Dating in the Dark: Elevated Substitution Rates in Cave Cockroaches (Blattodea: Nocticolidae) Have Negative Impacts on Molecular Date Estimates

. 2024 Sep 05 ; 73 (3) : 532-545.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38320290

Grantová podpora
DP220103265 Australian Research Council
Linnean Society of NSW

Rates of nucleotide substitution vary substantially across the Tree of Life, with potentially confounding effects on phylogenetic and evolutionary analyses. A large acceleration in mitochondrial substitution rate occurs in the cockroach family Nocticolidae, which predominantly inhabit subterranean environments. To evaluate the impacts of this among-lineage rate heterogeneity on estimates of phylogenetic relationships and evolutionary timescales, we analyzed nuclear ultraconserved elements (UCEs) and mitochondrial genomes from nocticolids and other cockroaches. Substitution rates were substantially elevated in nocticolid lineages compared with other cockroaches, especially in mitochondrial protein-coding genes. This disparity in evolutionary rates is likely to have led to different evolutionary relationships being supported by phylogenetic analyses of mitochondrial genomes and UCE loci. Furthermore, Bayesian dating analyses using relaxed-clock models inferred much deeper divergence times compared with a flexible local clock. Our phylogenetic analysis of UCEs, which is the first genome-scale study to include all 13 major cockroach families, unites Corydiidae and Nocticolidae and places Anaplectidae as the sister lineage to the rest of Blattoidea. We uncover an extraordinary level of genetic divergence in Nocticolidae, including two highly distinct clades that separated ~115 million years ago despite both containing representatives of the genus Nocticola. The results of our study highlight the potential impacts of high among-lineage rate variation on estimates of phylogenetic relationships and evolutionary timescales.

Zobrazit více v PubMed

Abascal F., Zardoya R., Telford M.J.. 2010. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. 38:W7–W13. PubMed PMC

Aberer A.J., Kobert K., Stamatakis A.. 2014. Exabayes: massively parallel bayesian tree inference for the whole-genome era. Mol. Biol. Evol. 31:2553–2556. PubMed PMC

Abrams K.M., Huey J.A., Hillyer M.J., Humphreys W.F., Didham R.K., Harvey M.S.. 2019. Too hot to handle: cenozoic aridification drives multiple independent incursions of Schizomida (Hubbardiidae) into hypogean environments. Mol. Phylogenet. Evol. 139:106532. PubMed

Andersen T., Kjaerandsen J.. 1995. Three new species of Nocticola Bolivar from Ghana, West Africa (Blattaria: Nocticolidae). J. African Zool. 109:377–385.

Asahina S. 1974. The cavernicolous cockroaches of the Ryukyu Islands. Mem. Natl. Sci. Museum Tokyo. 7:145–156.

Beasley-Hall P.G., Lee T.R.C., Rose H.A., Lo N.. 2018. Multiple abiotic factors correlate with parallel evolution in Australian soil burrowing cockroaches. J. Biogeogr. 45:1515–1528.

Bolivar I. 1892. Voyage de M. E. Simno aux iles Philippines (mars et avril 1890). Etudes sur les Arthropodes cavernicoles de l’ile de Luzon. Orthopteres. Ann. la Société Entomol. Fr 61:29–34.

Bouckaert R., Vaughan T.G., Barido-Sottani J., Duchêne S., Fourment M., Gavryushkina A., Heled J., Jones G., Kühnert D., De Maio N., Matschiner M., Mendes F.K., Müller N.F., Ogilvie H.A., Du Plessis L., Popinga A., Rambaut A., Rasmussen D., Siveroni I., Suchard M.A., Wu C.H., Xie D., Zhang C., Stadler T., Drummond A.J.. 2019. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15:1–28. PubMed PMC

Bourguignon T., Tang Q., Ho S.Y.W., Juna F., Wang Z., Arab D.A., Cameron S.L., Walker J., Rentz D., Evans T.A., Lo N.. 2018. Transoceanic dispersal and plate tectonics shaped global cockroach distributions: evidence from mitochondrial phylogenomics. Mol. Biol. Evol. 35:970–983. PubMed

Bromham L. 2009. Why do species vary in their rate of molecular evolution? Biol. Lett. 5:401–404. PubMed PMC

Bromham L., Cowman P.F., Lanfear R.. 2013. Parasitic plants have increased rates of molecular evolution across all three genomes. BMC Evol. Biol. 13:126. PubMed PMC

Bui Q.M., Schmidt H.A., Chernomor O., Schrempf D., Woodhams M.D., Von Haeseler A., Lanfear R.. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37:1530–1534. PubMed PMC

Byrne M., Steane D.A., Joseph L., Yeates D.K., Jordan G.J., Crayn D., Aplin K., Cantrill D.J., Cook L.G., Crisp M.D., Keogh J.S., Melville J., Moritz C., Porch N., Sniderman J.M.K., Sunnucks P., Weston P.H.. 2011. Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. J. Biogeogr. 38:1635–1656.

Chernomor O., Von Haeseler A., Minh B.Q.. 2016. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 65:997–1008. PubMed PMC

Chopard L. 1932. Un cas de microphtalmie liée à l’atrophie des ailes chez une blatte cavernicole. Livre du Centen. la Société Entomol. Fr 485:485–496.

Crayn D.M., Costion C., Harrington M.G.. 2015. The Sahul-Sunda floristic exchange: dated molecular phylogenies document Cenozoic intercontinental dispersal dynamics. J. Biogeogr. 42:11–24.

Crisp M.D., Hardy N.B., Cook L.G.. 2014. Clock model makes a large difference to age estimates of long-stemmed clades with no internal calibration: a test using Australian grasstrees. BMC Evol. Biol. 14:1–17. PubMed PMC

Dierckxsens N., Mardulyn P., Smits G.. 2017. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45:e18. PubMed PMC

Djernæs M., Klass K.D., Eggleton P.. 2015. Identifying possible sister groups of Cryptocercidae+Isoptera: a combined molecular and morphological phylogeny of Dictyoptera. Mol. Phylogenet. Evol. 84:284–303. PubMed

Djernæs M., Klass K.D., Picker M.D., Damgaard J.. 2012. Phylogeny of cockroaches (Insecta, Dictyoptera, Blattodea), with placement of aberrant taxa and exploration of out-group sampling. Syst. Entomol. 37:65–83.

Djernæs M., Murienne J.. 2022. Phylogeny of Blattoidea (Dictyoptera: Blattodea) with a revised classification of Blattidae. Arthropod Syst Phylogeny. 80:209–228.

Djernæs M., Varadínova Z.K., Kotyk M., Eulitz U., Klass K.-D.. 2020. Phylogeny and life history evolution of Blaberoidea (Blattodea). Arthropod Syst. Phylogeny. 78:29–67.

Donath A., Jühling F., Al-Arab M., Bernhart S.H., Reinhardt F., Stadler P.F., Middendorf M., Bernt M.. 2019. Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Res. 47:10543–10552. PubMed PMC

Dornburg A., Brandley M.C., McGowen M.R., Near T.J.. 2012. Relaxed clocks and inferences of heterogeneous patterns of nucleotide substitution and divergence time estimates across whales and dolphins (Mammalia: Cetacea). Mol. Biol. Evol. 29:721–736. PubMed

dos Reis M., Gunnell G.F., Barba-Montoya J., Wilkins A., Yang Z., Yoder A.D.. 2018. Using phylogenomic data to explore the effects of relaxed clocks and calibration strategies on divergence time estimation: primates as a test case. Syst. Biol. 67:594–615. PubMed PMC

dos Reis M., Yang Z.. 2011. Approximate likelihood calculation on a phylogeny for Bayesian Estimation of Divergence Times. Mol. Biol. Evol. 28:2161–2172. PubMed

Drummond A.J., Ho S.Y.W., Phillips M.J., Rambaut A.. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4:e88. PubMed PMC

Drummond A.J., Suchard M.A.. 2010. Bayesian random local clocks, or one rate to rule them all. BMC Biol. 8:114. PubMed PMC

Duchêne D.A., Duchêne S., Ho S.Y.W.. 2018. PhyloMAd: efficient assessment of phylogenomic model adequacy. Bioinformatics. 34:2300–2301. PubMed

Duchêne D.A., Mather N., Van Der Wal C., Ho S.Y.W.. 2022. Excluding loci with substitution saturation improves inferences from phylogenomic data. Syst. Biol. 71:676–689. PubMed PMC

Duchêne D.A., Tong K.J., Foster C.S.P., Duchêne S., Lanfear R., Ho S.Y.W.. 2020. Linking branch lengths across sets of loci provides the highest statistical support for phylogenetic inference. Mol. Biol. Evol. 37:1202–1210. PubMed

Duchêne S., Lanfear R., Ho S.Y.W.. 2014. The impact of calibration and clock-model choice on molecular estimates of divergence times. Mol. Phylogenet. Evol. 78:277–289. PubMed

Evangelista D., Simon S., Wilson M.M., Kawahara A.Y., Kohli M.K., Ware J.L., Wipfler B., Béthoux O., Grandcolas P., Legendre F.. 2021. Assessing support for Blaberoidea phylogeny suggests optimal locus quality. Syst. Entomol. 46:157–171.

Evangelista D.A., Wipfler B., Béthoux O., Donath A., Fujita M., Kohli M.K., Legendre F., Liu S., Machida R., Misof B., Peters R.S., Podsiadlowski L., Rust J., Schuette K., Tollenaar W., Ware J.L., Wappler T., Zhou X., Meusemann K., Simon S.. 2019. An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea). Proc. Biol. Sci. 286:20182076. PubMed PMC

Ewart K.M., Kovacs T.G.L., Walker J., Tatarnic N.J., Clark H., Lo N.. 2023. Considerable gene flow in troglomorphic cockroach species across a vast subterranean landscape. J. Biogeogr. 50:1967–1980.

Faircloth B.C. 2016. PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics 32:786–788. PubMed

Fernando W. 1957. New species of insects from Ceylon (I). Ceylon J. Sci. Biological Sci 1:157–167.

Fisher A.A., Ji X., Nishimura A., Lemey P., Suchard M.A.. 2021. Shrinkage-based random local clocks with scalable inference. arXiv, 10.48550/arXiv.2105.07119. PubMed PMC

Fourment M., Darling A.E.. 2018. Local and relaxed clocks: the best of both worlds. PeerJ 6:e5140. PubMed PMC

Gan H.M., Tan M.H., Lee Y.P., Schultz M.B., Horwitz P., Burnham Q., Austin C.M.. 2018. More evolution underground: accelerated mitochondrial substitution rate in Australian burrowing freshwater crayfishes (Decapoda: Parastacidae). Mol. Phylogenet. Evol. 118:88–98. PubMed

Han W., Qiu L., Zhang J., Wang Z., Che Y.. 2024. Phylogenetic reconstruction of Corydioidea (Dictyoptera: Blattodea) provides new insights on the placement of Latindiinae and supports the proposal of the new subfamily Ctenoneurinae. Syst. Entomol. 49:156–172.

Hellemans S., Wang M., Hasegawa N., Šobotník J., Scheffrahn R.H., Bourguignon T.. 2022. Using ultraconserved elements to reconstruct the termite tree of life. Mol. Phylogenet. Evol. 173:107520. PubMed

Ho S.Y.W. 2020. The molecular clock and evolutionary rates across the tree of life. In: Ho S.Y.W., editor. The molecular evolutionary clock: theory and practice. Cham: Springer. p. 3–23.

Ho S.Y.W., Duchêne S.. 2014. Molecular-clock methods for estimating evolutionary rates and timescales. Mol. Ecol. 23:5947–5965. PubMed

Ho S.Y.W., Duchêne S., Duchêne D.. 2015. Simulating and detecting autocorrelation of molecular evolutionary rates among lineages. Mol. Ecol. Resour. 15:688–696. PubMed

Inward D., Beccaloni G., Eggleton P.. 2007. Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol. Lett. 3:331–335. PubMed PMC

Jarvis E.D., Mirarab S., Aberer A.J., Li B., Houde P., Li C., Ho S.Y.W., Faircloth B.C., Nabholz B., Howard J.T., Suh A., Weber C.C., da Fonseca R.R., Li J., Zhang F., Li H., Zhou L., Narula N., Liu L., Ganapathy G., Boussau B., Bayzid M.S., Zavidovych V., Subramanian S., Gabaldón T., Capella-Gutiérrez S., Huerta-Cepas J., Rekepalli B., Munch K., Schierup M., Lindow B., Warren W.C., Ray D., Green R.E., Bruford M.W., Zhan X., Dixon A., Li S., Li N., Huang Y., Derryberry E.P., Bertelsen M.F., Sheldon F.H., Brumfield R.T., Mello C.V., Lovell P.V., Wirthlin M., Schneider M.P.C., Prosdocimi F., Samaniego J.A., Velazquez A.M.V., Alfaro-Núñez A., Campos P.F., Petersen B., Sicheritz-Ponten T., Pas A., Bailey T., Scofield P., Bunce M., Lambert D.M., Zhou Q., Perelman P., Driskell A.C., Shapiro B., Xiong Z., Zeng Y., Liu S., Li Z., Liu B., Wu K., Xiao J., Yinqi X., Zheng Q., Zhang Y., Yang H., Wang J., Smeds L., Rheindt F.E., Braun M., Fjeldsa J., Orlando L., Barker F.K., Jønsson K.A., Johnson W., Koepfli K.-P., O’Brien S., Haussler D., Ryder O.A., Rahbek C., Willerslev E., Graves G.R., Glenn T.C., McCormack J., Burt D., Ellegren H., Alström P., Edwards S.V., Stamatakis A., Mindell D.P., Cracraft J., Braun E.L., Warnow T., Jun W., Gilbert M.T.P., Zhang G.. 2014. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346:1320–1331. PubMed PMC

Javidkar M., Cooper S.J.B., Humphreys W.F., King R.A., Judd S., Austin A.D.. 2018. Biogeographic history of subterranean isopods from groundwater calcrete islands in Western Australia. Zool. Scr 47:206–220.

Kaltenpoth M., Corneli P.S., Dunn D.M., Weiss R.B., Strohm E., Seger J.. 2012. Accelerated evolution of mitochondrial but not nuclear genomes of hymenoptera: new evidence from crabronid wasps. PLoS One 7:e32826. PubMed PMC

Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., Von Haeseler A., Jermiin L.S.. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14:587–589. PubMed PMC

Karny H. 1924. Beiträge zur Malayischen Orthopteren fauna. Treubia. 5:12–19.

Katoh K., Toh H.. 2008. Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinform. 9:286–298. PubMed

Kolaczkowski B., Thornton J.W.. 2004. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogenous. Nature 431:980–984. PubMed

Kolaczkowski B., Thornton J.W.. 2009. Long-branch attraction bias and inconsistency in bayesian phylogenetics. PLoS One 4:e7891. PubMed PMC

Kück P., Mayer C., Wägele J.W., Misof B.. 2012. Long branch effects distort maximum likelihood phylogenies in simulations despite selection of the correct model. PLoS One 7:e36593–e36533. PubMed PMC

Lanfear R., Calcott B., Ho S.Y.W., Guindon S.. 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29:1695–1701. PubMed

Legendre F., Nel A., Svenson G.J., Robillard T., Pellens R., Grandcolas P.. 2015. Phylogeny of dictyoptera: Dating the origin of cockroaches, praying mantises and termites with molecular data and controlled fossil evidence. PLoS One 10:e0130127–e0130127. PubMed PMC

Legendre F., Whiting M.F., Bordereau C., Cancello E.M., Evans T.A., Grandcolas P.. 2008. The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: implications for the evolution of the worker and pseudergate castes, and foraging behaviors. Mol. Phylogenet. Evol. 48:615–627. PubMed

Lemaire B., Huysmans S., Smets E., Merckx V.. 2011. Rate accelerations in nuclear 18S rDNA of mycoheterotrophic and parasitic angiosperms. J. Plant Res. 124:561–576. PubMed PMC

Lepage T., Bryant D., Philippe H., Lartillot N.. 2007. A general comparison of relaxed molecular clock models. Mol. Biol. Evol. 24:2669–2680. PubMed

Lepage T., Lawi S., Tupper P., Bryant D.. 2006. Continuous and tractable models for the variation of evolutionary rates. Math. Biosci. 199:216–233. PubMed

Li X.R., Huang D.. 2020. A new mid-Cretaceous cockroach of stem Nocticolidae and reestimating the age of Corydioidea (Dictyoptera: Blattodea). Cretac. Res. 106:104202.

Linder M., Britton T., Sennblad B.. 2011. Evaluation of bayesian models of substitution rate evolution-parental guidance versus mutual independence. Syst. Biol. 60:329–342. PubMed

Liu J., Zhang J., Han W., Wang Y., He S., Wang Z.. 2023. Advances in the understanding of Blattodea evolution: insights from phylotranscriptomics and spermathecae. Mol. Phylogenet. Evol. 182:107753. PubMed

Lo N., Beninati T., Stone F., Walker J., Sacchi L.. 2007. Cockroaches that lack Blattabacterium endosymbionts: the phylogenetically divergent genus Nocticola. Biol. Lett. 3:327–330. PubMed PMC

Lo N., Jun Tong K., Rose H.A., Ho S.Y.W., Beninati T., Low D.L.T., Matsumoto T., Maekawa K.. 2016. Multiple evolutionary origins of australian soil-burrowing cockroaches driven by climate change in the neogene. Proc. R. Soc. B Biol. Sci. 283:20152869. PubMed PMC

Lucañas C.C., Bláha M., Rahmadi C., Patoka J.. 2021. The first Nocticola Bolivar 1892 (Blattodea: Nocticolidae) from New Guinea. Zootaxa 5082:294–300. PubMed

Lucañas C.C., Lit I.L.. 2016. Cockroaches (Insecta, Blattodea) from caves of Polillo Island (Philippines), with description of a new species. Subterr. Biol 19:51–64.

Lucañas C.C., Maosheng F.. 2023. A new macropterous Nocticola Bolivar, 1892 (Blattodea: Nocticolidae) from Singapore. J. Asia-Pac. Entomol. 26:102062.

Maekawa K., Lo N., Rose H.A., Matsumoto T.. 2003. The evolution of soil-burrowing cockroaches (Blattaria: Blaberidae) from wood-burrowing ancestors following an invasion of the latter from Asia into Australia. Proc. Biol. Sci. 270:1301–1307. PubMed PMC

Maturana Russel P., Brewer B.J., Klaere S., Bouckaert R.R.. 2019. Model selection and parameter inference in phylogenetics using nested sampling. Syst. Biol. 68:219–233. PubMed

Mitterboeck F.T., Adamowicz S.J.. 2013. Flight loss linked to faster molecular evolution in insects. Proc. R. Soc. B. 280:20131128. PubMed PMC

Nurk S., Meleshko D., Korobeynikov A., Pevzner P.A.. 2017. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27:824–834. PubMed PMC

Porter M.L. 2007. Subterranean biogeography: what have we learned from molecular techniques? J. Cave Karst Stud. 69:179–186.

Rannala B., Yang Z.. 2007. Inferring speciation tunes under an episodic molecular clock. Syst. Biol. 56:453–466. PubMed

Roch S., Nute M., Warnow T.. 2019. Long-branch attraction in species tree estimation: inconsistency of partitioned likelihood and topology-based summary methods. Syst. Biol. 68:281–297. PubMed

Roth L.M. 1988. Some cavernicolous and epigean cockroaches with six new species, and a discussion of the Nocticolidae (Dictyoptera: Blattaria). Rev. Suisse Zool. 95:297–321.

Roth L.M. 1999. New cockroach species, redescriptions, and records, mostly from Australia, and a description of Metanocticola christmasensis gen. nov., sp. nov., from Christmas Island (Blattaria). Rec. West. Aust. Museum. 19:327–364.

Roth L.M., McGavin G.C.. 1994. Two new species of nocticolidae (Dictyoptera: Blattaria) and a rediagnosis of the cavernicolous genus spelaeoblatta bolivar. J. Nat. Hist. 28:1319–1326.

Sanderson M.J. 2002. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol. Biol. Evol. 19:101–109. PubMed

Sendi H., Vršanský P., Podstrelená L., Hinkelman J., Kúdelová T., Kúdela M., Vidlička L., Ren X., Quicke D.L.J.J., Hinkelman J., Kúdelová T., Kúdela M., Vidlička L., Ren X., Quicke D.L.J.J.. 2020. Nocticolid cockroaches are the only known dinosaur age cave survivors. Gondwana Res. 82:288–298.

Seton M., Müller R.D., Zahirovic S., Gaina C., Torsvik T., Shephard G., Talsma A., Gurnis M., Turner M., Maus S., Chandler M.. 2012. Global continental and ocean basin reconstructions since 200Ma. Earth-Sci. Rev. 113:212–270.

Smith S.A., Brown J.W., Walker J.F.. 2018. So many genes, so little time: a practical approach to divergence-time estimation in the genomic era. PLoS One 13:e0197433. PubMed PMC

Susko E. 2015. Bayesian long branch attraction bias and corrections. Syst. Biol. 64:243–255. PubMed

Swofford D.L., Waddell P.J., Huelsenbeck J.P., Foster P.G., Lewis P.O., Rogers J.S., Swofford D.L., Waddell P.J., Huelsenbeck J.P., Foster P.G., Lewis P., Rogers J.S.. 2001. Bias in phylogenetic estimation and its relevance to the choice between parsimony and likelihood methods. Syst. Biol. 50:525–539. PubMed

Thomas J.A., Welch J.J., Lanfear R., Bromham L.. 2010. A generation time effect on the rate of molecular evolution in invertebrates. Mol. Biol. Evol. 27:1173–1180. PubMed

Thorne J.L., Kishino H., Painter I.S.. 1998. Estimating the rate of evolution of the rate of molecular evolution. Mol. Biol. Evol. 15:1647–1657. PubMed

Trotter A.J., McRae J.M., Main D.C., Finston T.L.. 2017. Speciation in fractured rock landforms: towards understanding the diversity of subterranean cockroaches (Dictyoptera: Nocticolidae: Nocticola) in Western Australia. Zootaxa 4250:143–170. PubMed

Vankan M., Ho S.Y.W., Duchêne D.A.. 2021. Evolutionary rate variation among lineages in gene trees has a negative impact on species-tree inference. Syst. Biol. 71:490–500. PubMed PMC

Vidlička L., Vršanský P., Kúdelová T., Kúdela M., Deharveng L., Hain M.. 2017. New genus and species of cavernicolous cockroach (Blattaria, Nocticolidae) from Vietnam. Zootaxa 4232:361–375. PubMed

Vidlička L., Vršanský P., Shcherbakov D.E.. 2003. Two new troglobitic cockroach species of the genus spelaeoblatta (blattaria: Nocticolidae) from North Thailand. J. Nat. Hist. 37:107–114.

Wang Z., Shi Y., Qiu Z., Che Y., Lo N.. 2017. Reconstructing the phylogeny of Blattodea: Robust support for interfamilial relationships and major clades. Sci. Rep. 7:3903. PubMed PMC

Yang Z. 2007. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24:1586–1591. PubMed

Zhang C., Rabiee M., Sayyari E., Mirarab S.. 2018. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinf. 19:15–30. PubMed PMC

Zhang Y.M., Williams J.L., Lucky A.. 2019. Understanding UCEs: a comprehensive primer on using ultraconserved elements for arthropod phylogenomics. Insect Syst. Divers. 3:1–12.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...