Including Photoexcitation Explicitly in Trajectory-Based Nonadiabatic Dynamics at No Cost
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39405399
PubMed Central
PMC11514012
DOI
10.1021/acs.jpclett.4c02549
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Over the last decades, theoretical photochemistry has produced multiple techniques to simulate the nonadiabatic dynamics of molecules. Surprisingly, much less effort has been devoted to adequately describing the first step of a photochemical or photophysical process: photoexcitation. Here, we propose a formalism to include the effect of a laser pulse in trajectory-based nonadiabatic dynamics at the level of the initial conditions, with no additional cost. The promoted density approach (PDA) decouples the excitation from the nonadiabatic dynamics by defining a new set of initial conditions, which include an excitation time. PDA with surface hopping leads to nonadiabatic dynamics simulations in excellent agreement with quantum dynamics using an explicit laser pulse and highlights the strong impact of a laser pulse on the resulting photodynamics and the limits of the (sudden) vertical excitation. Combining PDA with trajectory-based nonadiabatic methods is possible for any arbitrary-sized molecules using a code provided in this work.
Zobrazit více v PubMed
Centurion M.; Wolf T. J.; Yang J. Ultrafast Imaging of Molecules with Electron Diffraction. Annu. Rev. Phys. Chem. 2022, 73, 21–42. 10.1146/annurev-physchem-082720-010539. PubMed DOI
Schuurman M. S.; Blanchet V. Time-resolved photoelectron spectroscopy: the continuing evolution of a mature technique. Phys. Chem. Chem. Phys. 2022, 24, 20012–20024. 10.1039/D1CP05885A. PubMed DOI
Zhang M.; Guo Z.; Mi X.; Li Z.; Liu Y. Ultrafast Imaging of Molecular Dynamics Using Ultrafast Low-Frequency Lasers, X-ray Free Electron Lasers, and Electron Pulses. J. Phys. Chem. Lett. 2022, 13, 1668–1680. 10.1021/acs.jpclett.1c03916. PubMed DOI
Rolles D. Time-resolved experiments on gas-phase atoms and molecules with XUV and X-ray free-electron lasers. Advances in Physics: X 2023, 8, 2132182.10.1080/23746149.2022.2132182. DOI
Nisoli M.; Decleva P.; Calegari F.; Palacios A.; Martín F. Attosecond Electron Dynamics in Molecules. Chem. Rev. 2017, 117, 10760–10825. 10.1021/acs.chemrev.6b00453. PubMed DOI
Persico M.; Granucci G. An overview of nonadiabatic dynamics simulations methods, with focus on the direct approach versus the fitting of potential energy surfaces. Theor. Chem. Acc. 2014, 133, 1–28. 10.1007/s00214-014-1526-1. DOI
Agostini F.; Curchod B. F. E. Different flavors of nonadiabatic molecular dynamics. Wiley Interdisciplinary Reviews: Computational Molecular Science 2019, 9, e1417.10.1002/wcms.1417. DOI
Mai S.; González L. Molecular Photochemistry: Recent Developments in Theory. Angew. Chem., Int. Ed. 2020, 59, 16832–16846. 10.1002/anie.201916381. PubMed DOI PMC
González L.; Lindh R.. Quantum Chemistry and Dynamics of Excited States: Methods and Applications; John Wiley & Sons: 2020.
Crespo-Otero R.; Barbatti M. Recent Advances and Perspectives on Nonadiabatic Mixed Quantum-Classical Dynamics. Chem. Rev. 2018, 118, 7026–7068. 10.1021/acs.chemrev.7b00577. PubMed DOI
Beck M. H.; Jäckle A.; Worth G. A.; Meyer H. D. The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets. Phys. Rep. 2000, 324, 1–105. 10.1016/S0370-1573(99)00047-2. DOI
Richings G. W.; Polyak I.; Spinlove K. E.; Worth G. A.; Burghardt I.; Lasorne B. Quantum dynamics simulations using Gaussian wavepackets: the vMCG method. Int. Rev. Phys. Chem. 2015, 34, 269–308. 10.1080/0144235X.2015.1051354. DOI
Curchod B. F. E.; Martínez T. J. Ab Initio Nonadiabatic Quantum Molecular Dynamics. Chem. Rev. 2018, 118, 3305–3336. 10.1021/acs.chemrev.7b00423. PubMed DOI
Tully J. C. Perspective: Nonadiabatic dynamics theory. J. Chem. Phys. 2012, 137, 22A301.10.1063/1.4757762. PubMed DOI
Barbatti M. Nonadiabatic dynamics with trajectory surface hopping method. Wiley Interdisciplinary Reviews: Computational Molecular Science 2011, 1, 620–633. 10.1002/wcms.64. DOI
Suchan J.; Hollas D.; Curchod B. F. E.; Slavíček P. On the importance of initial conditions for excited-state dynamics. Faraday Discuss. 2018, 212, 307–330. 10.1039/C8FD00088C. PubMed DOI
Prediction Challenge: Cyclobutanone Photochemistry. https://pubs.aip.org/collection/16531/Prediction-Challenge-Cyclobutanone-Photochemistry. Accessed: July 18, 2024.
Kim J.; Tao H.; Martinez T. J.; Bucksbaum P. Ab initio multiple spawning on laser-dressed states: a study of 1,3-cyclohexadiene photoisomerization via light-induced conical intersections. Journal of Physics B: Atomic, Molecular and Optical Physics 2015, 48, 164003.10.1088/0953-4075/48/16/164003. DOI
Mignolet B.; Curchod B. F. E.; Martínez T. J. Communication: XFAIMS—eXternal Field Ab Initio Multiple Spawning for electron-nuclear dynamics triggered by short laser pulses. J. Chem. Phys. 2016, 145, 191104.10.1063/1.4967761. PubMed DOI
Makhov D. V.; Shalashilin D. V. Floquet Hamiltonian for incorporating electronic excitation by a laser pulse into simulations of non-adiabatic dynamics. Chem. Phys. 2018, 515, 46–51. 10.1016/j.chemphys.2018.07.048. DOI
Bajo J. J.; Granucci G.; Persico M. Interplay of radiative and nonradiative transitions in surface hopping with radiation-molecule interactions. J. Chem. Phys. 2014, 140, 044113.10.1063/1.4862738. PubMed DOI
Mignolet B.; Curchod B. F. E. Excited-State Molecular Dynamics Triggered by Light Pulses - Ab Initio Multiple Spawning vs Trajectory Surface Hopping. J. Phys. Chem. A 2019, 123, 3582–3591. 10.1021/acs.jpca.9b00940. PubMed DOI
Li Z.; Fang J.-Y.; Martens C. C. Simulation of ultrafast dynamics and pump–probe spectroscopy using classical trajectories. J. Chem. Phys. 1996, 104, 6919–6929. 10.1063/1.471407. DOI
Shen Y. C.; Cina J. A. What can short-pulse pump-probe spectroscopy tell us about Franck-Condon dynamics?. J. Chem. Phys. 1999, 110, 9793–9806. 10.1063/1.478032. DOI
Meier C.; Engel V. Time-resolved photoelectron spectroscopy of molecular dissociation: Classical trajectory versus quantum wave-packet calculations. Phys. Chem. Chem. Phys. 2002, 4, 5014–5019. 10.1039/b205417e. DOI
Martínez-Mesa A.; Saalfrank P. Semiclassical modelling of finite-pulse effects on non-adiabatic photodynamics via initial condition filtering: The predissociation of NaI as a test case. J. Chem. Phys. 2015, 142, 194107.10.1063/1.4919780. PubMed DOI
Diels J.-C.; Rudolph W. In Ultrashort Laser Pulse Phenomena, 2nd ed.; Diels J.-C., Rudolph W., Eds.; Academic Press: Burlington, 2006; pp 1–60.
Wigner E. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 1932, 40, 749–759. 10.1103/PhysRev.40.749. DOI
Hillery M.; O’Connell R.; Scully M.; Wigner E. Distribution functions in physics: Fundamentals. Phys. Rep. 1984, 106, 121–167. 10.1016/0370-1573(84)90160-1. DOI
Ceriotti M.; Bussi G.; Parrinello M. Nuclear Quantum Effects in Solids Using a Colored-Noise Thermostat. Phys. Rev. Lett. 2009, 103, 030603.10.1103/PhysRevLett.103.030603. PubMed DOI
Ceriotti M.; Bussi G.; Parrinello M. Colored-noise thermostats àla Carte. J. Chem. Theory Comput. 2010, 6, 1170–1180. 10.1021/ct900563s. DOI
Prlj A.; Hollas D.; Curchod B. F. E. Deciphering the influence of ground-state distributions on the calculation of photolysis observables. J. Phys. Chem. A 2023, 127, 7400–7409. 10.1021/acs.jpca.3c02333. PubMed DOI PMC
Crespo-Otero R.; Barbatti M. Spectrum simulation and decomposition with nuclear ensemble: Formal derivation and application to benzene, furan and 2-phenylfuran. Theor. Chem. Acc. 2012, 131, 1–14. 10.1007/s00214-012-1237-4. DOI
PROMDENS: Promoted Density Approach code. https://pypi.org/project/promdens/. Accessed: September 28, 2024.
Janoš J.; Hollas D.. PROMDENS: Promoted Density Approach code; 2024;10.5281/zenodo.13853643. Accessed: September 28, 2024. DOI
Suchan J.; Janoš J.; Slavíček P. Pragmatic Approach to Photodynamics: Mixed Landau–Zener Surface Hopping with Intersystem Crossing. J. Chem. Theory Comput. 2020, 16, 5809–5820. 10.1021/acs.jctc.0c00512. PubMed DOI
Curchod B. F. E.; Glover W. J.; Martínez T. J. SSAIMS-Stochastic-Selection Ab Initio Multiple Spawning for Efficient Nonadiabatic Molecular Dynamics. J. Phys. Chem. A 2020, 124, 6133–6143. 10.1021/acs.jpca.0c04113. PubMed DOI
Roadmap for Molecular Benchmarks in Nonadiabatic Dynamics
Selecting Initial Conditions for Trajectory-Based Nonadiabatic Simulations