Dating in the Dark: Elevated Substitution Rates in Cave Cockroaches (Blattodea: Nocticolidae) Have Negative Impacts on Molecular Date Estimates
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
DP220103265
Australian Research Council
Linnean Society of NSW
PubMed
38320290
PubMed Central
PMC11377191
DOI
10.1093/sysbio/syae002
PII: 7602085
Knihovny.cz E-zdroje
- Klíčová slova
- Among-lineage rate heterogeneity, Nocticolidae, clock models, divergence times, flexible local clock, molecular dating, ultraconserved elements,
- MeSH
- fylogeneze * MeSH
- genom mitochondriální MeSH
- molekulární evoluce MeSH
- švábi * genetika klasifikace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Rates of nucleotide substitution vary substantially across the Tree of Life, with potentially confounding effects on phylogenetic and evolutionary analyses. A large acceleration in mitochondrial substitution rate occurs in the cockroach family Nocticolidae, which predominantly inhabit subterranean environments. To evaluate the impacts of this among-lineage rate heterogeneity on estimates of phylogenetic relationships and evolutionary timescales, we analyzed nuclear ultraconserved elements (UCEs) and mitochondrial genomes from nocticolids and other cockroaches. Substitution rates were substantially elevated in nocticolid lineages compared with other cockroaches, especially in mitochondrial protein-coding genes. This disparity in evolutionary rates is likely to have led to different evolutionary relationships being supported by phylogenetic analyses of mitochondrial genomes and UCE loci. Furthermore, Bayesian dating analyses using relaxed-clock models inferred much deeper divergence times compared with a flexible local clock. Our phylogenetic analysis of UCEs, which is the first genome-scale study to include all 13 major cockroach families, unites Corydiidae and Nocticolidae and places Anaplectidae as the sister lineage to the rest of Blattoidea. We uncover an extraordinary level of genetic divergence in Nocticolidae, including two highly distinct clades that separated ~115 million years ago despite both containing representatives of the genus Nocticola. The results of our study highlight the potential impacts of high among-lineage rate variation on estimates of phylogenetic relationships and evolutionary timescales.
Bennelongia Environmental Consultants 5 Bishop Street Jolimont WA 6014 Australia
Centre for Evolutionary Biology The University of Western Australia Perth WA 6009 Australia
Collections and Research Western Australian Museum 49 Kew Street Welshpool WA 6106 Australia
Department of Agriculture Fisheries and Forestry Canberra ACT 2601 Australia
School of Life and Environmental Sciences University of Sydney Sydney NSW 2006 Australia
Zobrazit více v PubMed
Abascal F., Zardoya R., Telford M.J.. 2010. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. 38:W7–W13. PubMed PMC
Aberer A.J., Kobert K., Stamatakis A.. 2014. Exabayes: massively parallel bayesian tree inference for the whole-genome era. Mol. Biol. Evol. 31:2553–2556. PubMed PMC
Abrams K.M., Huey J.A., Hillyer M.J., Humphreys W.F., Didham R.K., Harvey M.S.. 2019. Too hot to handle: cenozoic aridification drives multiple independent incursions of Schizomida (Hubbardiidae) into hypogean environments. Mol. Phylogenet. Evol. 139:106532. PubMed
Andersen T., Kjaerandsen J.. 1995. Three new species of Nocticola Bolivar from Ghana, West Africa (Blattaria: Nocticolidae). J. African Zool. 109:377–385.
Asahina S. 1974. The cavernicolous cockroaches of the Ryukyu Islands. Mem. Natl. Sci. Museum Tokyo. 7:145–156.
Beasley-Hall P.G., Lee T.R.C., Rose H.A., Lo N.. 2018. Multiple abiotic factors correlate with parallel evolution in Australian soil burrowing cockroaches. J. Biogeogr. 45:1515–1528.
Bolivar I. 1892. Voyage de M. E. Simno aux iles Philippines (mars et avril 1890). Etudes sur les Arthropodes cavernicoles de l’ile de Luzon. Orthopteres. Ann. la Société Entomol. Fr 61:29–34.
Bouckaert R., Vaughan T.G., Barido-Sottani J., Duchêne S., Fourment M., Gavryushkina A., Heled J., Jones G., Kühnert D., De Maio N., Matschiner M., Mendes F.K., Müller N.F., Ogilvie H.A., Du Plessis L., Popinga A., Rambaut A., Rasmussen D., Siveroni I., Suchard M.A., Wu C.H., Xie D., Zhang C., Stadler T., Drummond A.J.. 2019. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15:1–28. PubMed PMC
Bourguignon T., Tang Q., Ho S.Y.W., Juna F., Wang Z., Arab D.A., Cameron S.L., Walker J., Rentz D., Evans T.A., Lo N.. 2018. Transoceanic dispersal and plate tectonics shaped global cockroach distributions: evidence from mitochondrial phylogenomics. Mol. Biol. Evol. 35:970–983. PubMed
Bromham L. 2009. Why do species vary in their rate of molecular evolution? Biol. Lett. 5:401–404. PubMed PMC
Bromham L., Cowman P.F., Lanfear R.. 2013. Parasitic plants have increased rates of molecular evolution across all three genomes. BMC Evol. Biol. 13:126. PubMed PMC
Bui Q.M., Schmidt H.A., Chernomor O., Schrempf D., Woodhams M.D., Von Haeseler A., Lanfear R.. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37:1530–1534. PubMed PMC
Byrne M., Steane D.A., Joseph L., Yeates D.K., Jordan G.J., Crayn D., Aplin K., Cantrill D.J., Cook L.G., Crisp M.D., Keogh J.S., Melville J., Moritz C., Porch N., Sniderman J.M.K., Sunnucks P., Weston P.H.. 2011. Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. J. Biogeogr. 38:1635–1656.
Chernomor O., Von Haeseler A., Minh B.Q.. 2016. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 65:997–1008. PubMed PMC
Chopard L. 1932. Un cas de microphtalmie liée à l’atrophie des ailes chez une blatte cavernicole. Livre du Centen. la Société Entomol. Fr 485:485–496.
Crayn D.M., Costion C., Harrington M.G.. 2015. The Sahul-Sunda floristic exchange: dated molecular phylogenies document Cenozoic intercontinental dispersal dynamics. J. Biogeogr. 42:11–24.
Crisp M.D., Hardy N.B., Cook L.G.. 2014. Clock model makes a large difference to age estimates of long-stemmed clades with no internal calibration: a test using Australian grasstrees. BMC Evol. Biol. 14:1–17. PubMed PMC
Dierckxsens N., Mardulyn P., Smits G.. 2017. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45:e18. PubMed PMC
Djernæs M., Klass K.D., Eggleton P.. 2015. Identifying possible sister groups of Cryptocercidae+Isoptera: a combined molecular and morphological phylogeny of Dictyoptera. Mol. Phylogenet. Evol. 84:284–303. PubMed
Djernæs M., Klass K.D., Picker M.D., Damgaard J.. 2012. Phylogeny of cockroaches (Insecta, Dictyoptera, Blattodea), with placement of aberrant taxa and exploration of out-group sampling. Syst. Entomol. 37:65–83.
Djernæs M., Murienne J.. 2022. Phylogeny of Blattoidea (Dictyoptera: Blattodea) with a revised classification of Blattidae. Arthropod Syst Phylogeny. 80:209–228.
Djernæs M., Varadínova Z.K., Kotyk M., Eulitz U., Klass K.-D.. 2020. Phylogeny and life history evolution of Blaberoidea (Blattodea). Arthropod Syst. Phylogeny. 78:29–67.
Donath A., Jühling F., Al-Arab M., Bernhart S.H., Reinhardt F., Stadler P.F., Middendorf M., Bernt M.. 2019. Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Res. 47:10543–10552. PubMed PMC
Dornburg A., Brandley M.C., McGowen M.R., Near T.J.. 2012. Relaxed clocks and inferences of heterogeneous patterns of nucleotide substitution and divergence time estimates across whales and dolphins (Mammalia: Cetacea). Mol. Biol. Evol. 29:721–736. PubMed
dos Reis M., Gunnell G.F., Barba-Montoya J., Wilkins A., Yang Z., Yoder A.D.. 2018. Using phylogenomic data to explore the effects of relaxed clocks and calibration strategies on divergence time estimation: primates as a test case. Syst. Biol. 67:594–615. PubMed PMC
dos Reis M., Yang Z.. 2011. Approximate likelihood calculation on a phylogeny for Bayesian Estimation of Divergence Times. Mol. Biol. Evol. 28:2161–2172. PubMed
Drummond A.J., Ho S.Y.W., Phillips M.J., Rambaut A.. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4:e88. PubMed PMC
Drummond A.J., Suchard M.A.. 2010. Bayesian random local clocks, or one rate to rule them all. BMC Biol. 8:114. PubMed PMC
Duchêne D.A., Duchêne S., Ho S.Y.W.. 2018. PhyloMAd: efficient assessment of phylogenomic model adequacy. Bioinformatics. 34:2300–2301. PubMed
Duchêne D.A., Mather N., Van Der Wal C., Ho S.Y.W.. 2022. Excluding loci with substitution saturation improves inferences from phylogenomic data. Syst. Biol. 71:676–689. PubMed PMC
Duchêne D.A., Tong K.J., Foster C.S.P., Duchêne S., Lanfear R., Ho S.Y.W.. 2020. Linking branch lengths across sets of loci provides the highest statistical support for phylogenetic inference. Mol. Biol. Evol. 37:1202–1210. PubMed
Duchêne S., Lanfear R., Ho S.Y.W.. 2014. The impact of calibration and clock-model choice on molecular estimates of divergence times. Mol. Phylogenet. Evol. 78:277–289. PubMed
Evangelista D., Simon S., Wilson M.M., Kawahara A.Y., Kohli M.K., Ware J.L., Wipfler B., Béthoux O., Grandcolas P., Legendre F.. 2021. Assessing support for Blaberoidea phylogeny suggests optimal locus quality. Syst. Entomol. 46:157–171.
Evangelista D.A., Wipfler B., Béthoux O., Donath A., Fujita M., Kohli M.K., Legendre F., Liu S., Machida R., Misof B., Peters R.S., Podsiadlowski L., Rust J., Schuette K., Tollenaar W., Ware J.L., Wappler T., Zhou X., Meusemann K., Simon S.. 2019. An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea). Proc. Biol. Sci. 286:20182076. PubMed PMC
Ewart K.M., Kovacs T.G.L., Walker J., Tatarnic N.J., Clark H., Lo N.. 2023. Considerable gene flow in troglomorphic cockroach species across a vast subterranean landscape. J. Biogeogr. 50:1967–1980.
Faircloth B.C. 2016. PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics 32:786–788. PubMed
Fernando W. 1957. New species of insects from Ceylon (I). Ceylon J. Sci. Biological Sci 1:157–167.
Fisher A.A., Ji X., Nishimura A., Lemey P., Suchard M.A.. 2021. Shrinkage-based random local clocks with scalable inference. arXiv, 10.48550/arXiv.2105.07119. PubMed PMC
Fourment M., Darling A.E.. 2018. Local and relaxed clocks: the best of both worlds. PeerJ 6:e5140. PubMed PMC
Gan H.M., Tan M.H., Lee Y.P., Schultz M.B., Horwitz P., Burnham Q., Austin C.M.. 2018. More evolution underground: accelerated mitochondrial substitution rate in Australian burrowing freshwater crayfishes (Decapoda: Parastacidae). Mol. Phylogenet. Evol. 118:88–98. PubMed
Han W., Qiu L., Zhang J., Wang Z., Che Y.. 2024. Phylogenetic reconstruction of Corydioidea (Dictyoptera: Blattodea) provides new insights on the placement of Latindiinae and supports the proposal of the new subfamily Ctenoneurinae. Syst. Entomol. 49:156–172.
Hellemans S., Wang M., Hasegawa N., Šobotník J., Scheffrahn R.H., Bourguignon T.. 2022. Using ultraconserved elements to reconstruct the termite tree of life. Mol. Phylogenet. Evol. 173:107520. PubMed
Ho S.Y.W. 2020. The molecular clock and evolutionary rates across the tree of life. In: Ho S.Y.W., editor. The molecular evolutionary clock: theory and practice. Cham: Springer. p. 3–23.
Ho S.Y.W., Duchêne S.. 2014. Molecular-clock methods for estimating evolutionary rates and timescales. Mol. Ecol. 23:5947–5965. PubMed
Ho S.Y.W., Duchêne S., Duchêne D.. 2015. Simulating and detecting autocorrelation of molecular evolutionary rates among lineages. Mol. Ecol. Resour. 15:688–696. PubMed
Inward D., Beccaloni G., Eggleton P.. 2007. Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol. Lett. 3:331–335. PubMed PMC
Jarvis E.D., Mirarab S., Aberer A.J., Li B., Houde P., Li C., Ho S.Y.W., Faircloth B.C., Nabholz B., Howard J.T., Suh A., Weber C.C., da Fonseca R.R., Li J., Zhang F., Li H., Zhou L., Narula N., Liu L., Ganapathy G., Boussau B., Bayzid M.S., Zavidovych V., Subramanian S., Gabaldón T., Capella-Gutiérrez S., Huerta-Cepas J., Rekepalli B., Munch K., Schierup M., Lindow B., Warren W.C., Ray D., Green R.E., Bruford M.W., Zhan X., Dixon A., Li S., Li N., Huang Y., Derryberry E.P., Bertelsen M.F., Sheldon F.H., Brumfield R.T., Mello C.V., Lovell P.V., Wirthlin M., Schneider M.P.C., Prosdocimi F., Samaniego J.A., Velazquez A.M.V., Alfaro-Núñez A., Campos P.F., Petersen B., Sicheritz-Ponten T., Pas A., Bailey T., Scofield P., Bunce M., Lambert D.M., Zhou Q., Perelman P., Driskell A.C., Shapiro B., Xiong Z., Zeng Y., Liu S., Li Z., Liu B., Wu K., Xiao J., Yinqi X., Zheng Q., Zhang Y., Yang H., Wang J., Smeds L., Rheindt F.E., Braun M., Fjeldsa J., Orlando L., Barker F.K., Jønsson K.A., Johnson W., Koepfli K.-P., O’Brien S., Haussler D., Ryder O.A., Rahbek C., Willerslev E., Graves G.R., Glenn T.C., McCormack J., Burt D., Ellegren H., Alström P., Edwards S.V., Stamatakis A., Mindell D.P., Cracraft J., Braun E.L., Warnow T., Jun W., Gilbert M.T.P., Zhang G.. 2014. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346:1320–1331. PubMed PMC
Javidkar M., Cooper S.J.B., Humphreys W.F., King R.A., Judd S., Austin A.D.. 2018. Biogeographic history of subterranean isopods from groundwater calcrete islands in Western Australia. Zool. Scr 47:206–220.
Kaltenpoth M., Corneli P.S., Dunn D.M., Weiss R.B., Strohm E., Seger J.. 2012. Accelerated evolution of mitochondrial but not nuclear genomes of hymenoptera: new evidence from crabronid wasps. PLoS One 7:e32826. PubMed PMC
Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., Von Haeseler A., Jermiin L.S.. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14:587–589. PubMed PMC
Karny H. 1924. Beiträge zur Malayischen Orthopteren fauna. Treubia. 5:12–19.
Katoh K., Toh H.. 2008. Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinform. 9:286–298. PubMed
Kolaczkowski B., Thornton J.W.. 2004. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogenous. Nature 431:980–984. PubMed
Kolaczkowski B., Thornton J.W.. 2009. Long-branch attraction bias and inconsistency in bayesian phylogenetics. PLoS One 4:e7891. PubMed PMC
Kück P., Mayer C., Wägele J.W., Misof B.. 2012. Long branch effects distort maximum likelihood phylogenies in simulations despite selection of the correct model. PLoS One 7:e36593–e36533. PubMed PMC
Lanfear R., Calcott B., Ho S.Y.W., Guindon S.. 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29:1695–1701. PubMed
Legendre F., Nel A., Svenson G.J., Robillard T., Pellens R., Grandcolas P.. 2015. Phylogeny of dictyoptera: Dating the origin of cockroaches, praying mantises and termites with molecular data and controlled fossil evidence. PLoS One 10:e0130127–e0130127. PubMed PMC
Legendre F., Whiting M.F., Bordereau C., Cancello E.M., Evans T.A., Grandcolas P.. 2008. The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: implications for the evolution of the worker and pseudergate castes, and foraging behaviors. Mol. Phylogenet. Evol. 48:615–627. PubMed
Lemaire B., Huysmans S., Smets E., Merckx V.. 2011. Rate accelerations in nuclear 18S rDNA of mycoheterotrophic and parasitic angiosperms. J. Plant Res. 124:561–576. PubMed PMC
Lepage T., Bryant D., Philippe H., Lartillot N.. 2007. A general comparison of relaxed molecular clock models. Mol. Biol. Evol. 24:2669–2680. PubMed
Lepage T., Lawi S., Tupper P., Bryant D.. 2006. Continuous and tractable models for the variation of evolutionary rates. Math. Biosci. 199:216–233. PubMed
Li X.R., Huang D.. 2020. A new mid-Cretaceous cockroach of stem Nocticolidae and reestimating the age of Corydioidea (Dictyoptera: Blattodea). Cretac. Res. 106:104202.
Linder M., Britton T., Sennblad B.. 2011. Evaluation of bayesian models of substitution rate evolution-parental guidance versus mutual independence. Syst. Biol. 60:329–342. PubMed
Liu J., Zhang J., Han W., Wang Y., He S., Wang Z.. 2023. Advances in the understanding of Blattodea evolution: insights from phylotranscriptomics and spermathecae. Mol. Phylogenet. Evol. 182:107753. PubMed
Lo N., Beninati T., Stone F., Walker J., Sacchi L.. 2007. Cockroaches that lack Blattabacterium endosymbionts: the phylogenetically divergent genus Nocticola. Biol. Lett. 3:327–330. PubMed PMC
Lo N., Jun Tong K., Rose H.A., Ho S.Y.W., Beninati T., Low D.L.T., Matsumoto T., Maekawa K.. 2016. Multiple evolutionary origins of australian soil-burrowing cockroaches driven by climate change in the neogene. Proc. R. Soc. B Biol. Sci. 283:20152869. PubMed PMC
Lucañas C.C., Bláha M., Rahmadi C., Patoka J.. 2021. The first Nocticola Bolivar 1892 (Blattodea: Nocticolidae) from New Guinea. Zootaxa 5082:294–300. PubMed
Lucañas C.C., Lit I.L.. 2016. Cockroaches (Insecta, Blattodea) from caves of Polillo Island (Philippines), with description of a new species. Subterr. Biol 19:51–64.
Lucañas C.C., Maosheng F.. 2023. A new macropterous Nocticola Bolivar, 1892 (Blattodea: Nocticolidae) from Singapore. J. Asia-Pac. Entomol. 26:102062.
Maekawa K., Lo N., Rose H.A., Matsumoto T.. 2003. The evolution of soil-burrowing cockroaches (Blattaria: Blaberidae) from wood-burrowing ancestors following an invasion of the latter from Asia into Australia. Proc. Biol. Sci. 270:1301–1307. PubMed PMC
Maturana Russel P., Brewer B.J., Klaere S., Bouckaert R.R.. 2019. Model selection and parameter inference in phylogenetics using nested sampling. Syst. Biol. 68:219–233. PubMed
Mitterboeck F.T., Adamowicz S.J.. 2013. Flight loss linked to faster molecular evolution in insects. Proc. R. Soc. B. 280:20131128. PubMed PMC
Nurk S., Meleshko D., Korobeynikov A., Pevzner P.A.. 2017. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27:824–834. PubMed PMC
Porter M.L. 2007. Subterranean biogeography: what have we learned from molecular techniques? J. Cave Karst Stud. 69:179–186.
Rannala B., Yang Z.. 2007. Inferring speciation tunes under an episodic molecular clock. Syst. Biol. 56:453–466. PubMed
Roch S., Nute M., Warnow T.. 2019. Long-branch attraction in species tree estimation: inconsistency of partitioned likelihood and topology-based summary methods. Syst. Biol. 68:281–297. PubMed
Roth L.M. 1988. Some cavernicolous and epigean cockroaches with six new species, and a discussion of the Nocticolidae (Dictyoptera: Blattaria). Rev. Suisse Zool. 95:297–321.
Roth L.M. 1999. New cockroach species, redescriptions, and records, mostly from Australia, and a description of Metanocticola christmasensis gen. nov., sp. nov., from Christmas Island (Blattaria). Rec. West. Aust. Museum. 19:327–364.
Roth L.M., McGavin G.C.. 1994. Two new species of nocticolidae (Dictyoptera: Blattaria) and a rediagnosis of the cavernicolous genus spelaeoblatta bolivar. J. Nat. Hist. 28:1319–1326.
Sanderson M.J. 2002. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol. Biol. Evol. 19:101–109. PubMed
Sendi H., Vršanský P., Podstrelená L., Hinkelman J., Kúdelová T., Kúdela M., Vidlička L., Ren X., Quicke D.L.J.J., Hinkelman J., Kúdelová T., Kúdela M., Vidlička L., Ren X., Quicke D.L.J.J.. 2020. Nocticolid cockroaches are the only known dinosaur age cave survivors. Gondwana Res. 82:288–298.
Seton M., Müller R.D., Zahirovic S., Gaina C., Torsvik T., Shephard G., Talsma A., Gurnis M., Turner M., Maus S., Chandler M.. 2012. Global continental and ocean basin reconstructions since 200Ma. Earth-Sci. Rev. 113:212–270.
Smith S.A., Brown J.W., Walker J.F.. 2018. So many genes, so little time: a practical approach to divergence-time estimation in the genomic era. PLoS One 13:e0197433. PubMed PMC
Susko E. 2015. Bayesian long branch attraction bias and corrections. Syst. Biol. 64:243–255. PubMed
Swofford D.L., Waddell P.J., Huelsenbeck J.P., Foster P.G., Lewis P.O., Rogers J.S., Swofford D.L., Waddell P.J., Huelsenbeck J.P., Foster P.G., Lewis P., Rogers J.S.. 2001. Bias in phylogenetic estimation and its relevance to the choice between parsimony and likelihood methods. Syst. Biol. 50:525–539. PubMed
Thomas J.A., Welch J.J., Lanfear R., Bromham L.. 2010. A generation time effect on the rate of molecular evolution in invertebrates. Mol. Biol. Evol. 27:1173–1180. PubMed
Thorne J.L., Kishino H., Painter I.S.. 1998. Estimating the rate of evolution of the rate of molecular evolution. Mol. Biol. Evol. 15:1647–1657. PubMed
Trotter A.J., McRae J.M., Main D.C., Finston T.L.. 2017. Speciation in fractured rock landforms: towards understanding the diversity of subterranean cockroaches (Dictyoptera: Nocticolidae: Nocticola) in Western Australia. Zootaxa 4250:143–170. PubMed
Vankan M., Ho S.Y.W., Duchêne D.A.. 2021. Evolutionary rate variation among lineages in gene trees has a negative impact on species-tree inference. Syst. Biol. 71:490–500. PubMed PMC
Vidlička L., Vršanský P., Kúdelová T., Kúdela M., Deharveng L., Hain M.. 2017. New genus and species of cavernicolous cockroach (Blattaria, Nocticolidae) from Vietnam. Zootaxa 4232:361–375. PubMed
Vidlička L., Vršanský P., Shcherbakov D.E.. 2003. Two new troglobitic cockroach species of the genus spelaeoblatta (blattaria: Nocticolidae) from North Thailand. J. Nat. Hist. 37:107–114.
Wang Z., Shi Y., Qiu Z., Che Y., Lo N.. 2017. Reconstructing the phylogeny of Blattodea: Robust support for interfamilial relationships and major clades. Sci. Rep. 7:3903. PubMed PMC
Yang Z. 2007. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24:1586–1591. PubMed
Zhang C., Rabiee M., Sayyari E., Mirarab S.. 2018. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinf. 19:15–30. PubMed PMC
Zhang Y.M., Williams J.L., Lucky A.. 2019. Understanding UCEs: a comprehensive primer on using ultraconserved elements for arthropod phylogenomics. Insect Syst. Divers. 3:1–12.