 10.1021/acs.chemrev.6b00453. PubMed DOI

Persico M.; Granucci G. An overview of nonadiabatic dynamics simulations methods, with focus on the direct approach versus the fitting of potential energy surfaces. Theor. Chem. Acc. 2014, 133, 1–28. 10.1007/s00214-014-1526-1. DOI

Agostini F.; Curchod B. F. E. Different flavors of nonadiabatic molecular dynamics. Wiley Interdisciplinary Reviews: Computational Molecular Science 2019, 9, e1417.10.1002/wcms.1417. DOI

Mai S.; González L. Molecular Photochemistry: Recent Developments in Theory. Angew. Chem., Int. Ed. 2020, 59, 16832–16846. 10.1002/anie.201916381. PubMed DOI PMC

González L.; Lindh R.. Quantum Chemistry and Dynamics of Excited States: Methods and Applications; John Wiley & Sons: 2020.

Crespo-Otero R.; Barbatti M. Recent Advances and Perspectives on Nonadiabatic Mixed Quantum-Classical Dynamics. Chem. Rev. 2018, 118, 7026–7068. 10.1021/acs.chemrev.7b00577. PubMed DOI

Beck M. H.; Jäckle A.; Worth G. A.; Meyer H. D. The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets. Phys. Rep. 2000, 324, 1–105. 10.1016/S0370-1573(99)00047-2. DOI

Richings G. W.; Polyak I.; Spinlove K. E.; Worth G. A.; Burghardt I.; Lasorne B. Quantum dynamics simulations using Gaussian wavepackets: the vMCG method. Int. Rev. Phys. Chem. 2015, 34, 269–308. 10.1080/0144235X.2015.1051354. DOI

Curchod B. F. E.; Martínez T. J. Ab Initio Nonadiabatic Quantum Molecular Dynamics. Chem. Rev. 2018, 118, 3305–3336. 10.1021/acs.chemrev.7b00423. PubMed DOI

Tully J. C. Perspective: Nonadiabatic dynamics theory. J. Chem. Phys. 2012, 137, 22A301.10.1063/1.4757762. PubMed DOI

Barbatti M. Nonadiabatic dynamics with trajectory surface hopping method. Wiley Interdisciplinary Reviews: Computational Molecular Science 2011, 1, 620–633. 10.1002/wcms.64. DOI

Suchan J.; Hollas D.; Curchod B. F. E.; Slavíček P. On the importance of initial conditions for excited-state dynamics. Faraday Discuss. 2018, 212, 307–330. 10.1039/C8FD00088C. PubMed DOI

Prediction Challenge: Cyclobutanone Photochemistry. https://pubs.aip.org/collection/16531/Prediction-Challenge-Cyclobutanone-Photochemistry. Accessed: July 18, 2024.

Kim J.; Tao H.; Martinez T. J.; Bucksbaum P. Ab initio multiple spawning on laser-dressed states: a study of 1,3-cyclohexadiene photoisomerization via light-induced conical intersections. Journal of Physics B: Atomic, Molecular and Optical Physics 2015, 48, 164003.10.1088/0953-4075/48/16/164003. DOI

Mignolet B.; Curchod B. F. E.; Martínez T. J. Communication: XFAIMS—eXternal Field Ab Initio Multiple Spawning for electron-nuclear dynamics triggered by short laser pulses. J. Chem. Phys. 2016, 145, 191104.10.1063/1.4967761. PubMed DOI

Makhov D. V.; Shalashilin D. V. Floquet Hamiltonian for incorporating electronic excitation by a laser pulse into simulations of non-adiabatic dynamics. Chem. Phys. 2018, 515, 46–51. 10.1016/j.chemphys.2018.07.048. DOI

Bajo J. J.; Granucci G.; Persico M. Interplay of radiative and nonradiative transitions in surface hopping with radiation-molecule interactions. J. Chem. Phys. 2014, 140, 044113.10.1063/1.4862738. PubMed DOI

Mignolet B.; Curchod B. F. E. Excited-State Molecular Dynamics Triggered by Light Pulses - Ab Initio Multiple Spawning vs Trajectory Surface Hopping. J. Phys. Chem. A 2019, 123, 3582–3591. 10.1021/acs.jpca.9b00940. PubMed DOI

Li Z.; Fang J.-Y.; Martens C. C. Simulation of ultrafast dynamics and pump–probe spectroscopy using classical trajectories. J. Chem. Phys. 1996, 104, 6919–6929. 10.1063/1.471407. DOI

Shen Y. C.; Cina J. A. What can short-pulse pump-probe spectroscopy tell us about Franck-Condon dynamics?. J. Chem. Phys. 1999, 110, 9793–9806. 10.1063/1.478032. DOI

Meier C.; Engel V. Time-resolved photoelectron spectroscopy of molecular dissociation: Classical trajectory versus quantum wave-packet calculations. Phys. Chem. Chem. Phys. 2002, 4, 5014–5019. 10.1039/b205417e. DOI

Martínez-Mesa A.; Saalfrank P. Semiclassical modelling of finite-pulse effects on non-adiabatic photodynamics via initial condition filtering: The predissociation of NaI as a test case. J. Chem. Phys. 2015, 142, 194107.10.1063/1.4919780. PubMed DOI

Diels J.-C.; Rudolph W. In Ultrashort Laser Pulse Phenomena, 2nd ed.; Diels J.-C., Rudolph W., Eds.; Academic Press: Burlington, 2006; pp 1–60.

Wigner E. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 1932, 40, 749–759. 10.1103/PhysRev.40.749. DOI

Hillery M.; O’Connell R.; Scully M.; Wigner E. Distribution functions in physics: Fundamentals. Phys. Rep. 1984, 106, 121–167. 10.1016/0370-1573(84)90160-1. DOI

Ceriotti M.; Bussi G.; Parrinello M. Nuclear Quantum Effects in Solids Using a Colored-Noise Thermostat. Phys. Rev. Lett. 2009, 103, 030603.10.1103/PhysRevLett.103.030603. PubMed DOI

Ceriotti M.; Bussi G.; Parrinello M. Colored-noise thermostats àla Carte. J. Chem. Theory Comput. 2010, 6, 1170–1180. 10.1021/ct900563s. DOI

Prlj A.; Hollas D.; Curchod B. F. E. Deciphering the influence of ground-state distributions on the calculation of photolysis observables. J. Phys. Chem. A 2023, 127, 7400–7409. 10.1021/acs.jpca.3c02333. PubMed DOI PMC

Crespo-Otero R.; Barbatti M. Spectrum simulation and decomposition with nuclear ensemble: Formal derivation and application to benzene, furan and 2-phenylfuran. Theor. Chem. Acc. 2012, 131, 1–14. 10.1007/s00214-012-1237-4. DOI

PROMDENS: Promoted Density Approach code. https://pypi.org/project/promdens/. Accessed: September 28, 2024.

Janoš J.; Hollas D.. PROMDENS: Promoted Density Approach code; 2024;10.5281/zenodo.13853643. Accessed: September 28, 2024. DOI

Suchan J.; Janoš J.; Slavíček P. Pragmatic Approach to Photodynamics: Mixed Landau–Zener Surface Hopping with Intersystem Crossing. J. Chem. Theory Comput. 2020, 16, 5809–5820. 10.1021/acs.jctc.0c00512. PubMed DOI

Curchod B. F. E.; Glover W. J.; Martínez T. J. SSAIMS-Stochastic-Selection Ab Initio Multiple Spawning for Efficient Nonadiabatic Molecular Dynamics. J. Phys. Chem. A 2020, 124, 6133–6143. 10.1021/acs.jpca.0c04113. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Roadmap for Molecular Benchmarks in Nonadiabatic Dynamics

. 2025 Aug 07 ; 129 (31) : 7023-7050. [epub] 20250715

Selecting Initial Conditions for Trajectory-Based Nonadiabatic Simulations

. 2025 Jan 21 ; 58 (2) : 261-270. [epub] 20250109

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...