Roadmap for Molecular Benchmarks in Nonadiabatic Dynamics

. 2025 Aug 07 ; 129 (31) : 7023-7050. [epub] 20250715

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40663750

Simulating the coupled electronic and nuclear response of a molecule to light excitation requires the application of nonadiabatic molecular dynamics. However, when faced with a specific photophysical or photochemical problem, selecting the most suitable theoretical approach from the wide array of available techniques is not a trivial task. The challenge is further complicated by the lack of systematic method comparisons and rigorous testing on realistic molecular systems. This absence of comprehensive molecular benchmarks remains a major obstacle to advances within the field of nonadiabatic molecular dynamics. A CECAM workshop, Standardizing Nonadiabatic Dynamics: Towards Common Benchmarks, was held in May 2024 to address this issue. This Perspective highlights the key challenges identified during the workshop in defining molecular benchmarks for nonadiabatic dynamics. Specifically, this work outlines some preliminary observations on essential components needed for simulations and proposes a roadmap aiming to establish, as an ultimate goal, a community-driven, standardized molecular benchmark set.

Centre for Computational Chemistry School of Chemistry University of Bristol Bristol BS8 1TS United Kingdom

CNRS ICR Aix Marseille University 13397 Marseille France

CNRS Institut de Chimie Physique UMR 8000 Université Paris Saclay 91405 Orsay France

CNRS Institut des Nanosciences de Paris Sorbonne Université 75005 Paris France

CNRS Institut des Sciences Moléculaires d'Orsay Université Paris Saclay 91405 Orsay France

Departamento de Ciencia y Tecnologia Universidad Nacional de Quilmes CONICET B1876BXD Bernal Argentina

Departamento de Química Física Universidad de Salamanca Salamanca 37008 Spain

Departamento de Química Módulo 13 Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain

Department of Chemistry and Biochemistry University of California Merced California 95343 United States

Department of Chemistry and Industrial Chemistry University of Pisa via Moruzzi 13 56124 Pisa Italy

Department of Chemistry Indian Institute of Technology Bombay Mumbai 400076 India

Department of Chemistry New York University New York New York 10003 United States

Department of Chemistry Ulsan National Institute of Science and Technology Ulsan 44919 South Korea

Department of Chemistry University College London 20 Gordon St WC1H 0AJ London United Kingdom

Department of Industrial Chemistry University of Bologna via Gobetti 85 Bologna 40126 Italy

Department of Physical Chemistry Rudjer Bošković Institute Bijenička cesta 54 10000 Zagreb Croatia

Department of Physical Chemistry University of Chemistry and Technology Technická 5 16628 Prague Czech Republic

Department of Physics Rutgers University Newark New Jersey 07102 United States

Department of Physics University of Hamburg Luruper Chaussee 149 22761 Hamburg Germany

Faculty of Chemistry University of Warsaw Pasteura 1 Warsaw 00 927 Poland

Groupe de Spectrométrie Moléculaire et Atmosphérique GSMA UMR CNRS 7331 Université de Reims Champagne Ardenne U F R Sciences Exactes et Naturelles Moulin de la Housse B P 1039 51687 Reims Cedex 2 France

Hamburg Center for Ultrafast Imaging Universität Hamburg and Max Planck Institute for the Structure and Dynamics of Matter 22761 Hamburg Germany

Institut Universitaire de France 75231 Paris France

Institute of Theoretical and Computational Chemistry Heinrich Heine Universität Düsseldorf Universitätstraße 1 40225 Düsseldorf Germany

Institute of Theoretical Chemistry Faculty of Chemistry University of Vienna Währinger Str 17 1090 Vienna Austria

Institute of Theoretical Chemistry Faculty of Chemistry University of Vienna Währinger Str 17 A 1090 Vienna Austria

Italian Institute of Technology Via Enrico Melen 83 Genoa 16153 Italy

Laboratoire de Spectroscopie Atomique Moléculaire et Applications University of Tunis El Manar 1060 Tunis Tunisia

Laboratory of Theoretical Physical Chemistry Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne CH 1015 Lausanne Switzerland

MICS CentraleSupélec Paris Saclay University Gif sur Yvette 91190 France

MOE Key Laboratory of Environmental Theoretical Chemistry School of Environment South China Normal University Guangzhou 510006 China

Physical and Theoretical Chemistry Laboratory Department of Chemistry University of Oxford South Parks Road OX1 3QZ Oxford United Kingdom

School of Chemistry University of Nottingham Nottingham NG72RD United Kingdom

School of Chemistry University of Sydney Sydney NSW 2006 Australia

SCNU Environmental Research Institute Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety Guangzhou 510631 China

Simons Center for Computational Physical Chemistry at New York University New York New York 10003 United States

Theoretical Division and Center for Integrated Nanotechnologies Los Alamos National Laboratory Los Alamos New Mexico 87545 United States

Zobrazit více v PubMed

Born M., Oppenheimer R.. Zur Quantentheorie der Molekeln. Ann. Phys. 1927;84:457–484. doi: 10.1002/andp.19273892002. DOI

Domcke, W. ; Yarkony, D. R. ; Köppel, H. . Conical Intersections: Electronic Structure, Dynamics & Spectroscopy; World Scientific: 2004; Vol. 15.

Baer, M. Beyond Born-Oppenheimer: Electronic Nonadiabatic Coupling Terms and Conical Intersections; Wiley Interscience: 2006.

Tannor, D. J. Introduction to Quantum Mechanics: A Time-Dependent Perspective; University Science Books: 2007.

Tully J. C.. Perspective: Nonadiabatic dynamics theory. J. Chem. Phys. 2012;137:22A301. doi: 10.1063/1.4757762. PubMed DOI

Crespo-Otero R., Barbatti M.. Recent Advances and Perspectives on Nonadiabatic Mixed Quantum–Classical Dynamics. Chem. Rev. 2018;118:7026–7068. doi: 10.1021/acs.chemrev.7b00577. PubMed DOI

Curchod B. F. E., Martínez T. J.. Ab Initio Nonadiabatic Quantum Molecular Dynamics. Chem. Rev. 2018;118:3305–3336. doi: 10.1021/acs.chemrev.7b00423. PubMed DOI

Ibele L.-M., Sangiogo Gil E., Villaseco Arribas E., Agostini F.. Simulations of photoinduced processes with the exact factorization: state of the art and perspectives. Phys. Chem. Chem. Phys. 2024;26:26693–26718. doi: 10.1039/D4CP02489C. PubMed DOI

Nelson T. R., White A. J., Bjorgaard J. A., Sifain A. E., Zhang Y., Nebgen B., Fernandez-Alberti S., Mozyrsky D., Roitberg A. E., Tretiak S.. Non-adiabatic Excited-State Molecular Dynamics: Theory and Applications for Modeling Photophysics in Extended Molecular Materials. Chem. Rev. 2020;120:2215–2287. doi: 10.1021/acs.chemrev.9b00447. PubMed DOI

Zewail A. H.. Laser Femtochemistry. Science. 1988;242:1645–1653. doi: 10.1126/science.242.4886.1645. PubMed DOI

Zewail A. H.. Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond. J. Phys. Chem. A. 2000;104:5660–5694. doi: 10.1021/jp001460h. PubMed DOI

Stolow A., Bragg A. E., Neumark D. M.. Femtosecond Time-Resolved Photoelectron Spectroscopy. Chem. Rev. 2004;104:1719–1758. doi: 10.1021/cr020683w. PubMed DOI

Kowalewski M., Fingerhut B. P., Dorfman K. E., Bennett K., Mukamel S.. Simulating Coherent Multidimensional Spectroscopy of Nonadiabatic Molecular Processes: From the Infrared to the X-ray Regime. Chem. Rev. 2017;117:12165–12226. doi: 10.1021/acs.chemrev.7b00081. PubMed DOI

Maiuri M., Garavelli M., Cerullo G.. Ultrafast Spectroscopy: State of the Art and Open Challenges. J. Am. Chem. Soc. 2020;142:3–15. doi: 10.1021/jacs.9b10533. PubMed DOI

Kraus P. M., Zürch M., Cushing S. K., Neumark D. M., Leone S. R.. The ultrafast X-ray spectroscopic revolution in chemical dynamics. Nat. Rev. Chem. 2018;2:82–94. doi: 10.1038/s41570-018-0008-8. DOI

Worth, G. A. ; Beck, M. H. ; Jäckle, A. ; Meyer, H.-D. . The MCTDH Package, Version 8.2, (2000). H.-D. Meyer, Version 8.3 (2002), Version 8.4 (2007). O. Vendrell and H.-D. Meyer, Version 8.5 (2013). http://mctdh.uni-hd.de (accessed Jun 2, 2025).

Barbatti M., Bondanza M., Crespo-Otero R., Demoulin B., Dral P. O., Granucci G., Kossoski F., Lischka H., Mennucci B., Mukherjee. et al. Newton-X Platform: New Software Developments for Surface Hopping and Nuclear Ensembles. J. Chem. Theory Comput. 2022;18:6851–6865. doi: 10.1021/acs.jctc.2c00804. PubMed DOI PMC

Mai S., Marquetand P., González L.. Nonadiabatic dynamics: The SHARC approach. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018;8:e1370. doi: 10.1002/wcms.1370. PubMed DOI PMC

Shakiba M., Smith B., Li W., Dutra M., Jain A., Sun X., Garashchuk S., Akimov A.. Libra: A modular software library for quantum nonadiabatic dynamics. Softw. Impacts. 2022;14:100445. doi: 10.1016/j.simpa.2022.100445. DOI

Worth G. A.. QUANTICS: A general purpose package for quantum molecular dynamics simulations. Comput. Phys. Commun. 2020;248:107040. doi: 10.1016/j.cpc.2019.107040. DOI

Granucci, G. ; Persico, M. ; Accomasso, D. ; Sangiogo Gil, E. ; Corni, S. ; Fregoni, J. ; Laino, T. ; Tesi, M. ; Toniolo, A. . MOPAC-PI: a program for excited state dynamics simulations based on nonadiabatic trajectories and semiempirical electronic structure calculations, 2024. https://gitlab.com/granucci/mopacpi.git (accessed Jun 2, 2025).

Thiel W.. Semiempirical quantum–chemical methods. WIREs Comput. Mol. Sci. 2014;4:145–157. doi: 10.1002/wcms.1161. DOI

CPMD . Copyright IBM Corp 1990–2019, Copyright MPI für Festkörperforschung Stuttgart 1997–2001, 2024. http://www.cpmd.org/.

Pereira A., Knapik J., Chen A., Lauvergnat D., Agostini F.. Quantum molecular dynamics simulations of the effect of secondary modes on the photoisomerization of a retinal chromophore model. Eur. Phys. J. Spec. Top. 2023;232:1917–1933. doi: 10.1140/epjs/s11734-023-00923-4. DOI

Lee I. S., Ha J. K., Han D., Kim T. I., Moon S. W., Min S. K.. PyUNIxMD: A Python-based excited state molecular dynamics package. J. Comput. Chem. 2021;42:1755–1766. doi: 10.1002/jcc.26711. PubMed DOI PMC

Akimov A. V., Prezhdo O. V.. The PYXAID Program for Non-Adiabatic Molecular Dynamics in Condensed Matter Systems. J. Chem. Theory Comput. 2013;9:4959–4972. doi: 10.1021/ct400641n. PubMed DOI

Weingart O., Nenov A., Altoè P., Rivalta I., Segarra-Martí J., Dokukina I., Garavelli M.. COBRAMM 2.0A software interface for tailoring molecular electronic structure calculations and running nanoscale (QM/MM) simulations. J. Mol. Model. 2018;24:271. doi: 10.1007/s00894-018-3769-6. PubMed DOI

Fedorov D. A., Seritan S., Fales B. S., Martínez T. J., Levine B. G.. PySpawn: Software for Nonadiabatic Quantum Molecular Dynamics. J. Chem. Theory Comput. 2020;16:5485–5498. doi: 10.1021/acs.jctc.0c00575. PubMed DOI

Du L., Lan Z.. An On-the-Fly Surface-Hopping Program JADE for Nonadiabatic Molecular Dynamics of Polyatomic Systems: Implementation and Applications. J. Chem. Theory Comput. 2015;11:1360–1374. doi: 10.1021/ct501106d. PubMed DOI

Malone W., Nebgen B., White A., Zhang Y., Song H., Bjorgaard J. A., Sifain A. E., Rodriguez-Hernandez B., Freixas V. M., Fernandez-Alberti S.. et al. NEXMD Software Package for Nonadiabatic Excited State Molecular Dynamics Simulations. J. Chem. Theory Comput. 2020;16:5771–5783. doi: 10.1021/acs.jctc.0c00248. PubMed DOI

Mitrić R., Petersen J., Bonačić-Kouteckỳ V.. Laser-field-induced surface-hopping method for the simulation and control of ultrafast photodynamics. Phys. Rev. A. 2009;79:053416. doi: 10.1103/PhysRevA.79.053416. DOI

Prediction Challenge: Cyclobutanone Photochemistry. https://pubs.aip.org/collection/16531/Prediction-Challenge-Cyclobutanone-Photochemistry (accessed Jun 2, 2025).

Delta project. https://molmod.ugent.be/deltacodesdft (accessed Jun 2, 2025).

Schreiber M., Silva-Junior M. R., Sauer S. P. A., Thiel W.. Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3. J. Chem. Phys. 2008;128:134110. doi: 10.1063/1.2889385. PubMed DOI

Lejaeghere K., Bihlmayer G., Björkman T., Blaha P., Blügel S., Blum V., Caliste D., Castelli I. E., Clark S. J., Dal Corso A.. et al. Reproducibility in density functional theory calculations of solids. Science. 2016;351:aad3000. doi: 10.1126/science.aad3000. PubMed DOI

Adamo C., Jacquemin D.. The calculations of excited-state properties with Time-Dependent Density Functional Theory. Chem. Soc. Rev. 2013;42:845–856. doi: 10.1039/C2CS35394F. PubMed DOI

HyDRA Challenge. https://qmbench.net/challenges/hydra/hydra. (accessed Jun 2, 2025).

Fe-MAN challenge. https://qmbench.net/challenges/feman/feman (accessed Jun 2, 2025).

CECAM workshop: Standardizing nonadiabatic dynamics: towards common benchmarks. https://www.cecam.org/workshop-details/standardizing-nonadiabatic-dynamics-towards-common-benchmarks-1304, May 2024.

Tully J. C.. Molecular dynamics with electronic transitions. J. Chem. Phys. 1990;93:1061–1071. doi: 10.1063/1.459170. DOI

Shin S., Metiu H.. Nonadiabatic effects on the charge transfer rate constant: A numerical study of a simple model system. J. Chem. Phys. 1995;102:9285–9295. doi: 10.1063/1.468795. DOI

Hahn S., Stock G.. Quantum-Mechanical Modeling of the Femtosecond Isomerization in Rhodopsin. J. Phys. Chem. B. 2000;104:1146–1149. doi: 10.1021/jp992939g. DOI

Engel V., Metiu H.. A quantum mechanical study of predissociation dynamics of NaI excited by a femtosecond laser pulse. J. Chem. Phys. 1989;90:6116–6128. doi: 10.1063/1.456377. DOI

Schneider R., Domcke W.. S1-S2 conical intersection and ultrafast S1→S2 internal conversion in pyrazine. Chem. Phys. Lett. 1988;150:235–242. doi: 10.1016/0009-2614(88)80034-4. DOI

Hack M. D., Wensmann A. M., Truhlar D. G., Ben-Nun M., Martínez T. J.. Comparison of full multiple spawning, trajectory surface hopping, and converged quantum mechanics for electronically nonadiabatic dynamics. J. Chem. Phys. 2001;115:1172–1186. doi: 10.1063/1.1377030. DOI

Choi S., Vaníček J.. How important are the residual nonadiabatic couplings for an accurate simulation of nonadiabatic quantum dynamics in a quasidiabatic representation? J. Chem. Phys. 2021;154:124119. doi: 10.1063/5.0046067. PubMed DOI

Limbu D. K., Shakib F. A.. SHARP pack: A modular software for incorporating nuclear quantum effects into non-adiabatic dynamics simulations. Softw. Impacts. 2024;19:100604. doi: 10.1016/j.simpa.2023.100604. DOI

Kundu S., Makri N.. PathSum: A C++ and Fortran suite of fully quantum mechanical real-time path integral methods for (multi-) system+bath dynamics. J. Chem. Phys. 2023;158:224801. doi: 10.1063/5.0151748. PubMed DOI

Xie W., Sapunar M., Došlić N., Sala M., Domcke W.. Assessing the performance of trajectory surface hopping methods: Ultrafast internal conversion in pyrazine. J. Chem. Phys. 2019;150:154119. doi: 10.1063/1.5084961. PubMed DOI

Coonjobeeharry J., Spinlove K. E., Sanz Sanz C., Sapunar M., Došlić N., Worth G. A.. Mixed-quantum-classical or fully-quantized dynamics? A unified code to compare methods. Philos. Trans. R. Soc. A. 2022;380:20200386. doi: 10.1098/rsta.2020.0386. PubMed DOI

Plasser F., Gómez S., Menger M. F. S. J., Mai S., González L.. Highly efficient surface hopping dynamics using a linear vibronic coupling model. Phys. Chem. Chem. Phys. 2019;21:57–69. doi: 10.1039/C8CP05662E. PubMed DOI

Nelson T., Naumov A., Fernandez-Alberti S., Tretiak S.. Nonadiabatic excited-state molecular dynamics: On-the-fly limiting of essential excited states. Chem. Phys. 2016;481:84–90. doi: 10.1016/j.chemphys.2016.05.017. DOI

Ibele L. M., Curchod B. F. E.. A molecular perspective on Tully models for nonadiabatic dynamics. Phys. Chem. Chem. Phys. 2020;22:15183–15196. doi: 10.1039/D0CP01353F. PubMed DOI

Gómez S., Spinlove E., Worth G.. Benchmarking non-adiabatic quantum dynamics using the molecular Tully models. Phys. Chem. Chem. Phys. 2024;26:1829–1844. doi: 10.1039/D3CP03964A. PubMed DOI

Mannouch J. R., Kelly A.. Quantum Quality with Classical Cost: Ab Initio Nonadiabatic Dynamics Simulations Using the Mapping Approach to Surface Hopping. J. Phys. Chem. Lett. 2024;15:5814–5823. doi: 10.1021/acs.jpclett.4c00535. PubMed DOI PMC

Ibele L. M., Lassmann Y., Martínez T. J., Curchod B. F. E.. Comparing (stochastic-selection) ab initio multiple spawning with trajectory surface hopping for the photodynamics of cyclopropanone, fulvene, and dithiane. J. Chem. Phys. 2021;154:104110. doi: 10.1063/5.0045572. PubMed DOI

Weight B. M., Mandal A., Huo P.. Ab initio symmetric quasi-classical approach to investigate molecular Tully models. J. Chem. Phys. 2021;155:084106. doi: 10.1063/5.0061934. PubMed DOI

Weight B. M., Mandal A., Hu D., Huo P.. Ab initio spin-mapping non-adiabatic dynamics simulations of photochemistry. J. Chem. Phys. 2025;162:084105. doi: 10.1063/5.0248950. PubMed DOI

Avagliano D., Lorini E., González L.. Sampling effects in quantum mechanical/molecular mechanics trajectory surface hopping non-adiabatic dynamics. Philos. Trans. R. Soc. A. 2022;380:20200381. doi: 10.1098/rsta.2020.0381. PubMed DOI PMC

Vindel-Zandbergen P., Ibele L. M., Ha J.-K., Min S. K., Curchod B. F. E., Maitra N. T.. Study of the Decoherence Correction Derived from the Exact Factorization Approach for Nonadiabatic Dynamics. J. Chem. Theory Comput. 2021;17:3852–3862. doi: 10.1021/acs.jctc.1c00346. PubMed DOI PMC

Tokić N., Piteša T., Prlj A., Sapunar M., Došlić N.. Advantages and Limitations of Landau-Zener Surface Hopping Dynamics. Croat. Chem. Acta. 2024;97:205. doi: 10.5562/cca4133. DOI

Michl, J. ; Bonačić-Koutecký, V. . Electronic Aspects of Organic Photochemistry; Wiley: 1990.

Turro, N. J. Modern Molecular Photochemistry; University Science Books: 1991.

Persico, M. ; Granucci, G. . Photochemistry: A Modern Theoretical Perspective; Springer: 2018.

May, V. ; Kühn, O. . Charge and Energy Transfer Dynamics in Molecular Systems; John Wiley & Sons: 2011.

Wade, A. D. The Semantic Scholar Academic Graph (S2AG). In WWW’22: Companion Proceedings of the Web Conference 2022; Association for Computing Machinery: 2022.

Wald G.. Molecular Basis of Visual Excitation. Science. 1968;162:230–239. doi: 10.1126/science.162.3850.230. PubMed DOI

Warshel A.. Bicycle-pedal model for the first step in the vision process. Nature. 1976;260:679–683. doi: 10.1038/260679a0. PubMed DOI

Bandara H. D., Burdette S. C.. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 2012;41:1809–1825. doi: 10.1039/C1CS15179G. PubMed DOI

Waldeck D. H.. Photoisomerization dynamics of stilbenes. Chem. Rev. 1991;91:415–436. doi: 10.1021/cr00003a007. DOI

Kortekaas L., Browne W. R.. The evolution of spiropyran: fundamentals and progress of an extraordinarily versatile photochrome. Chem. Soc. Rev. 2019;48:3406–3424. doi: 10.1039/C9CS00203K. PubMed DOI

Levine B. G., Martínez T. J.. Isomerization Through Conical Intersections. Annu. Rev. Phys. Chem. 2007;58:613–634. doi: 10.1146/annurev.physchem.57.032905.104612. PubMed DOI

Schinke, R. Photodissociation Dynamics: Spectroscopy and Fragmentation of Small Polyatomic Molecules; Cambridge University Press: 1995.

Scherer N. F., Knee J. L., Smith D. D., Zewail A. H.. Femtosecond Photofragment Spectroscopy: The Reaction ICN → CN + I. J. Phys. Chem. 1985;89:5141–5143. doi: 10.1021/j100270a001. DOI

Rose T. S., Rosker M. J., Zewail A. H.. Femtosecond real-time observation of wave packet oscillations (resonance) in dissociation reactions. J. Chem. Phys. 1988;88:6672–6673. doi: 10.1063/1.454408. DOI

Foth H. J., Polanyi J. C., Telle H. H.. Emission from molecules and reaction intermediates in the process of falling apart. J. Phys. Chem. 1982;86:5027–5041. doi: 10.1021/j100223a001. DOI

Engel V., Metiu H.. The study of NaI predissociation with pump-probe femtosecond laser pulses: The use of an ionizing probe pulse to obtain more detailed dynamic information. Chem. Phys. Lett. 1989;155:77–82. doi: 10.1016/S0009-2614(89)87363-4. DOI

Williams S. O., Imre D. G.. Determination of real time dynamics in molecules by femtosecond laser excitation. J. Phys. Chem. 1988;92:6648–6654. doi: 10.1021/j100334a032. DOI

Engel V., Metiu H., Almeida R., Marcus R. A., Zewail A. H.. Molecular state evolution after excitation with an ultra-short laser pulse: A quantum analysis of NaI and NaBr dissociation. Chem. Phys. Lett. 1988;152:1–7. doi: 10.1016/0009-2614(88)87319-6. DOI

Choi S. E., Light J. C.. Use of the discrete variable representation in the quantum dynamics by a wave packet propagation: Predissociation of NaI­(1Σ0 +)→NaI­(0+)→Na­(2 S)+I­(2 P) J. Chem. Phys. 1989;90:2593–2604. doi: 10.1063/1.455957. DOI

Chapman S., Child M. S.. A semiclassical study of long time recurrences in the femtosecond predissociation dynamics of NaI. J. Phys. Chem. 1991;95:578–584. doi: 10.1021/j100155a018. DOI

Liane E. M., Simmermacher M., Kirrander A.. Ultrafast X-ray scattering and electronic coherence at avoided crossings: complete isotropic signals. J. Phys. B: At. Mol. Opt. Phys. 2024;57:145602. doi: 10.1088/1361-6455/ad53af. DOI

Betz V., Goddard B. D., Manthe U.. Wave packet dynamics in the optimal superadiabatic approximation. J. Chem. Phys. 2016;144:224109. doi: 10.1063/1.4953577. PubMed DOI

Janoš J., Slavíček P., Curchod B. F. E.. Including Photoexcitation Explicitly in Trajectory-Based Nonadiabatic Dynamics at No Cost. J. Phys. Chem. Lett. 2024;15:10614–10622. doi: 10.1021/acs.jpclett.4c02549. PubMed DOI PMC

Blank D. A., North S. W., Lee Y. T.. The ultraviolet photodissociation dynamics of pyrrole. Chem. Phys. 1994;187:35–47. doi: 10.1016/0301-0104(94)00230-4. DOI

Tseng C.-M., Lee Y. T., Lin M.-F., Ni C.-K., Liu S.-Y., Lee Y.-P., Xu Z., Lin M.-C.. Photodissociation Dynamics of Phenol. J. Phys. Chem. A. 2007;111:9463–9470. doi: 10.1021/jp073282z. PubMed DOI

Satyapal S., Park J., Bersohn R., Katz B.. Dissociation of methanol and ethanol activated by a chemical reaction or by light. J. Chem. Phys. 1989;91:6873–6879. doi: 10.1063/1.457356. DOI

Loreti A., Freixas V. M., Avagliano D., Segatta F., Song H., Tretiak S., Mukamel S., Garavelli M., Govind N., Nenov A.. WFOT: A Wave Function Overlap Tool between Single-and Multi-Reference Electronic Structure Methods for Spectroscopy Simulation. J. Chem. Theory Comput. 2024;20:4804–4819. doi: 10.1021/acs.jctc.4c00310. PubMed DOI

Curchod B. F. E., Sisto A., Martínez T. J.. Ab Initio Multiple Spawning Photochemical Dynamics of DMABN Using GPUs. J. Phys. Chem. A. 2017;121:265–276. doi: 10.1021/acs.jpca.6b09962. PubMed DOI

Matsika S., Yarkony D. R.. Beyond Two-State Conical Intersections. Three-State Conical Intersections in Low Symmetry Molecules: the Allyl Radical. J. Am. Chem. Soc. 2003;125:10672–10676. doi: 10.1021/ja036201v. PubMed DOI

Rankine C. D., Nunes J. P. F., Robinson M. S., Lane P. D., Wann D. A.. A theoretical investigation of internal conversion in 1,2-dithiane using non-adiabatic multiconfigurational molecular dynamics. Phys. Chem. Chem. Phys. 2016;18:27170–27174. doi: 10.1039/C6CP05518D. PubMed DOI

Zobel J. P., Heindl M., Plasser F., Mai S., González L.. Surface Hopping Dynamics on Vibronic Coupling Models. Acc. Chem. Res. 2021;54:3760–3771. doi: 10.1021/acs.accounts.1c00485. PubMed DOI PMC

Richter M., Marquetand P., González-Vázquez J., Sola I., González L.. Femtosecond Intersystem Crossing in the DNA Nucleobase Cytosine. J. Phys. Chem. Lett. 2012;3:3090–3095. doi: 10.1021/jz301312h. PubMed DOI

Mai, S. ; Richter, M. ; Marquetand, P. ; González, L. . Excitation of Nucleobases from a Computational Perspective II: Dynamics. In Photoinduced Phenomena in Nucleic Acids I: Nucleobases in the Gas Phase and in Solvents; Barbatti, M. ; Borin, A. C. ; Ullrich, S. , Eds.; Springer International Publishing: 2015; pp 99–153. PubMed

Fu B., Han Y. C., Bowman J. M., Angelucci L., Balucani N., Leonori F., Casavecchia P.. Intersystem crossing and dynamics in O­(3P) + C2H4 multichannel reaction: experiment validates theory. Proc. Natl. Acad. Sci. U.S.A. 2012;109:9733–9738. doi: 10.1073/pnas.1202672109. PubMed DOI PMC

Schnappinger T., Kölle P., Marazzi M., Monari A., González L., de Vivie-Riedle R.. Ab initio molecular dynamics of thiophene: the interplay of internal conversion and intersystem crossing. Phys. Chem. Chem. Phys. 2017;19:25662–25670. doi: 10.1039/C7CP05061E. PubMed DOI

Schnappinger T., Marazzi M., Mai S., Monari A., González L., de Vivie-Riedle R.. Intersystem Crossing as a Key Component of the Nonadiabatic Relaxation Dynamics of Bithiophene and Terthiophene. J. Chem. Theory Comput. 2018;14:4530–4540. doi: 10.1021/acs.jctc.8b00492. PubMed DOI

Minns R. S., Parker D. S. N., Penfold T. J., Worth G. A., Fielding H. H.. Competing ultrafast intersystem crossing and internal conversion in the “channel 3” region of benzene. Phys. Chem. Chem. Phys. 2010;12:15607–15615. doi: 10.1039/c001671c. PubMed DOI

Reichardt C., Vogt R. A., Crespo-Hernández C. E.. On the origin of ultrafast nonradiative transitions in nitro-polycyclic aromatic hydrocarbons: Excited-state dynamics in 1-nitronaphthalene. J. Chem. Phys. 2009;131:224518. doi: 10.1063/1.3272536. PubMed DOI

Mai S., Pollum M., Martínez-Fernández L., Dunn N., Marquetand P., Corral I., Crespo-Hernández C. E., González L.. The origin of efficient triplet state population in sulfur-substituted nucleobases. Nat. Commun. 2016;7:13077. doi: 10.1038/ncomms13077. PubMed DOI PMC

Valverde D., Mai S., Canuto S., Borin A. C., González L.. Ultrafast Intersystem Crossing Dynamics of 6-Selenoguanine in Water. JACS Au. 2022;2:1699–1711. doi: 10.1021/jacsau.2c00250. PubMed DOI PMC

Zobel J. P., González L.. Nonadiabatic Dynamics Simulation Predict Intersystem Crossing in Nitroaromatic Molecules on a Picosecond Time Scale. ChemPhotoChem. 2019;3:833–845. doi: 10.1002/cptc.201900108. PubMed DOI PMC

Greene H. J. M., Ghosh D., Sazanovich I. V., Phelps R., Curchod B. F. E., Orr-Ewing A. J.. Competing Nonadiabatic Relaxation Pathways for Near-UV Excited ortho-Nitrophenol in Aqueous Solution. J. Phys. Chem. Lett. 2024;15:9153–9159. doi: 10.1021/acs.jpclett.4c02154. PubMed DOI PMC

Marian C. M.. Understanding and Controlling Intersystem Crossing in Molecules. Annu. Rev. Phys. Chem. 2021;72:617–640. doi: 10.1146/annurev-physchem-061020-053433. PubMed DOI

Smith A. D., Warne E. M., Bellshaw D., Horke D. A., Tudorovskya M., Springate E., Jones A. J. H., Cacho C., Chapman R. T., Kirrander A., Minns R. S.. Mapping the complete reaction path of a complex photochemical reaction. Phys. Rev. Lett. 2018;120:183003. doi: 10.1103/PhysRevLett.120.183003. PubMed DOI

Bellshaw D., Minns R. S., Kirrander A.. Correspondence between electronic structure calculations and simulations: nonadiabatic dynamics in CS2 . Phys. Chem. Chem. Phys. 2019;21:14226–14237. doi: 10.1039/C8CP05693E. PubMed DOI

Cao J., Chen D.-C.. Disulfide bond photochemistry: the effects of higher excited states and different molecular geometries on disulfide bond cleavage. Phys. Chem. Chem. Phys. 2019;21:4176–4183. doi: 10.1039/C8CP06891G. PubMed DOI

Mukherjee S., Fedorov D. A., Varganov S. A.. Modeling spin-crossover dynamics. Annu. Rev. Phys. Chem. 2021;72:515–540. doi: 10.1146/annurev-physchem-101419-012625. PubMed DOI

Zhou P., Han K.. Unraveling the Detailed Mechanism of Excited-State Proton Transfer. Acc. Chem. Res. 2018;51:1681–1690. doi: 10.1021/acs.accounts.8b00172. PubMed DOI

Chen C.-L., Chen Y.-T., Demchenko A. P., Chou P.-T.. Amino proton donors in excited-state intramolecular proton-transfer reactions. Nat. Rev. Chem. 2018;2:131–143. doi: 10.1038/s41570-018-0020-z. DOI

Demchenko A. P.. Proton transfer reactions: From photochemistry to biochemistry and bioenergetics. BBA Adv. 2023;3:100085. doi: 10.1016/j.bbadva.2023.100085. PubMed DOI PMC

Holt E. L., Stavros V. G.. Applications of ultrafast spectroscopy to sunscreen development, from first principles to complex mixtures. Int. Rev. Phys. Chem. 2019;38:243–285. doi: 10.1080/0144235X.2019.1663062. DOI

Sedgwick A. C., Wu L., Han H.-H., Bull S. D., He X.-P., James T. D., Sessler J. L., Tang B. Z., Tian H., Yoon J.. Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chem. Soc. Rev. 2018;47:8842–8880. doi: 10.1039/C8CS00185E. PubMed DOI

Wu C.-H., Karas L. J., Ottosson H., Wu J. I.-C.. Excited-state proton transfer relieves antiaromaticity in molecules. Proc. Natl. Acad. Sci. U.S.A. 2019;116:20303–20308. doi: 10.1073/pnas.1908516116. PubMed DOI PMC

Joshi H. C., Antonov L.. Excited-State Intramolecular Proton Transfer: A Short Introductory Review. Molecules. 2021;26:1475. doi: 10.3390/molecules26051475. PubMed DOI PMC

Hammes-Schiffer S., Stuchebrukhov A. A.. Theory of Coupled Electron and Proton Transfer Reactions. Chem. Rev. 2010;110:6939–6960. doi: 10.1021/cr1001436. PubMed DOI PMC

Yu Q., Roy S., Hammes-Schiffer S.. Nonadiabatic Dynamics of Hydrogen Tunneling with Nuclear-Electronic Orbital Multistate Density Functional Theory. J. Chem. Theory Comput. 2022;18:7132–7141. doi: 10.1021/acs.jctc.2c00938. PubMed DOI

Hammes-Schiffer S.. Nuclear-electronic orbital methods: Foundations and prospects. J. Chem. Phys. 2021;155:030901. doi: 10.1063/5.0053576. PubMed DOI

Shushkov P., Li R., Tully J. C.. Ring polymer molecular dynamics with surface hopping. J. Chem. Phys. 2012;137:22A549. doi: 10.1063/1.4766449. PubMed DOI

Shakib F. A., Huo P.. Ring polymer surface hopping: Incorporating nuclear quantum effects into nonadiabatic molecular dynamics simulations. J. Phys. Chem. Lett. 2017;8:3073–3080. doi: 10.1021/acs.jpclett.7b01343. PubMed DOI

González, L. ; Lindh, R. . Quantum Chemistry and Dynamics of Excited States: Methods and Applications; Wiley: 2021.

Light J. C., Hamilton I. P., Lill J. V.. Generalized discrete variable approximation in quantum mechanics. J. Chem. Phys. 1985;82:1400–1409. doi: 10.1063/1.448462. DOI

Light J. C., Carrington T. Jr.. Discrete-Variable Representations and their Utilization. Adv. Chem. Phys. 2000;114:263–310. doi: 10.1002/9780470141731.ch4. DOI

Avila G., Carrington T. Jr.. Nonproduct quadrature grids for solving the vibrational Schrödinger equation. J. Chem. Phys. 2009;131:174103. doi: 10.1063/1.3246593. PubMed DOI

Meyer H.-D., Manthe U., Cederbaum L. S.. The multi-configurational time-dependent Hartree approach. Chem. Phys. Lett. 1990;165:73–78. doi: 10.1016/0009-2614(90)87014-I. DOI

Beck M. H., Jäckle A., Worth G. A., Meyer H.-D.. The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets. Phys. Rep. 2000;324:1–105. doi: 10.1016/S0370-1573(99)00047-2. DOI

Wang H., Thoss M.. Multilayer formulation of the multiconfiguration time-dependent Hartree theory. J. Chem. Phys. 2003;119:1289–1299. doi: 10.1063/1.1580111. DOI

Manthe U.. A multilayer multiconfigurational time-dependent Hartree approach for quantum dynamics on general potential energy surfaces. J. Chem. Phys. 2008;128:164116. doi: 10.1063/1.2902982. PubMed DOI

Lode A. U. J., Lévêque C., Madsen L. B., Streltsov A. I., Alon O. E.. Colloquium: Multiconfigurational time-dependent Hartree approaches for indistinguishable particles. Rev. Mod. Phys. 2020;92:011001. doi: 10.1103/RevModPhys.92.011001. DOI

Raab A., Burghardt I., Meyer H.-D.. The multiconfiguration time-dependent Hartree method generalized to the propagation of density operators. J. Chem. Phys. 1999;111:8759–8772. doi: 10.1063/1.480334. DOI

Picconi D., Burghardt I.. Open system dynamics using Gaussian-based multiconfigurational time-dependent Hartree wavefunctions: Application to environment-modulated tunneling. J. Chem. Phys. 2019;150:224106. doi: 10.1063/1.5099983. PubMed DOI

Picconi D.. Dynamics of high-dimensional quantum systems coupled to a harmonic bath. General theory and implementation via multiconfigurational wave packets and truncated hierarchical equations for the mean-fields. J. Chem. Phys. 2024;161:164108. doi: 10.1063/5.0233708. PubMed DOI

Van Haeften A., Ash C., Worth G.. Propagating multi-dimensional density operators using the multi-layer-ρ multi-configurational time-dependent Hartree method. J. Chem. Phys. 2023;159:194114. doi: 10.1063/5.0172956. PubMed DOI

Haegeman J., Lubich C., Oseledets I., Vandereycken B., Verstraete F.. Unifying time evolution and optimization with matrix product states. Phys. Rev. B. 2016;94:165116. doi: 10.1103/PhysRevB.94.165116. DOI

Paeckel S., Köhler T., Swoboda A., Manmana S. R., Schollwöck U., Hubig C.. Time-evolution methods for matrix-product states. Ann. Phys. 2019;411:167998. doi: 10.1016/j.aop.2019.167998. DOI

Larsson H. R.. A tensor network view of multilayer multiconfiguration time-dependent Hartree methods. Mol. Phys. 2024;122:e2306881. doi: 10.1080/00268976.2024.2306881. DOI

Ren J., Li W., Jiang T., Wang Y., Shuai Z.. Time-dependent density matrix renormalization group method for quantum dynamics in complex systems. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2022;12:e1614. doi: 10.1002/wcms.1614. DOI

Han S., Schröder M., Gatti F., Meyer H.-D., Lauvergnat D., Yarkony D. R., Guo H.. Representation of Diabatic Potential Energy Matrices for Multiconfiguration Time-Dependent Hartree Treatments of High-Dimensional Nonadiabatic Photodissociation Dynamics. J. Chem. Theory Comput. 2022;18:4627–4638. doi: 10.1021/acs.jctc.2c00370. PubMed DOI

Larsson H. R., Viel A.. 2500 vibronic eigenstates of the NO3 radical. Phys. Chem. Chem. Phys. 2024;26:24506–24523. doi: 10.1039/D4CP02653E. PubMed DOI

Viel A., Eisfeld W., Neumann S., Domcke W., Manthe U.. Photoionization-induced dynamics of ammonia: Ab initio potential energy surfaces and time-dependent wave packet calculations for the ammonia cation. J. Chem. Phys. 2006;124:214306. doi: 10.1063/1.2202316. PubMed DOI

Ellerbrock R., Hoppe H., Manthe U.. A non-hierarchical multi-layer multi-configurational time-dependent hartree approach for quantum dynamics on general potential energy surfaces. J. Chem. Phys. 2024;160:224108. doi: 10.1063/5.0216977. PubMed DOI

Martínez T. J., Ben-Nun M., Levine R. D.. Multi-Electronic-State Molecular Dynamics: A Wave Function Approach with Applications. J. Phys. Chem. 1996;100:7884–7895. doi: 10.1021/jp953105a. DOI

Ben-Nun M., Quenneville J., Martínez T. J.. Ab Initio Multiple Spawning: Photochemistry from First Principles Quantum Molecular Dynamics. J. Phys. Chem. A. 2000;104:5161–5175. doi: 10.1021/jp994174i. DOI

Mignolet B., Curchod B. F. E.. Excited-State Molecular Dynamics Triggered by Light PulsesAb Initio Multiple Spawning vs Trajectory Surface Hopping. J. Phys. Chem. A. 2019;123:3582–3591. doi: 10.1021/acs.jpca.9b00940. PubMed DOI

Curchod B. F. E., Rauer C., Marquetand P., González L., Martínez T. J.. Communication: GAIMS–Generalized Ab Initio Multiple Spawning for both internal conversion and intersystem crossing processes. J. Chem. Phys. 2016;144:101102. doi: 10.1063/1.4943571. PubMed DOI

Curchod B. F. E., Glover W. J., Martínez T. J.. SSAIMSStochastic-Selection Ab Initio Multiple Spawning for Efficient Nonadiabatic Molecular Dynamics. J. Phys. Chem. A. 2020;124:6133–6143. doi: 10.1021/acs.jpca.0c04113. PubMed DOI

Lassmann Y., Curchod B. F. E.. AIMSWISSAb initio multiple spawning with informed stochastic selections. J. Chem. Phys. 2021;154:211106. doi: 10.1063/5.0052118. PubMed DOI

Shalashilin D. V., Child M. S.. Multidimensional quantum propagation with the help of coupled coherent states. J. Chem. Phys. 2001;115:5367–5375. doi: 10.1063/1.1394939. DOI

Shalashilin D. V.. Quantum mechanics with the basis set guided by Ehrenfest trajectories: Theory and application to spin-boson model. J. Chem. Phys. 2009;130:244101. doi: 10.1063/1.3153302. PubMed DOI

Makhov D. V., Glover W. J., Martínez T. J., Shalashilin D. V.. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics. J. Chem. Phys. 2014;141:054110. doi: 10.1063/1.4891530. PubMed DOI

Burghardt I., Meyer H.-D., Cederbaum L. S.. Approaches to the approximate treatment of complex molecular systems by the multiconfiguration time-dependent Hartree method. J. Chem. Phys. 1999;111:2927–2939. doi: 10.1063/1.479574. DOI

Worth G. A., Burghardt I.. Full quantum mechanical molecular dynamics using Gaussian wavepackets. Chem. Phys. Lett. 2003;368:502–508. doi: 10.1016/S0009-2614(02)01920-6. DOI

Burghardt I., Giri K., Worth G. A.. Multimode quantum dynamics using Gaussian wavepackets: The Gaussian-based multiconfiguration time-dependent Hartree (G-MCTDH) method applied to the absorption spectrum of pyrazine. J. Chem. Phys. 2008;129:174104. doi: 10.1063/1.2996349. PubMed DOI

Richings G. W., Worth G. A.. Multi-state non-adiabatic direct-dynamics on propagated diabatic potential energy surfaces. Chem. Phys. Lett. 2017;683:606–612. doi: 10.1016/j.cplett.2017.03.032. DOI

Tully J. C., Preston R. K.. Trajectory Surface Hopping Approach to Nonadiabatic Molecular Collisions: The Reaction of H+ with D2 . J. Chem. Phys. 1971;55:562–572. doi: 10.1063/1.1675788. DOI

Hammes-Schiffer S., Tully J. C.. Proton transfer in solution: Molecular dynamics with quantum transitions. J. Chem. Phys. 1994;101:4657–4667. doi: 10.1063/1.467455. DOI

Zhu C., Nobusada K., Nakamura H.. New implementation of the trajectory surface hopping method with use of the Zhu–Nakamura theory. J. Chem. Phys. 2001;115:3031–3044. doi: 10.1063/1.1386811. DOI

Coker D. F., Xiao L.. Methods for molecular dynamics with nonadiabatic transitions. J. Chem. Phys. 1995;102:496–510. doi: 10.1063/1.469428. DOI

Nielsen S., Kapral R., Ciccotti G.. Mixed quantum-classical surface hopping dynamics. J. Chem. Phys. 2000;112:6543–6553. doi: 10.1063/1.481225. DOI

Richter M., Marquetand P., González-Vázquez J., Sola I., González L.. SHARC: ab Initio Molecular Dynamics with Surface Hopping in the Adiabatic Representation Including Arbitrary Couplings. J. Chem. Theory Comput. 2011;7:1253–1258. doi: 10.1021/ct1007394. PubMed DOI

Kelly A., Markland T. E.. Efficient and accurate surface hopping for long time nonadiabatic quantum dynamics. J. Chem. Phys. 2013;139:014104. doi: 10.1063/1.4812355. PubMed DOI

Kapral R.. Surface hopping from the perspective of quantum–classical Liouville dynamics. Chem. Phys. 2016;481:77–83. doi: 10.1016/j.chemphys.2016.05.016. DOI

Belyaev A. K., Domcke W., Lasser C., Trigila G.. Nonadiabatic nuclear dynamics of the ammonia cation studied by surface hopping classical trajectory calculations. J. Chem. Phys. 2015;142:104307. doi: 10.1063/1.4913962. PubMed DOI

Araujo L., Lasser C., Schmidt B.. FSSH-2: fewest switches surface hopping with robust switching probability. J. Chem. Theory Comput. 2024;20:3413–3419. doi: 10.1021/acs.jctc.4c00089. PubMed DOI

Belyaev A. K., Lasser C., Trigila G.. Landau–Zener type surface hopping algorithms. J. Chem. Phys. 2014;140:224108. doi: 10.1063/1.4882073. PubMed DOI

Hsiao I.-Y., Teranishi Y., Nakamura H.. Classically forbidden nonadiabatic transitions in multidimensional chemical dynamics. Phys. Chem. Chem. Phys. 2024;26:3795–3799. doi: 10.1039/D3CP04794F. PubMed DOI

Ishida T., Nanbu S., Nakamura H.. Clarification of nonadiabatic chemical dynamics by the Zhu-Nakamura theory of nonadiabatic transition: from tri-atomic systems to reactions in solutions. Int. Rev. Phys. Chem. 2017;36:229–285. doi: 10.1080/0144235X.2017.1293399. DOI

Bittner E. R., Rossky P. J.. Quantum decoherence in mixed quantum-classical systems: Nonadiabatic processes. J. Chem. Phys. 1995;103:8130–8143. doi: 10.1063/1.470177. DOI

Subotnik J. E., Jain A., Landry B., Petit A., Ouyang W., Bellonzi N.. Understanding the Surface Hopping View of Electronic Transitions and Decoherence. Annu. Rev. Phys. Chem. 2016;67:387–417. doi: 10.1146/annurev-physchem-040215-112245. PubMed DOI

Granucci G., Persico M.. Critical appraisal of the fewest switches algorithm for surface hopping. J. Chem. Phys. 2007;126:134114. doi: 10.1063/1.2715585. PubMed DOI

Granucci G., Persico M., Zoccante A.. Including quantum decoherence in surface hopping. J. Chem. Phys. 2010;133:134111. doi: 10.1063/1.3489004. PubMed DOI

Persico, M. ; Granucci, G. ; Accomasso, D. . The Quantum Decoherence Problem in Nonadiabatic Trajectory Methods. In Comprehensive Computational Chemistry, 1st ed.; Yáñez, M. ; Boyd, R. J. , Eds., Elsevier: Oxford, 2024; Vol. 4, pp 273–292.

Subotnik J. E., Shenvi N.. A new approach to decoherence and momentum rescaling in the surface hopping algorithm. J. Chem. Phys. 2011;134:024105. doi: 10.1063/1.3506779. PubMed DOI

Jain A., Alguire E., Subotnik J. E.. An Efficient, Augmented Surface Hopping Algorithm That Includes Decoherence for Use in Large-Scale Simulations. J. Chem. Theory Comput. 2016;12:5256–5268. doi: 10.1021/acs.jctc.6b00673. PubMed DOI

Jaeger H. M., Fischer S., Prezhdo O. V.. Decoherence-induced surface hopping. J. Chem. Phys. 2012;137:22A545. doi: 10.1063/1.4757100. PubMed DOI

Suchan J., Janoš J., Slavíček P.. Pragmatic Approach to Photodynamics: Mixed Landau–Zener Surface Hopping with Intersystem Crossing. J. Chem. Theory Comput. 2020;16:5809–5820. doi: 10.1021/acs.jctc.0c00512. PubMed DOI

Pieroni C., Agostini F.. Nonadiabatic Dynamics with Coupled Trajectories. J. Chem. Theory Comput. 2021;17:5969–5991. doi: 10.1021/acs.jctc.1c00438. PubMed DOI

Granucci G., Persico M., Toniolo A.. Direct semiclassical simulation of photochemical processes with semiempirical wave functions. J. Chem. Phys. 2001;114:10608–10615. doi: 10.1063/1.1376633. DOI

Wang L., Akimov A., Prezhdo O. V.. Recent Progress in Surface Hopping: 2011–2015. J. Phys. Chem. Lett. 2016;7:2100–2112. doi: 10.1021/acs.jpclett.6b00710. PubMed DOI

Toldo J. M., Mattos R. S., Pinheiro M. Jr., Mukherjee S., Barbatti M.. Recommendations for Velocity Adjustment in Surface Hopping. J. Chem. Theory Comput. 2024;20:614–624. doi: 10.1021/acs.jctc.3c01159. PubMed DOI

Plasser F., Mai S., Fumanal M., Gindensperger E., Daniel C., González L.. Strong influence of decoherence corrections and momentum rescaling in surface hopping dynamics of transition metal complexes. J. Chem. Theory Comput. 2019;15:5031–5045. doi: 10.1021/acs.jctc.9b00525. PubMed DOI

Nelson T., Fernandez-Alberti S., Roitberg A. E., Tretiak S.. Artifacts due to trivial unavoided crossings in the modeling of photoinduced energy transfer dynamics in extended conjugated molecules. Chem. Phys. Lett. 2013;590:208–213. doi: 10.1016/j.cplett.2013.10.052. DOI

Wang L., Prezhdo O. V.. A Simple Solution to the Trivial Crossing Problem in Surface Hopping. J. Phys. Chem. Lett. 2014;5:713–719. doi: 10.1021/jz500025c. PubMed DOI

Abedi A., Maitra N. T., Gross E. K. U.. Exact Factorization of the Time-Dependent Electron-Nuclear Wave Function. Phys. Rev. Lett. 2010;105:123002. doi: 10.1103/PhysRevLett.105.123002. PubMed DOI

Ibele, L. M. ; Pieroni, C. ; Talotta, F. ; Curchod, B. F. E. ; Lauvergnat, D. ; Agostini, F. . Exact Factorization of the Electron-Nuclear Wavefunction: Fundamentals and Algorithms. In Comprehensive Computational Chemistry, 1st ed.; Yáñez, M. ; Boyd, R. J. , Eds.; Elsevier: Oxford, 2024; Vol. 4, pp 188–211.

Pieroni C., Sangiogo Gil E., Ibele L. M., Persico M., Granucci G., Agostini F.. Investigating the Photodynamics of trans-Azobenzene with Coupled Trajectories. J. Chem. Theory Comput. 2024;20:580–596. doi: 10.1021/acs.jctc.3c00978. PubMed DOI

Xie R., Shi Z., Wang L.. Coupled Trajectory Surface Hopping with Sign Consistency. J. Chem. Phys. 2025;162:164103. doi: 10.26434/chemrxiv-2024-9dzv5. PubMed DOI

Ibele, L. M. ; Sangiogo Gil, E. ; Schürger, P. ; Agostini, F. . A coupled-trajectory approach for decoherence, frustrated hops and internal consistency in surface hopping. 2024, 10.48550/arXiv.2412.04958 (accessed Jun 2, 2025). DOI

Ha J.-K., Lee I. S., Min S. K.. Surface Hopping Dynamics beyond Nonadiabatic Couplings for Quantum Coherence. J. Phys. Chem. Lett. 2018;9:1097–1104. doi: 10.1021/acs.jpclett.8b00060. PubMed DOI

Ha J.-K., Min S. K.. Independent trajectory mixed quantum-classical approaches based on the exact factorization. J. Chem. Phys. 2022;156:174109. doi: 10.1063/5.0084493. PubMed DOI

Han D., Akimov A. V.. Nonadiabatic Dynamics with Exact Factorization: Implementation and Assessment. J. Chem. Theory Comput. 2024;20:5022–5042. doi: 10.1021/acs.jctc.4c00343. PubMed DOI

Dupuy L., Rikus A., Maitra N. T.. Exact-Factorization-Based Surface Hopping without Velocity Adjustment. J. Phys. Chem. Lett. 2024;15:2643–2649. doi: 10.1021/acs.jpclett.4c00115. PubMed DOI

Craig C. F., Duncan W. R., Prezhdo O. V.. Trajectory Surface Hopping in the Time-Dependent Kohn-Sham Approach for Electron-Nuclear Dynamics. Phys. Rev. Lett. 2005;95:163001. doi: 10.1103/PhysRevLett.95.163001. PubMed DOI

Tempelaar R., Reichman D. R.. Generalization of fewest-switches surface hopping for coherences. J. Chem. Phys. 2018;148:102309. doi: 10.1063/1.5000843. PubMed DOI

Martens C. C.. Surface Hopping without Momentum Jumps: A Quantum-Trajectory-Based Approach to Nonadiabatic Dynamics. J. Phys. Chem. A. 2019;123:1110–1128. doi: 10.1021/acs.jpca.8b10487. PubMed DOI

Martens C. C.. Surface Hopping by Consensus. J. Phys. Chem. Lett. 2016;7:2610–2615. doi: 10.1021/acs.jpclett.6b01186. PubMed DOI

Spencer J., Gajdos F., Blumberger J.. FOB-SH: Fragment orbital-based surface hopping for charge carrier transport in organic and biological molecules and materials. J. Chem. Phys. 2016;145:064102. doi: 10.1063/1.4960144. DOI

Kossoski F., Barbatti M.. Nonadiabatic dynamics in multidimensional complex potential energy surfaces. Chem. Sci. 2020;11:9827–9835. doi: 10.1039/D0SC04197A. PubMed DOI PMC

Tao Z., Yu Q., Roy S., Hammes-Schiffer S.. Direct Dynamics with Nuclear–Electronic Orbital Density Functional Theory. Acc. Chem. Res. 2021;54:4131–4141. doi: 10.1021/acs.accounts.1c00516. PubMed DOI

Mannouch J. R., Richardson J. O.. A mapping approach to surface hopping. J. Chem. Phys. 2023;158:104111. doi: 10.1063/5.0139734. PubMed DOI

Runeson J. E., Manolopoulos D. E.. A multi-state mapping approach to surface hopping. J. Chem. Phys. 2023;159:094115. doi: 10.1063/5.0158147. PubMed DOI

Lawrence J. E., Mannouch J. R., Richardson J. O.. A size-consistent multi-state mapping approach to surface hopping. J. Chem. Phys. 2024;160:244112. doi: 10.1063/5.0208575. PubMed DOI

McLachlan A. D.. A variational solution of the time-dependent schrodinger equation. Mol. Phys. 1964;8:39–44. doi: 10.1080/00268976400100041. DOI

Jenkins A. J., Spinlove K. E., Vacher M., Worth G. A., Robb M. A.. The Ehrenfest method with fully quantum nuclear motion (Qu-Eh): Application to charge migration in radical cations. J. Chem. Phys. 2018;149:094108. doi: 10.1063/1.5038428. PubMed DOI

Freixas V. M., Fernandez-Alberti S., Makhov D. V., Tretiak S., Shalashilin D.. An ab initio multiple cloning approach for the simulation of photoinduced dynamics in conjugated molecules. Phys. Chem. Chem. Phys. 2018;20:17762–17772. doi: 10.1039/C8CP02321B. PubMed DOI

Cheng S. C., Zhu C., Liang K. K., Lin S. H., Truhlar D. G.. Algorithmic decoherence time for decay-of-mixing non–Born–Oppenheimer dynamics. J. Chem. Phys. 2008;129:024112. doi: 10.1063/1.2948395. PubMed DOI

Zhu C., Nangia S., Jasper A. W., Truhlar D. G.. Coherent switching with decay of mixing: an improved treatment of electronic coherence for non-Born–Oppenheimer trajectories. J. Chem. Phys. 2004;121:7658–7670. doi: 10.1063/1.1793991. PubMed DOI

Zhu C., Jasper A. W., Truhlar D. G.. Non-Born-Oppenheimer Liouville-von Neumann Dynamics. Evolution of a Subsystem Controlled by Linear and Population-Driven Decay of Mixing with Decoherent and Coherent Switching. J. Chem. Theory Comput. 2005;1:527–540. doi: 10.1021/ct050021p. PubMed DOI

Miller W. H.. The Semiclassical Initial Value Representation: A Potentially Practical Way for Adding Quantum Effects to Classical Molecular Dynamics Simulations. J. Phys. Chem. A. 2001;105:2942–2955. doi: 10.1021/jp003712k. DOI

Sun X., Miller W. H.. Semiclassical initial value representation for electronically nonadiabatic molecular dynamics. J. Chem. Phys. 1997;106:6346–6353. doi: 10.1063/1.473624. DOI

Sun X., Wang H., Miller W. H.. Semiclassical theory of electronically nonadiabatic dynamics: Results of a linearized approximation to the initial value representation. J. Chem. Phys. 1998;109:7064–7074. doi: 10.1063/1.477389. DOI

Cotton S. J., Miller W. H.. Symmetrical windowing for quantum states in quasi-classical trajectory simulations: Application to electronically non-adiabatic processes. J. Chem. Phys. 2013;139:234112. doi: 10.1063/1.4845235. PubMed DOI

Cotton S. J., Miller W. H.. Symmetrical windowing for quantum states in quasi-classical trajectory simulations. J. Phys. Chem. A. 2013;117:7190–7194. doi: 10.1021/jp401078u. PubMed DOI

Runeson J. E., Richardson J. O.. Spin-mapping approach for nonadiabatic molecular dynamics. J. Chem. Phys. 2019;151:044119. doi: 10.1063/1.5100506. PubMed DOI

Runeson J. E., Richardson J. O.. Generalized spin mapping for quantum-classical dynamics. J. Chem. Phys. 2020;152:084110. doi: 10.1063/1.5143412. PubMed DOI

Saller M. A. C., Kelly A., Richardson J. O.. On the identity of the identity operator in nonadiabatic linearized semiclassical dynamics. J. Chem. Phys. 2019;150:071101. doi: 10.1063/1.5082596. PubMed DOI

Saller M. A. C., Kelly A., Richardson J. O.. Improved population operators for multi-state nonadiabatic dynamics with the mixed quantum-classical mapping approach. Faraday Discuss. 2020;221:150–167. doi: 10.1039/C9FD00050J. PubMed DOI

Amati G., Saller M. A. C., Kelly A., Richardson J. O.. Quasiclassical approaches to the generalized quantum master equation. J. Chem. Phys. 2022;157:234103. doi: 10.1063/5.0124028. PubMed DOI

Mannouch J. R., Richardson J. O.. A partially linearized spin-mapping approach for nonadiabatic dynamics. I. Derivation of the theory. J. Chem. Phys. 2020;153:194109. doi: 10.1063/5.0031168. PubMed DOI

Mannouch J. R., Richardson J. O.. A partially linearized spin-mapping approach for nonadiabatic dynamics. II. Analysis and comparison with related approaches. J. Chem. Phys. 2020;153:194110. doi: 10.1063/5.0031173. PubMed DOI

Hu D., Xie Y., Peng J., Lan Z.. On-the-Fly Symmetrical Quasi-Classical Dynamics with Meyer–Miller Mapping Hamiltonian for the Treatment of Nonadiabatic Dynamics at Conical Intersections. J. Chem. Theory Comput. 2021;17:3267–3279. doi: 10.1021/acs.jctc.0c01249. PubMed DOI

Meyer H., Miller W. H.. A classical analog for electronic degrees of freedom in nonadiabatic collision processes. J. Chem. Phys. 1979;70:3214–3223. doi: 10.1063/1.437910. DOI

Stock G., Thoss M.. Classical description of nonadiabatic quantum dynamics. Adv. Chem. Phys. 2005;131:243–375. doi: 10.1002/0471739464.ch5. DOI

Liu J., He X., Wu B.. Unified formulation of phase space mapping approaches for nonadiabatic quantum dynamics. Acc. Chem. Res. 2021;23:4215–4228. doi: 10.1021/acs.accounts.1c00511. PubMed DOI

Xie Y., Zheng J., Lan Z.. Performance evaluation of the symmetrical quasi-classical dynamics method based on Meyer-Miller mapping Hamiltonian in the treatment of site-exciton models. J. Chem. Phys. 2018;149:174105. doi: 10.1063/1.5047002. PubMed DOI

Gao X., Saller M. A. C., Liu Y., Kelly A., Richardson J. O., Geva E.. Benchmarking Quasiclassical Mapping Hamiltonian Methods for Simulating Electronically Nonadiabatic Molecular Dynamics. J. Chem. Theory Comput. 2020;16:2883–2895. doi: 10.1021/acs.jctc.9b01267. PubMed DOI

Zhou W., Mandal A., Huo P.. Quasi-diabatic scheme for nonadiabatic on-the-fly simulations. J. Phys. Chem. Lett. 2019;10:7062–7070. doi: 10.1021/acs.jpclett.9b02747. PubMed DOI

Tang D., Fang W.-H., Shen L., Cui G.. Combining Meyer-Miller Hamiltonian with electronic structure methods for on-the-fly nonadiabatic dynamics simulations: Implementation and application. Phys. Chem. Chem. Phys. 2019;21:17109–17117. doi: 10.1039/C9CP02682G. PubMed DOI

Miller W. H.. Electronically Nonadiabatic Dynamics via Semiclassical Initial Value Methods. J. Phys. Chem. A. 2009;113:1405–1415. doi: 10.1021/jp809907p. PubMed DOI

Huo P. F., Coker D. F.. Consistent schemes for non-adiabatic dynamics derived from partial linearized density matrix propagation. J. Chem. Phys. 2012;137:22A535. doi: 10.1063/1.4748316. PubMed DOI

Kim H., Nassimi A., Kapral R.. Quantum-classical Liouville dynamics in the mapping basis. J. Chem. Phys. 2008;129:084102. doi: 10.1063/1.2971041. PubMed DOI

Min S. K., Agostini F., Gross E. K. U.. Coupled-Trajectory Quantum-Classical Approach to Electronic Decoherence in Nonadiabatic Processes. Phys. Rev. Lett. 2015;115:073001. doi: 10.1103/PhysRevLett.115.073001. PubMed DOI

Villaseco Arribas E., Maitra N. T.. Energy-conserving coupled trajectory mixed quantum-classical dynamics. J. Chem. Phys. 2023;158:161105. doi: 10.1063/5.0149116. PubMed DOI

Dines A., Ellis M., Blumberger J.. Stabilized coupled trajectory mixed quantum-classical algorithm with improved energy conservation: CTMQC-EDI. J. Chem. Phys. 2023;159:234118. doi: 10.1063/5.0183589. PubMed DOI

Villaseco Arribas E., Ibele L. M., Lauvergnat D., Maitra N. T., Agostini F.. Significance of Energy Conservation in Coupled-Trajectory Approaches to Nonadiabatic Dynamics. J. Chem. Theory Comput. 2023;19:7787–7800. doi: 10.1021/acs.jctc.3c00845. PubMed DOI

Bonafé F. P., Aradi B., Hourahine B., Medrano C. R., Hernández F. J., Frauenheim T., Sánchez C. G.. A Real-Time Time-Dependent Density Functional Tight-Binding Implementation for Semiclassical Excited State Electron–Nuclear Dynamics and Pump–Probe Spectroscopy Simulations. J. Chem. Theory Comput. 2020;16:4454–4469. doi: 10.1021/acs.jctc.9b01217. PubMed DOI

Hernández F. J., Bonafé F. P., Aradi B., Frauenheim T., Sánchez C. G.. Simulation of Impulsive Vibrational Spectroscopy. J. Phys. Chem. A. 2019;123:2065–2072. doi: 10.1021/acs.jpca.9b00307. PubMed DOI

Kapral R., Ciccotti G.. Mixed quantum-classical dynamics. J. Chem. Phys. 1999;110:8919–8929. doi: 10.1063/1.478811. DOI

Kapral R.. Progress in the Theory of Mixed Quantum-Classical Dynamics. Annu. Rev. Phys. Chem. 2006;57:129–157. doi: 10.1146/annurev.physchem.57.032905.104702. PubMed DOI

Hanna G., Kapral R.. Quantum-classical Liouville dynamics of nonadiabatic proton transfer. J. Chem. Phys. 2005;122:244505. doi: 10.1063/1.1940051. PubMed DOI

Shakib F., Hanna G.. Mixed quantum-classical Liouville approach for calculating proton-coupled electron-transfer rate constants. J. Chem. Theory Comput. 2016;12:3020. doi: 10.1021/acs.jctc.6b00362. PubMed DOI

Grunwald, R. ; Kelly, A. ; Kapral, R. . Quantum Dynamics in Almost Classical Environments. In Energy Transfer Dynamics in Biomaterial Systems; Burghardt, I. ; May, V. ; Micha, D. A. ; Bittner, E. R. , Eds.; Springer: 2009; pp 383–413.

Kelly A., Van Zon R., Schofield J., Kapral R.. Mapping quantum-classical Liouville equation: Projectors and trajectories. J. Chem. Phys. 2012;136:084101. doi: 10.1063/1.3685420. PubMed DOI

Hsieh C.-Y., Kapral R.. Nonadiabatic dynamics in open quantum-classical systems: Forward-backward trajectory solution. J. Chem. Phys. 2012;137:22A507. doi: 10.1063/1.4736841. PubMed DOI

Kelly A., Montoya-Castillo A., Wang L., Markland T. E.. Generalized quantum master equations in and out of equilibrium: When can one win? J. Chem. Phys. 2016;144:184105. doi: 10.1063/1.4948612. PubMed DOI

Dunkel E. R., Bonella S., Coker D. F.. Iterative linearized approach to nonadiabatic dynamics. J. Chem. Phys. 2008;129:114106. doi: 10.1063/1.2976441. PubMed DOI

Bonella S., Coker D. F.. LAND-map, a linearized approach to nonadiabatic dynamics using the mapping formalism. J. Chem. Phys. 2005;122:194102. doi: 10.1063/1.1896948. PubMed DOI

Huo P., Coker D. F.. Communication: Partial linearized density matrix dynamics for dissipative, non-adiabatic quantum evolution. J. Chem. Phys. 2011;135:201101. doi: 10.1063/1.3664763. PubMed DOI

Makri N., Makarov D. E.. Tensor propagator for iterative quantum time evolution of reduced density matrices. I. Theory. J. Chem. Phys. 1995;102:4600–4610. doi: 10.1063/1.469508. DOI

Makri N., Thompson K.. Semiclassical influence functionals for quantum systems in anharmonic environments. Chem. Phys. Lett. 1998;291:101–109. doi: 10.1016/S0009-2614(98)00590-9. DOI

Lambert R., Makri N.. Quantum-classical path integral. I. Classical memory and weak quantum nonlocality. J. Chem. Phys. 2012;137:22A552. doi: 10.1063/1.4767931. PubMed DOI

Makri N.. Small Matrix Path Integral with Extended Memory. J. Chem. Theory Comput. 2021;17:1–6. doi: 10.1021/acs.jctc.0c00987. PubMed DOI

Keldysh, L. V. Diagram technique for nonequilibrium processes. In Selected Papers of Leonid V Keldysh; Sadovskii, M. V. , Ed.; World Scientific: 2024; pp 47–55.

Kadanoff, L. P. ; Baym, G. . Quantum Statistical Mechanics: Green’s Function Methods in Equilibrium and Nonequilibrium Problems; CRC Press: 2018.

Cohen G., Galperin M.. Green’s function methods for single molecule junctions. J. Chem. Phys. 2020;152:090901. doi: 10.1063/1.5145210. PubMed DOI

Nanni L.. Dynamics of proton tunneling in Hydrogen-Bonded systems through Green’s function formalism. J. Nat. Scien. & Math. Res. 2024;10:22–34. doi: 10.21580/jnsmr.v10i1.20095. DOI

Craig I. R., Manolopoulos D. E.. Quantum statistics and classical mechanics: Real time correlation functions from ring polymer molecular dynamics. J. Chem. Phys. 2004;121:3368. doi: 10.1063/1.1777575. PubMed DOI

London N., Bu S., Johnson B., Ananth N.. Mean-field ring polymer rates using a population dividing surface. J. Phys. Chem. A. 2024;128:5730–5739. doi: 10.1021/acs.jpca.4c00005. PubMed DOI

Ananth N.. Mapping variable ring polymer molecular dynamics: A path-integral based method for nonadiabatic processes. J. Chem. Phys. 2013;139:124102. doi: 10.1063/1.4821590. PubMed DOI

Menzeleev A. R., Ananth N., Miller T. F. III. Direct simulation of electron transfer using ring polymer molecular dynamics: Comparison with semiclassical instanton theory and exact quantum method. J. Chem. Phys. 2011;135:074106. doi: 10.1063/1.3624766. PubMed DOI

Chowdhury S. N., Huo P.. Coherent state mapping ring polymer molecular dynamics for non-adiabatic quantum propagations. J. Chem. Phys. 2017;147:214109. doi: 10.1063/1.4995616. PubMed DOI

Xu J., Zhou R., Blum V., Li T. E., Hammes-Schiffer S., Kanai Y.. First-Principles Approach for Coupled Quantum Dynamics of Electrons and Protons in Heterogeneous Systems. Phys. Rev. Lett. 2023;131:238002. doi: 10.1103/PhysRevLett.131.238002. PubMed DOI

Xu J., Zhou R., Li T. E., Hammes-Schiffer S., Kanai Y.. Lagrangian formulation of nuclear–electronic orbital Ehrenfest dynamics with real-time TDDFT for extended periodic systems. J. Chem. Phys. 2024;161:194109. doi: 10.1063/5.0230570. PubMed DOI

Tanimura Y., Kubo R.. Time Evolution of a Quantum System in Contact with a Nearly Gaussian-Markoffian Noise Bath. J. Phys. Soc. Jpn. 1989;58:101–114. doi: 10.1143/JPSJ.58.101. DOI

Tanimura Y.. Numerically “exact” approach to open quantum dynamics: The hierarchical equations of motion (HEOM) J. Chem. Phys. 2020;153:020901. doi: 10.1063/5.0011599. PubMed DOI

Ke Y.. Tree tensor network state approach for solving hierarchical equations of motion. J. Chem. Phys. 2023;158:211102. doi: 10.1063/5.0153870. PubMed DOI

Mangaud E., Jaouadi A., Chin A., Desouter-Lecomte M.. Survey of the hierarchical equations of motion in tensor-train format for non-Markovian quantum dynamics. Eur. Phys. J.: Spec. Top. 2023;232:1847–1869. doi: 10.1140/epjs/s11734-023-00919-0. DOI

Prior J., Chin A. W., Huelga S. F., Plenio M. B.. Efficient Simulation of Strong System-Environment Interactions. Phys. Rev. Lett. 2010;105:050404. doi: 10.1103/PhysRevLett.105.050404. PubMed DOI

Tamascelli D., Smirne A., Lim J., Huelga S. F., Plenio M. B.. Efficient Simulation of Finite-Temperature Open Quantum Systems. Phys. Rev. Lett. 2019;123:090402. doi: 10.1103/PhysRevLett.123.090402. PubMed DOI

Mukherjee S., Barbatti M.. A Hessian-Free Method to Prevent Zero-Point Energy Leakage in Classical Trajectories. J. Chem. Theory Comput. 2022;18:4109–4116. doi: 10.1021/acs.jctc.2c00216. PubMed DOI

Shu Y., Truhlar D. G.. Improved Local-Mode Zero-Point-Energy Conservation Scheme for Quasiclassical Trajectories. J. Phys. Chem. A. 2024;128:3625–3634. doi: 10.1021/acs.jpca.3c08309. PubMed DOI

MacDonell R. J., Dickerson C. E., Birch C. J. T., Kumar A., Edmunds C. L., Biercuk M. J., Hempel C., Kassal I.. Analog quantum simulation of chemical dynamics. Chem. Sci. 2021;12:9794–9805. doi: 10.1039/D1SC02142G. PubMed DOI PMC

Valahu C. H., Olaya-Agudelo V. C., MacDonell R. J., Navickas T., Rao A. D., Millican M. J., Pérez-Sánchez J. B., Yuen-Zhou J., Biercuk M. J., Hempel C.. et al. Direct observation of geometric-phase interference in dynamics around a conical intersection. Nat. Chem. 2023;15:1503–1508. doi: 10.1038/s41557-023-01300-3. PubMed DOI

Sun K., Kang M., Nuomin H., Schwartz G., Beratan D. N., Brown K. R., Kim J.. Quantum simulation of spin-boson models with structured bath. Nat. Commun. 2025;16:4042. doi: 10.48550/arXiv.2405.14624. PubMed DOI PMC

Navickas T., MacDonell R. J., Valahu C. H., Olaya-Agudelo V. C., Scuccimarra F., Millican M. J., Matsos V. G., Nourse H. L., Rao A. D.. Experimental Quantum Simulation of Chemical Dynamics. J. Am. Chem. Soc. 2025;147(27):23566–23573. doi: 10.48550/arXiv.2409.04044. PubMed DOI

Kassal I., Jordan S. P., Love P. J., Mohseni M., Aspuru-Guzik A.. Polynomial-time quantum algorithm for the simulation of chemical dynamics. Proc. Natl. Acad. Sci. U.S.A. 2008;105:18681–18686. doi: 10.1073/pnas.0808245105. PubMed DOI PMC

Childs A. M., Leng J., Li T., Liu J.-P., Zhang C.. Quantum simulation of real-space dynamics. Quantum. 2022;6:860. doi: 10.22331/q-2022-11-17-860. DOI

Rubin N. C., Berry D. W., Kononov A., Malone F. D., Khattar T., White A., Lee J., Neven H., Babbush R., Baczewski A. D.. Quantum computation of stopping power for inertial fusion target design. Proc. Natl. Acad. Sci. U. S. A. 2024;121:e2317772121. doi: 10.1073/pnas.2317772121. PubMed DOI PMC

Motlagh, D. ; Lang, R. A. ; Campos-Gonzalez-Angulo, J. A. ; Zeng, T. ; Aspuru-Guzik, A. ; Arrazola, J. M. . Quantum Algorithm for Vibronic Dynamics: Case Study on Singlet Fission Solar Cell Design. 2024. 10.48550/arXiv.2411.13669 (accessed Jun 2, 2025). DOI

Kovyrshin A., Skogh M., Tornberg L., Broo A., Mensa S., Sahin E., Symons B. C. B., Crain J., Tavernelli I.. Nonadiabatic Nuclear–Electron Dynamics: A Quantum Computing Approach. J. Phys. Chem. Lett. 2023;14:7065–7072. doi: 10.1021/acs.jpclett.3c01589. PubMed DOI

Ollitrault P. J., Mazzola G., Tavernelli I.. Nonadiabatic molecular quantum dynamics with quantum computers. Phys. Rev. Lett. 2020;125:260511. doi: 10.1103/PhysRevLett.125.260511. PubMed DOI

Gandon A., Baiardi A., Ollitrault P., Tavernelli I.. Nonadiabatic Molecular Dynamics with Fermionic Subspace-Expansion Algorithms on Quantum Computers. J. Chem. Theory Comput. 2024;20:5951–5963. doi: 10.1021/acs.jctc.4c00233. PubMed DOI

Tuna D., Lefrancois D., Wolański Ł., Gozem S., Schapiro I., Andruniów T., Dreuw A., Olivucci M.. Assessment of Approximate Coupled-Cluster and Algebraic-Diagrammatic-Construction Methods for Ground- and Excited-State Reaction Paths and the Conical-Intersection Seam of a Retinal-Chromophore Model. J. Chem. Theory Comput. 2015;11:5758–5781. doi: 10.1021/acs.jctc.5b00022. PubMed DOI

Papineau T. V., Jacquemin D., Vacher M.. Which Electronic Structure Method to Choose in Trajectory Surface Hopping Dynamics Simulations? Azomethane as a Case Study. J. Phys. Chem. Lett. 2024;15:636–643. doi: 10.1021/acs.jpclett.3c03014. PubMed DOI

Ibele L., Memhood A., Levine B. G., Avagliano D.. Ab Initio Multiple Spawning Nonadiabatic Dynamics with Different CASPT2 Flavors: A Fully Open-Source PySpawn/OpenMolcas Interface. J. Chem. Theory Comput. 2024;20:8140–8151. doi: 10.1021/acs.jctc.4c00855. PubMed DOI

Janoš J., Slavíček P.. What Controls the Quality of Photodynamical Simulations? Electronic Structure Versus Nonadiabatic Algorithm. J. Chem. Theory Comput. 2023;19:8273–8284. doi: 10.1021/acs.jctc.3c00908. PubMed DOI PMC

Mukherjee S., Mattos R. S., Toldo J. M., Lischka H., Barbatti M.. Prediction challenge: Simulating Rydberg photoexcited cyclobutanone with surface hopping dynamics based on different electronic structure methods. J. Chem. Phys. 2024;160:154306. doi: 10.1063/5.0203636. PubMed DOI

Zobel J. P., Kruse A., Baig O., Lochbrunner S., Bokarev S. I., Kühn O., González L., Bokareva O. S.. Can range-separated functionals be optimally tuned to predict spectra and excited state dynamics in photoactive iron complexes? Chem. Sci. 2023;14:1491–1502. doi: 10.1039/D2SC05839A. PubMed DOI PMC

Gozem S., Melaccio F., Valentini A., Filatov M., Huix-Rotllant M., Ferré N., Frutos L. M., Angeli C., Krylov A. I., Granovsky A. A.. et al. Shape of Multireference, Equation-of-Motion Coupled-Cluster, and Density Functional Theory Potential Energy Surfaces at a Conical Intersection. J. Chem. Theory Comput. 2014;10:3074–3084. doi: 10.1021/ct500154k. PubMed DOI

Cooper J. C., Brown C. Y. Z., Kára J., Kirrander A.. Photoexcited dynamics of the valence states of norbornadiene. J. Chem. Phys. 2025;162:094102. doi: 10.1063/5.0246270. PubMed DOI

Cooper J. C., Kirrander A.. Electronic structure of norbornadiene and quadricyclane. Phys. Chem. Chem. Phys. 2025;27:3089–3101. doi: 10.1039/D4CP03960B. PubMed DOI

Brady R. P., Drury C., Yurchenko S. N., Tennyson J.. Numerical Equivalence of Diabatic and Adiabatic Representations in Diatomic Molecules. J. Chem. Theory Comput. 2024;20:2127–2139. doi: 10.1021/acs.jctc.3c01150. PubMed DOI PMC

Matsika S.. Electronic Structure Methods for the Description of Nonadiabatic Effects and Conical Intersections. Chem. Rev. 2021;121:9407–9449. doi: 10.1021/acs.chemrev.1c00074. PubMed DOI

Szalay P. G., Müller T., Gidofalvi G., Lischka H., Shepard R.. Multiconfiguration Self-Consistent Field and Multireference Configuration Interaction Methods and Applications. Chem. Rev. 2012;112:108–181. doi: 10.1021/cr200137a. PubMed DOI

González L., Escudero D., Serrano-Andrés L.. Progress and Challenges in the Calculation of Electronic Excited States. ChemPhysChem. 2012;13:28–51. doi: 10.1002/cphc.201100200. PubMed DOI

Park J. W., Al-Saadon R., MacLeod M. K., Shiozaki T., Vlaisavljevich B.. Multireference Electron Correlation Methods: Journeys along Potential Energy Surfaces. Chem. Rev. 2020;120:5878–5909. doi: 10.1021/acs.chemrev.9b00496. PubMed DOI

Snyder J. W. Jr., Parrish R. M., Martínez T. J.. α-CASSCF: An Efficient, Empirical Correction for SA-CASSCF To Closely Approximate MS-CASPT2 Potential Energy Surfaces. J. Phys. Chem. Lett. 2017;8:2432–2437. doi: 10.1021/acs.jpclett.7b00940. PubMed DOI

Frutos L. M., Andruniów T., Santoro F., Ferré N., Olivucci M.. Tracking the excited-state time evolution of the visual pigment with multiconfigurational quantum chemistry. Proc. Natl. Acad. Sci. U.S.A. 2007;104:7764–7769. doi: 10.1073/pnas.0701732104. PubMed DOI PMC

Wolf T. J. A., Sanchez D. M., Yang J., Parrish R. M., Nunes J. P. F., Centurion M., Coffee R., Cryan J. P., Gühr M., Hegazy K.. et al. The photochemical ring-opening of 1,3-cyclohexadiene imaged by ultrafast electron diffraction. Nat. Chem. 2019;11:504–509. doi: 10.1038/s41557-019-0252-7. PubMed DOI

List N. H., Jones C. M., Martínez T. J.. Internal conversion of the anionic GFP chromophore: in and out of the I-twisted S1/S0 conical intersection seam. Chem. Sci. 2022;13:373–385. doi: 10.1039/D1SC05849E. PubMed DOI PMC

Slavíček P., Martínez T. J.. Ab initio floating occupation molecular orbital-complete active space configuration interaction: An efficient approximation to CASSCF. J. Chem. Phys. 2010;132:234102. doi: 10.1063/1.3436501. PubMed DOI

Hollas D., Šištík L., Hohenstein E. G., Martínez T. J., Slavíček P.. Nonadiabatic Ab Initio Molecular Dynamics with the Floating Occupation Molecular Orbital-Complete Active Space Configuration Interaction Method. J. Chem. Theory Comput. 2018;14:339–350. doi: 10.1021/acs.jctc.7b00958. PubMed DOI

Ullrich, C. A. Time-Dependent Density-Functional Theory: Concepts and Applications; Oxford University Press: 2011.

Tozer D. J., Handy N. C.. On the determination of excitation energies using density functional theory. Phys. Chem. Chem. Phys. 2000;2:2117–2121. doi: 10.1039/a910321j. DOI

Levine B. G., Ko C., Quenneville J., Martínez T. J.. Conical intersections and double excitations in time-dependent density functional theory. Mol. Phys. 2006;104:1039–1051. doi: 10.1080/00268970500417762. DOI

Maitra N. T., Zhang F., Cave R. J., Burke K.. Double excitations within time-dependent density functional theory linear response. J. Chem. Phys. 2004;120:5932–5937. doi: 10.1063/1.1651060. PubMed DOI

Dreuw A., Head-Gordon M.. Failure of Time-Dependent Density Functional Theory for Long-Range Charge-Transfer Excited States: The Zincbacteriochlorin-Bacteriochlorin and Bacteriochlorophyll-Spheroidene Complexes. J. Am. Chem. Soc. 2004;126:4007–4016. doi: 10.1021/ja039556n. PubMed DOI

Hellgren M., Gross E. K. U.. Discontinuities of the exchange-correlation kernel and charge-transfer excitations in time-dependent density-functional theory. Phys. Rev. A. 2012;85:022514. doi: 10.1103/PhysRevA.85.022514. DOI

Thiele M., Kümmel S.. Frequency Dependence of the Exact Exchange-Correlation Kernel of Time-Dependent Density-Functional Theory. Phys. Rev. Lett. 2014;112:083001. doi: 10.1103/PhysRevLett.112.083001. DOI

Cave R. J., Zhang F., Maitra N. T., Burke K.. A dressed TDDFT treatment of the 21Ag states of butadiene and hexatriene. Chem. Phys. Lett. 2004;389:39–42. doi: 10.1016/j.cplett.2004.03.051. DOI

Elliott P., Goldson S., Canahui C., Maitra N. T.. Perspectives on double-excitations in TDDFT. Chem. Phys. 2011;391:110–119. doi: 10.1016/j.chemphys.2011.03.020. DOI

Taylor J. T., Tozer D. J., Curchod B. F. E.. On the description of conical intersections between excited electronic states with LR-TDDFT and ADC(2) J. Chem. Phys. 2023;159:214115. doi: 10.1063/5.0176140. PubMed DOI

Taylor J. T., Tozer D. J., Curchod B. F. E.. On the Topological Phase around Conical Intersections with Tamm–Dancoff Linear-Response Time-Dependent Density Functional Theory. J. Phys. Chem. A. 2024;128:5314–5320. doi: 10.1021/acs.jpca.4c02503. PubMed DOI PMC

Maitra N. T.. Perspective: Fundamental aspects of time-dependent density functional theory. J. Chem. Phys. 2016;144:220901. doi: 10.1063/1.4953039. PubMed DOI

Wiggins P., Williams J. A. G., Tozer D. J.. Excited state surfaces in density functional theory: a new twist on an old problem. J. Chem. Phys. 2009;131:091101. doi: 10.1063/1.3222641. PubMed DOI

Ferchichi O., Derbel N., Cours T., Alijah A.. Dichlorine peroxide (ClOOCl), chloryl chloride (ClCl­(O)­O) and chlorine chlorite (ClOClO): very accurate ab initio structures and actinic degradation. Phys. Chem. Chem. Phys. 2020;22:4059–4071. doi: 10.1039/C9CP06875A. PubMed DOI

Chebbi W., Derbel N., Alijah A., Cours T.. UV-spectrum and photodecomposition of peroxynitrous acid in the troposphere. Phys. Chem. Chem. Phys. 2023;26:123–129. doi: 10.1039/D3CP04580C. PubMed DOI

Lefrancois D., Tuna D., Martínez T. J., Dreuw A.. The Spin-Flip Variant of the Algebraic-Diagrammatic Construction Yields the Correct Topology of S1/S0 Conical Intersections. J. Chem. Theory Comput. 2017;13:4436–4441. doi: 10.1021/acs.jctc.7b00634. PubMed DOI

Shao Y., Head-Gordon M., Krylov A. I.. The spin–flip approach within time-dependent density functional theory: Theory and applications to diradicals. J. Chem. Phys. 2003;118:4807–4818. doi: 10.1063/1.1545679. DOI

Zhang X., Herbert J. M.. Spin-flip, tensor equation-of-motion configuration interaction with a density-functional correction: a spin-complete method for exploring excited-state potential energy surfaces. J. Chem. Phys. 2015;143:234107. doi: 10.1063/1.4937571. PubMed DOI

Li Z., Liu W.. Spin-adapted open-shell random phase approximation and time-dependent density functional theory. I. Theory. J. Chem. Phys. 2010;133:064106. doi: 10.1063/1.3463799. PubMed DOI

Li Z., Liu W., Zhang Y., Suo B.. Spin-adapted open-shell time-dependent density functional theory. II. Theory and pilot application. J. Chem. Phys. 2011;134:134101. doi: 10.1063/1.3573374. PubMed DOI

Li Z., Liu W.. Spin-adapted open-shell time-dependent density functional theory. III. An even better and simpler formulation. J. Chem. Phys. 2011;135:194106. doi: 10.1063/1.3660688. PubMed DOI

Filatov M.. Spin-restricted ensemble-referenced Kohn–Sham method: basic principles and application to strongly correlated ground and excited states of molecules. WIREs Comput. Mol. Sci. 2015;5:146–167. doi: 10.1002/wcms.1209. DOI

Lee S., Kim E. E., Nakata H., Lee S., Choi C. H.. Efficient implementations of analytic energy gradient for mixed-reference spin-flip time-dependent density functional theory (MRSF-TDDFT) J. Chem. Phys. 2019;150:184111. doi: 10.1063/1.5086895. PubMed DOI

Lee S., Shostak S., Filatov M., Choi C. H.. Conical Intersections in Organic Molecules: Benchmarking Mixed-Reference Spin–Flip Time-Dependent DFT (MRSF-TD-DFT) vs Spin–Flip TD-DFT. J. Phys. Chem. A. 2019;123:6455–6462. doi: 10.1021/acs.jpca.9b06142. PubMed DOI

Horbatenko Y., Lee S., Filatov M., Choi C. H.. How Beneficial Is the Explicit Account of Doubly-Excited Configurations in Linear Response Theory? J. Chem. Theory Comput. 2021;17:975–984. doi: 10.1021/acs.jctc.0c01214. PubMed DOI

Bannwarth C., Yu J. K., Hohenstein E. G., Martínez T. J.. Hole–hole Tamm–Dancoff-approximated density functional theory: A highly efficient electronic structure method incorporating dynamic and static correlation. J. Chem. Phys. 2020;153:024110. doi: 10.1063/5.0003985. PubMed DOI

Yu J. K., Bannwarth C., Hohenstein E. G., Martínez T. J.. Ab Initio Nonadiabatic Molecular Dynamics with Hole–Hole Tamm–Dancoff Approximated Density Functional Theory. J. Chem. Theory Comput. 2020;16:5499–5511. doi: 10.1021/acs.jctc.0c00644. PubMed DOI

Yu J., Li J., Zhu T., Yang W.. Accurate and efficient prediction of double excitation energies using the particle–particle random phase approximation. J. Chem. Phys. 2025;162:094101. doi: 10.1063/5.0251418. PubMed DOI PMC

Dar D. B., Maitra N. T.. Oscillator strengths and excited-state couplings for double excitations in time-dependent density functional theory. J. Chem. Phys. 2023;159:211104. doi: 10.1063/5.0176705. PubMed DOI

Dar D. B., Maitra N. T.. Capturing the Elusive Curve-Crossing in Low-Lying States of Butadiene with Dressed TDDFT. J. Phys. Chem. Lett. 2025;16:703–709. doi: 10.1021/acs.jpclett.4c03167. PubMed DOI PMC

Li X., Govind N., Isborn C., DePrince A. E. III, Lopata K.. Real-Time Time-Dependent Electronic Structure Theory. Chem. Rev. 2020;120:9951–9993. doi: 10.1021/acs.chemrev.0c00223. PubMed DOI

Provorse M. R., Isborn C. M.. Electron dynamics with real-time time-dependent density functional theory. Int. J. Quantum Chem. 2016;116:739–749. doi: 10.1002/qua.25096. DOI

Dreuw A., Wormit M.. The algebraic diagrammatic construction scheme for the polarization propagator for the calculation of excited states. WIREs Comput. Mol. Sci. 2015;5:82–95. doi: 10.1002/wcms.1206. DOI

Plasser F., Crespo-Otero R., Pederzoli M., Pittner J., Lischka H., Barbatti M.. Surface Hopping Dynamics with Correlated Single-Reference Methods: 9H-Adenine as a Case Study. J. Chem. Theory Comput. 2014;10:1395–1405. doi: 10.1021/ct4011079. PubMed DOI

Marsili E., Prlj A., Curchod B. F. E.. Caveat when using ADC(2) for studying the photochemistry of carbonyl-containing molecules. Phys. Chem. Chem. Phys. 2021;23:12945–12949. doi: 10.1039/D1CP02185K. PubMed DOI PMC

Hättig C.. Structure Optimizations for Excited States with Correlated Second-Order Methods: CC2 and ADC(2) Adv. Quantum Chem. 2005;50:37–60. doi: 10.1016/S0065-3276(05)50003-0. DOI

Parker S. M., Roy S., Furche F.. Unphysical divergences in response theory. J. Chem. Phys. 2016;145:134105. doi: 10.1063/1.4963749. PubMed DOI

Kjo̷nstad E. F., Fajen O. J., Paul A. C., Angelico S., Mayer D., Gühr M., Wolf T. J. A., Martínez T. J., Koch H.. Photoinduced hydrogen dissociation in thymine predicted by coupled cluster theory. Nat. Commun. 2024;15:10128. doi: 10.1038/s41467-024-54436-2. PubMed DOI PMC

Hait D., Lahana D., Fajen O. J., Paz A. S., Unzueta P. A., Rana B., Lu L., Wang Y., Kjo̷nstad E. F., Koch H., Martínez T. J.. Prediction of photodynamics of 200 nm excited cyclobutanone with linear response electronic structure and ab initio multiple spawning. J. Chem. Phys. 2024;160:244101. doi: 10.1063/5.0203800. PubMed DOI

Cusati T., Granucci G., Persico M.. Photodynamics and Time-Resolved Fluorescence of Azobenzene in Solution: A Mixed Quantum-Classical Simulation. J. Am. Chem. Soc. 2011;133:5109–5123. doi: 10.1021/ja1113529. PubMed DOI

Cusati T., Granucci G., Martínez-Núñez E., Martini F., Persico M., Vázquez S.. Semiempirical Hamiltonian for Simulation of Azobenzene Photochemistry. J. Phys. Chem. A. 2012;116:98–110. doi: 10.1021/jp208574q. PubMed DOI

Fabiano E., Keal T. W., Thiel W.. Implementation of surface hopping molecular dynamics using semiempirical methods. Chem. Phys. 2008;349:334–347. doi: 10.1016/j.chemphys.2008.01.044. DOI

Accomasso D., Persico M., Granucci G.. Diabatization by Localization in the Framework of Configuration Interaction Based on Floating Occupation Molecular Orbitals (FOMO-CI) ChemPhotoChem. 2019;3:933–944. doi: 10.1002/cptc.201900056. DOI

Accomasso D., Arslancan S., Cupellini L., Granucci G., Mennucci B.. Ultrafast Excited-State Dynamics of Carotenoids and the Role of the SX State. J. Phys. Chem. Lett. 2022;13:6762–6769. doi: 10.1021/acs.jpclett.2c01555. PubMed DOI PMC

Fabiano E., Thiel W.. Nonradiative Deexcitation Dynamics of 9H-Adenine: An OM2 Surface Hopping Study. J. Phys. Chem. A. 2008;112:6859–6863. doi: 10.1021/jp8033402. PubMed DOI

Weingart O., Lan Z., Koslowski A., Thiel W.. Chiral Pathways and Periodic Decay in cis-Azobenzene Photodynamics. J. Phys. Chem. Lett. 2011;2:1506–1509. doi: 10.1021/jz200474g. DOI

Li Manni G., Fdez Galván I., Alavi A., Aleotti F., Aquilante F., Autschbach J., Avagliano D., Baiardi A., Bao J. J., Battaglia S.. et al. The OpenMolcas Web: A Community-Driven Approach to Advancing Computational Chemistry. J. Chem. Theory Comput. 2023;19:6933–6991. doi: 10.1021/acs.jctc.3c00182. PubMed DOI PMC

Shiozaki T.. BAGEL: Brilliantly Advanced General Electronic-structure Library. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018;8:e1331. doi: 10.1002/wcms.1331. DOI

Neese F.. Software update: the ORCA program system, version 4.0. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018;8:e1327. doi: 10.1002/wcms.1327. DOI

Aprà E., Bylaska E. J., de Jong W. A., Govind N., Kowalski K., Straatsma T. P., Valiev M., van Dam H. J. J., Alexeev Y., Anchell J.. et al. NWChem: Past, present, and future. J. Chem. Phys. 2020;152:184102. doi: 10.1063/5.0004997. PubMed DOI

Barca G. M. J., Bertoni C., Carrington L., Datta D., De Silva N., Deustua J. E., Fedorov D. G., Gour J. R., Gunina A. O., Guidez E.. et al. Recent developments in the general atomic and molecular electronic structure system. J. Chem. Phys. 2020;152:154102. doi: 10.1063/5.0005188. PubMed DOI

Wu X., Koslowski A., Thiel W.. Semiempirical Quantum Chemical Calculations Accelerated on a Hybrid Multicore CPU–GPU Computing Platform. J. Chem. Theory Comput. 2012;8:2272–2281. doi: 10.1021/ct3001798. PubMed DOI

Sun Q., Berkelbach T. C., Blunt N. S., Booth G. H., Guo S., Li Z., Liu J., McClain J. D., Sayfutyarova E. R., Sharma S.. et al. PySCF: the Python-based simulations of chemistry framework. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018;8:e1340. doi: 10.1002/wcms.1340. DOI

Richings G. W., Habershon S.. MCTDH on-the-fly: Efficient grid-based quantum dynamics without pre-computed potential energy surfaces. J. Chem. Phys. 2018;148:134116. doi: 10.1063/1.5024869. PubMed DOI

Richings G. W., Robertson C., Habershon S.. Improved on-the-Fly MCTDH Simulations with Many-Body-Potential Tensor Decomposition and Projection Diabatization. J. Chem. Theory Comput. 2019;15:857–870. doi: 10.1021/acs.jctc.8b00819. PubMed DOI

Köppel, H. ; Domcke, W. ; Cederbaum, L. S. . The multi-mode vibronic-coupling approach. In Conical Intersections; World Scientific: 2004; pp 323–367.

Heindl M., González L.. Taming Disulfide Bonds with Laser Fields. Nonadiabatic Surface-Hopping Simulations in a Ruthenium Complex. J. Phys. Chem. Lett. 2022;13:1894–1900. doi: 10.1021/acs.jpclett.1c04143. PubMed DOI PMC

Vindel-Zandbergen P., Matsika S., Maitra N. T.. Exact-Factorization-Based Surface Hopping for Multistate Dynamics. J. Phys. Chem. Lett. 2022;13:1785–1790. doi: 10.1021/acs.jpclett.1c04132. PubMed DOI

Guan Y., Xie C., Yarkony D. R., Guo H.. High-fidelity first principles nonadiabaticity: diabatization, analytic representation of global diabatic potential energy matrices, and quantum dynamics. Phys. Chem. Chem. Phys. 2021;23:24962–24983. doi: 10.1039/D1CP03008F. PubMed DOI

Westermayr J., Gastegger M., Menger M. F. S. J., Mai S., González L., Marquetand P.. Machine learning enables long time scale molecular photodynamics simulations. Chem. Sci. 2019;10:8100–8107. doi: 10.1039/C9SC01742A. PubMed DOI PMC

Dral P. O., Barbatti M.. Molecular excited states through a machine learning lens. Nat. Rev. Chem. 2021;5:388–405. doi: 10.1038/s41570-021-00278-1. PubMed DOI

Westermayr J., Marquetand P.. Machine Learning for Electronically Excited States of Molecules. Chem. Rev. 2021;121:9873–9926. doi: 10.1021/acs.chemrev.0c00749. PubMed DOI PMC

Schapiro I., Ryazantsev M. N., Frutos L. M., Ferré N., Lindh R., Olivucci M.. The Ultrafast Photoisomerizations of Rhodopsin and Bathorhodopsin Are Modulated by Bond Length Alternation and HOOP Driven Electronic Effects. J. Am. Chem. Soc. 2011;133:3354–3364. doi: 10.1021/ja1056196. PubMed DOI

Schnedermann C., Yang X., Liebel M., Spillane K., Lugtenburg J., Fernández I., Valentini A., Schapiro I., Olivucci M., Kukura P.. et al. Evidence for a vibrational phase-dependent isotope effect on the photochemistry of vision. Nat. Chem. 2018;10:449–455. doi: 10.1038/s41557-018-0014-y. PubMed DOI

Manzhos S., Carrington T. Jr.. Using neural networks to represent potential surfaces as sum of products. J. Chem. Phys. 2006;125:084109. doi: 10.1063/1.2387950. PubMed DOI

Song Q., Zhang X., Peláez D., Meng Q.. Direct Canonical-Polyadic-Decomposition of the Potential Energy Surface from Discrete Data by Decoupled Gaussian Process Regression. J. Phys. Chem. Lett. 2022;13:11128–11135. doi: 10.1021/acs.jpclett.2c03080. PubMed DOI

Avila G., Carrington T. Jr.. Using multi-dimensional Smolyak interpolation to make a sum-of-products potential. J. Chem. Phys. 2015;143:044106. doi: 10.1063/1.4926651. PubMed DOI

Panadés-Barrueta R. L., Peláez D.. Low-rank sum-of-products finite-basis-representation (SOP-FBR) of potential energy surfaces. J. Chem. Phys. 2020;153:234110. doi: 10.1063/5.0027143. PubMed DOI

Nadoveza N. S., Panadés-Barrueta R. L., Shi L., Gatti F., Peláez D.. Analytical high-dimensional operators in canonical polyadic finite basis representation (CP-FBR) J. Chem. Phys. 2023;158:114109. doi: 10.1063/5.0139224. PubMed DOI

Qiu Z., Magoulès F., Peláez D.. Single-entry computation of analytical hierarchical (binary) tree structures. Adv. Eng. Softw. 2025;203:103873. doi: 10.1016/j.advengsoft.2025.103873. DOI

Shi L., Schröder M., Meyer H.-D., Peláez D., Wodtke A. M., Golibrzuch K., Schönemann A.-M., Kandratsenka A., Gatti F.. Quantum and classical molecular dynamics for h atom scattering from graphene. J. Chem. Phys. 2023;159:194102. doi: 10.1063/5.0176655. PubMed DOI

Persico M., Granucci G.. An overview of nonadiabatic dynamics simulations methods, with focus on the direct approach versus the fitting of potential energy surfaces. Theor. Chem. Acc. 2014;133:1526. doi: 10.1007/s00214-014-1526-1. DOI

Suchan J., Hollas D., Curchod B. F. E., Slavíček P.. On the importance of initial conditions for excited-state dynamics. Faraday Discuss. 2018;212:307–330. doi: 10.1039/C8FD00088C. PubMed DOI

Janoš J., Slavíček P., Curchod B. F. E.. Selecting Initial Conditions for Trajectory-Based Nonadiabatic Simulations. Acc. Chem. Res. 2025;58:261–270. doi: 10.1021/acs.accounts.4c00687. PubMed DOI PMC

Adamska L., Nayyar I., Chen H., Swan A. K., Oldani N., Fernandez-Alberti S., Golder M. R., Jasti R., Doorn S. K., Tretiak S.. Self-trapping of excitons, violation of condon approximation, and efficient fluorescence in conjugated cycloparaphenylenes. Nano Lett. 2014;14:6539–6546. doi: 10.1021/nl503133e. PubMed DOI

Ceriotti M., Bussi G., Parrinello M.. Nuclear Quantum Effects in Solids Using a Colored-Noise Thermostat. Phys. Rev. Lett. 2009;103:030603. doi: 10.1103/PhysRevLett.103.030603. PubMed DOI

Ceriotti M., Bussi G., Parrinello M.. Colored-Noise Thermostats à la Carte. J. Chem. Theory Comput. 2010;6:1170–1180. doi: 10.1021/ct900563s. DOI

Huppert S., Plé T., Bonella S., Depondt P., Finocchi F.. Simulation of Nuclear Quantum Effects in Condensed Matter Systems via Quantum Baths. Appl. Sci. 2022;12:4756. doi: 10.3390/app12094756. DOI

Barbatti M., Sen K.. Effects of different initial condition samplings on photodynamics and spectrum of pyrrole. Int. J. Quantum Chem. 2016;116:762–771. doi: 10.1002/qua.25049. DOI

Prlj A., Hollas D., Curchod B. F. E.. Deciphering the Influence of Ground-State Distributions on the Calculation of Photolysis Observables. J. Phys. Chem. A. 2023;127:7400–7409. doi: 10.1021/acs.jpca.3c02333. PubMed DOI PMC

Tavernelli I., Curchod B. F. E., Rothlisberger U.. Mixed quantum-classical dynamics with time-dependent external fields: A time-dependent density-functional-theory approach. Phys. Rev. A. 2010;81:052508. doi: 10.1103/PhysRevA.81.052508. DOI

Mignolet B., Curchod B. F. E., Martínez T. J.. Communication: XFAIMSeXternal Field Ab Initio Multiple Spawning for electron-nuclear dynamics triggered by short laser pulses. J. Chem. Phys. 2016;145:191104. doi: 10.1063/1.4967761. PubMed DOI

Penfold T., Pápai M., Mo̷ller K. B., Worth G. A.. Excited state dynamics initiated by an electromagnetic field within the Variational Multi-Configurational Gaussian (vMCG) method. Comput. Theor. Chem. 2019;1160:24–30. doi: 10.1016/j.comptc.2019.05.012. DOI

Bajo J. J., Granucci G., Persico M.. Interplay of radiative and nonradiative transitions in surface hopping with radiation-molecule interactions. J. Chem. Phys. 2014;140:044113. doi: 10.1063/1.4862738. PubMed DOI

Heindl M., González L.. Validating fewest-switches surface hopping in the presence of laser fields. J. Chem. Phys. 2021;154:144102. doi: 10.1063/5.0044807. PubMed DOI

Fiedlschuster T., Handt J., Schmidt R.. Floquet surface hopping: Laser-driven dissociation and ionization dynamics of H2+ Phys. Rev. A. 2016;93:053409. doi: 10.1103/PhysRevA.93.053409. DOI

Fiedlschuster T., Handt J., Gross E. K. U., Schmidt R.. Surface hopping in laser-driven molecular dynamics. Phys. Rev. A. 2017;95:063424. doi: 10.1103/PhysRevA.95.063424. DOI

Brumer P.. Shedding (Incoherent) Light on Quantum Effects in Light-Induced Biological Processes. J. Phys. Chem. Lett. 2018;9:2946–2955. doi: 10.1021/acs.jpclett.8b00874. PubMed DOI

Barbatti M.. Simulation of Excitation by Sunlight in Mixed Quantum-Classical Dynamics. J. Chem. Theory Comput. 2020;16:4849–4856. doi: 10.1021/acs.jctc.0c00501. PubMed DOI PMC

Schirò M., Eich F. G., Agostini F.. Quantum-classical nonadiabatic dynamics of Floquet driven systems. J. Chem. Phys. 2021;154:114101. doi: 10.1063/5.0043790. PubMed DOI

Martínez-Mesa A., Saalfrank P.. Semiclassical modelling of finite-pulse effects on non-adiabatic photodynamics via initial condition filtering: The predissociation of NaI as a test case. J. Chem. Phys. 2015;142:194107. doi: 10.1063/1.4919780. PubMed DOI

Gelin M. F., Huang X., Xie W., Chen L., Došlić N., Domcke W.. Ab Initio Surface-Hopping Simulation of Femtosecond Transient-Absorption Pump–Probe Signals of Nonadiabatic Excited-State Dynamics Using the Doorway–Window Representation. J. Chem. Theory Comput. 2021;17:2394–2408. doi: 10.1021/acs.jctc.1c00109. PubMed DOI

Villaseco Arribas E., Maitra N. T., Agostini F.. Nonadiabatic dynamics with classical trajectories: The problem of an initial coherent superposition of electronic states. J. Chem. Phys. 2024;160:054102. doi: 10.1063/5.0186984. PubMed DOI

Ondarse-Alvarez D., Oldani N., Roitberg A., Kleiman V., Tretiak S., Fernandez-Alberti S.. Energy transfer and spatial scrambling of an exciton in a conjugated dendrimer. Phys. Chem. Chem. Phys. 2018;20:29648–29660. doi: 10.1039/C8CP05852K. PubMed DOI

Alfonso-Hernandez L., Oldani N., Athanasopoulos S., Lupton J., Tretiak S., Fernandez-Alberti S.. Photoinduced energy transfer in linear guest–host chromophores: A computational study. J. Phys. Chem. A. 2021;125:5303–5313. doi: 10.1021/acs.jpca.1c02644. PubMed DOI

Schriever C., Lochbrunner S., Ofial A. R., Riedle E.. The origin of ultrafast proton transfer: Multidimensional wave packet motion vs. tunneling. Chem. Phys. Lett. 2011;503:61–65. doi: 10.1016/j.cplett.2010.12.087. DOI

Barone V., Alessandrini S., Biczysko M., Cheeseman J. R., Clary D. C., McCoy A. B., DiRisio R. J., Neese F., Melosso M., Puzzarini C.. Computational molecular spectroscopy. Nat. Rev. Methods Primers. 2021;1:38. doi: 10.1038/s43586-021-00034-1. DOI

Avagliano D., Bonfanti M., Nenov A., Garavelli M.. Automatized protocol and interface to simulate QM/MM time-resolved transient absorption at TD-DFT level with COBRAMM. J. Comput. Chem. 2022;43:1641–1655. doi: 10.1002/jcc.26966. PubMed DOI PMC

Puzzarini C., Bloino J., Tasinato N., Barone V.. Accuracy and Interpretability: The Devil and the Holy Grail. New Routes across Old Boundaries in Computational Spectroscopy. Chem. Rev. 2019;119:8131–8191. doi: 10.1021/acs.chemrev.9b00007. PubMed DOI

Seidner L., Stock G., Domcke W.. Nonperturbative approach to femtosecond spectroscopy: General theory and application to multidimensional nonadiabatic photoisomerization processes. J. Chem. Phys. 1995;103:3998–4011. doi: 10.1063/1.469586. DOI

Domcke W., Stock G.. Theory of ultrafast nonadiabatic excited-state processes and their spectroscopic detection in real time. Adv. Chem. Phys. 1997;100:1–169. doi: 10.1002/9780470141595.ch1. DOI

Huang X., Xie W., Došlić N., Gelin M. F., Domcke W.. Ab Initio Quasiclassical Simulation of Femtosecond Time-Resolved Two-Dimensional Electronic Spectra of Pyrazine. J. Phys. Chem. Lett. 2021;12:11736–11744. doi: 10.1021/acs.jpclett.1c03589. PubMed DOI

Whittock A. L., Abiola T. T., Stavros V. G.. A Perspective on Femtosecond Pump–Probe Spectroscopy in the Development of Future Sunscreens. J. Phys. Chem. A. 2022;126:2299–2308. doi: 10.1021/acs.jpca.2c01000. PubMed DOI PMC

Hu D., Peng J., Chen L., Gelin M. F., Lan Z.. Spectral Fingerprint of Excited-State Energy Transfer in Dendrimers through Polarization-Sensitive Transient-Absorption Pump–Probe Signals: On-the-Fly Nonadiabatic Dynamics Simulations. J. Phys. Chem. Lett. 2021;12:9710–9719. doi: 10.1021/acs.jpclett.1c02640. PubMed DOI

Xu C., Lin K., Hu D., Gu F. L., Gelin M. F., Lan Z.. Ultrafast Internal Conversion Dynamics through the on-the-Fly Simulation of Transient Absorption Pump–Probe Spectra with Different Electronic Structure Methods. J. Phys. Chem. Lett. 2022;13:661–668. doi: 10.1021/acs.jpclett.1c03373. PubMed DOI

Perez-Castillo R., Freixas V. M., Mukamel S., Martinez-Mesa A., Uranga-Piña L., Tretiak S., Gelin M. F., Fernandez-Alberti S.. Transient-absorption spectroscopy of dendrimers via nonadiabatic excited-state dynamics simulations. Chem. Sci. 2024;15:13250–13261. doi: 10.1039/D4SC01019A. PubMed DOI PMC

Bhattacherjee A., Leone S. R.. Ultrafast X-ray Transient Absorption Spectroscopy of Gas-Phase Photochemical Reactions: A New Universal Probe of Photoinduced Molecular Dynamics. Acc. Chem. Res. 2018;51:3203–3211. doi: 10.1021/acs.accounts.8b00462. PubMed DOI

Zhang J., Peng J., Hu D., Gelin M. F., Lan Z.. What Two-Dimensional Electronic Spectroscopy Can Tell Us about Energy Transfer in Dendrimers: Ab Initio Simulations. J. Phys. Chem. Lett. 2025;16:1007–1015. doi: 10.1021/acs.jpclett.4c03225. PubMed DOI

Schuurman M. S., Blanchet V.. Time-resolved photoelectron spectroscopy: the continuing evolution of a mature technique. Phys. Chem. Chem. Phys. 2022;24:20012–20024. doi: 10.1039/D1CP05885A. PubMed DOI

Pemberton C. C., Zhang Y., Saita K., Kirrander A., Weber P. M.. From the (1B) Spectroscopic State to the Photochemical Product of the Ultrafast Ring-Opening of 1,3-Cyclohexadiene: A Spectral Observation of the Complete Reaction Path. J. Phys. Chem. A. 2015;119:8832–8845. doi: 10.1021/acs.jpca.5b05672. PubMed DOI

Bhattacherjee A., Pemmaraju C. D., Schnorr K., Attar A. R., Leone S. R.. Ultrafast Intersystem Crossing in Acetylacetone via Femtosecond X-ray Transient Absorption at the Carbon K-Edge. J. Am. Chem. Soc. 2017;139:16576–16583. doi: 10.1021/jacs.7b07532. PubMed DOI

Wolf T. J. A., Parrish R. M., Myhre R. H., Martínez T. J., Koch H., Gühr M.. Observation of Ultrafast Intersystem Crossing in Thymine by Extreme Ultraviolet Time-Resolved Photoelectron Spectroscopy. J. Phys. Chem. A. 2019;123:6897–6903. doi: 10.1021/acs.jpca.9b05573. PubMed DOI

Palmeira T., Conceição D. S., Ferreira D. P., Ferreira C. C., Ferreira L. F. V., Berberan-Santos M. N.. Obtaining triplet-triplet absorption spectra and triplet lifetimes of long-lived molecules with a UV-Visible spectrophotometer. J. Photochem. Photobiol. 2024;20:100226. doi: 10.1016/j.jpap.2024.100226. DOI

Biswas S., Kim J. W., Zhang X., Scholes G. D.. Coherent Two-Dimensional and Broadband Electronic Spectroscopies. Chem. Rev. 2022;122:4257–4321. doi: 10.1021/acs.chemrev.1c00623. PubMed DOI

Schultz J. D., Yuly J. L., Arsenault E. A., Parker K., Chowdhury S. N., Dani R., Kundu S., Nuomin H., Zhang Z., Valdiviezo J.. et al. Coherence in Chemistry: Foundations and Frontiers. Chem. Rev. 2024;124:11641–11766. doi: 10.1021/acs.chemrev.3c00643. PubMed DOI

Nelson T. R., Ondarse-Alvarez D., Oldani N., Rodriguez-Hernandez B., Alfonso-Hernandez L., Galindo J. F., Kleiman V. D., Fernandez-Alberti S., Roitberg A. E., Tretiak S.. Coherent exciton-vibrational dynamics and energy transfer in conjugated organics. Nat. Commun. 2018;9:2316. doi: 10.1038/s41467-018-04694-8. PubMed DOI PMC

Kaufman B., Marquetand P., Rozgonyi T., Weinacht T.. Long-lived electronic coherences in molecules. Phys. Rev. Lett. 2022;131:263202. doi: 10.1103/PhysRevLett.131.263202. PubMed DOI

Matselyukh D. T., Despré V., Golubev N. V., Kuleff A. I., Wörner H. J.. Decoherence and revival in attosecond charge migration driven by non-adiabatic dynamics. Nat. Phys. 2022;18:1206–1213. doi: 10.1038/s41567-022-01690-0. PubMed DOI PMC

Lee Y., Oang K. Y., Kim D., Ihee H.. A comparative review of time-resolved x-ray and electron scattering to probe structural dynamics. Struct. Dyn. 2024;11:031301. doi: 10.1063/4.0000249. PubMed DOI PMC

Yong, H. ; Kirrander, A. ; Weber, P. M. . Time-resolved X-ray Scattering of Excited State Structure and Dynamics. In Structural Dynamics with X-ray and Electron Scattering, 1st ed.; Amini, K. ; Rouzée, A. ; Vrakking, M. J. J. , Eds.; Theoretical and Computational Chemistry Series; Royal Society of Chemistry: United Kingdom, 2024; Vol. 25, pp 344–373.

Odate A., Kirrander A., Weber P. M., Minitti M. P.. Brighter, faster, stronger: ultrafast scattering of free molecules. Adv. Phys.: X. 2023;8:2126796. doi: 10.1080/23746149.2022.2126796. DOI

Centurion M., Wolf T. J., Yang J.. Ultrafast Imaging of Molecules with Electron Diffraction. Annu. Rev. Phys. Chem. 2022;73:21–42. doi: 10.1146/annurev-physchem-082720-010539. PubMed DOI

Razmus W. O., Acheson K., Bucksbaum P., Centurion M., Champenois E., Gabalski I., Hoffman M. C., Howard A., Lin M.-F., Liu Y.. et al. Multichannel photodissociation dynamics in CS2 studied by ultrafast electron diffraction. Phys. Chem. Chem. Phys. 2022;24:15416–15427. doi: 10.1039/D2CP01268E. PubMed DOI

Champenois E. G., List N. H., Ware M., Britton M., Bucksbaum P. H., Cheng X., Centurion M., Cryan J. P., Forbes R., Gabalski I.. et al. Femtosecond Electronic and Hydrogen Structural Dynamics in Ammonia Imaged with Ultrafast Electron Diffraction. Phys. Rev. Lett. 2023;131:143001. doi: 10.1103/PhysRevLett.131.143001. PubMed DOI

Yang J., Zhu X., Nunes J. P. F., Yu J. K., Parrish R. M., Wolf T. J. A., Centurion M., Gühr M., Li R., Liu Y.. et al. Simultaneous observation of nuclear and electronic dynamics by ultrafast electron diffraction. Science. 2020;368:885–889. doi: 10.1126/science.abb2235. PubMed DOI

Yong H., Zotev N., Ruddock J. M., Stankus B., Simmermacher M., Carrascosa A. M., Du W., Goff N., Chang Y., Bellshaw D.. et al. Observation of the molecular response to light upon photoexcitation. Nat. Commun. 2020;11:2157. doi: 10.1038/s41467-020-15680-4. PubMed DOI PMC

Yong H., Xu X., Ruddock J. M., Stankus B., Carrascosa A. M., Zotev N., Bellshaw D., Du W., Goff N., Chang Y.. et al. Ultrafast X-ray scattering offers a structural view of excited-state charge transfer. Proc. Natl. Acad. Sci. U. S. A. 2021;118:e2021714118. doi: 10.1073/pnas.2021714118. PubMed DOI PMC

Busch G. E., Rentzepis P. M.. Picosecond Chemistry. Science. 1976;194:276–283. doi: 10.1126/science.968481. PubMed DOI

Khalil M., Marcus M. A., Smeigh A. L., McCusker J. K., Chong H. H. W., Schoenlein R. W.. Picosecond X-ray Absorption Spectroscopy of a Photoinduced Iron­(II) Spin Crossover Reaction in Solution. J. Phys. Chem. A. 2006;110:38–44. doi: 10.1021/jp055002q. PubMed DOI

Gawelda W., Pham V.-T., Benfatto M., Zaushitsyn Y., Kaiser M., Grolimund D., Johnson S. L., Abela R., Hauser A., Bressler C., Chergui M.. Structure Determination of a Short-Lived Excited Iron­(II) Complex by by Picosecond X-Ray Absorption Spectroscopy. Phys. Rev. Lett. 2007;98:057401. doi: 10.1103/PhysRevLett.98.057401. PubMed DOI

Mayer D., Lever F., Picconi D., Metje J., Alisauskas S., Calegari F., Düsterer S., Ehlert C., Feifel R., Niebuhr M.. et al. Following excited-state chemical shifts in molecular ultrafast x-ray photoelectron spectroscopy. Nat. Commun. 2022;13:198. doi: 10.1038/s41467-021-27908-y. PubMed DOI PMC

Kuhs C. T., Luther B. M., Krummel A. T.. Recent Advances in 2D IR Spectroscopy Driven by Advances in Ultrafast Technology. IEEE J. Sel. Top. Quantum Electron. 2019;25:3100313. doi: 10.1109/JSTQE.2019.2900597. DOI

de Oliveira H. J. S., de Almeida P. L. Jr, Sampaio B. A., Fernandes J. P. A., Pessoa-Neto O. D., de Lima E. A., de Almeida L. F.. A handheld smartphone-controlled spectrophotometer based on hue to wavelength conversion for molecular absorption and emission measurements. Sens. Actuators B: Chem. 2017;238:1084–1091. doi: 10.1016/j.snb.2016.07.149. DOI

Grasse E. K., Torcasio M. H., Smith A. W.. Teaching UV-Vis Spectroscopy with a 3D-Printable Smartphone Spectrophotometer. J. Chem. Educ. 2016;93:146–151. doi: 10.1021/acs.jchemed.5b00654. DOI

Baker M.. Is there a reproducibility crisis? Nature. 2016;533:452–454. doi: 10.1038/533452a. PubMed DOI

Major G. H., Avval T. G., Moeini B., Pinto G., Shah D., Jain V., Carver V., Skinner W., Gengenbach T. R., Easton C. D.. et al. Assessment of the frequency and nature of erroneous x-ray photoelectron spectroscopy analyses in the scientific literature. J. Vac. Sci. Technol. A. 2020;38:061204. doi: 10.1116/6.0000685. DOI

Baer D. R., Gilmore I. S.. Responding to the growing issue of research reproducibility. J. Vac. Sci. Technol. A. 2018;36:068502. doi: 10.1116/1.5049141. DOI

Pinder J. W., Major G. H., Baer D. R., Terry J., Whitten J. E., Čechal J., Crossman J. D., Lizarbe A. J., Jafari S., Easton C. D.. et al. Avoiding common errors in X-ray photoelectron spectroscopy data collection and analysis, and properly reporting instrument parameters. Appl. Surf. Sci. Adv. 2024;19:100534. doi: 10.1016/j.apsadv.2023.100534. DOI

Baer D. R., Artyushkova K., Brundle C. R., Castle J. E., Engelhard M. H., Gaskell K. J., Grant J. T., Haasch R. T., Linford M. R., Powell C. J.. et al. Practical guides for x-ray photoelectron spectroscopy: First steps in planning, conducting, and reporting XPS measurements. J. Vac. Sci. Technol. A. 2019;37:031401. doi: 10.1116/1.5065501. PubMed DOI PMC

Mata R. A., Suhm M. A.. Benchmarking Quantum Chemical Methods: Are We Heading in the Right Direction? Angew. Chem. Int. Ed. 2017;56:11011–11018. doi: 10.1002/anie.201611308. PubMed DOI PMC

Beckwith J. S., Rumble C. A., Vauthey E.. Data analysis in transient electronic spectroscopy–an experimentalist’s view. Int. Rev. Phys. Chem. 2020;39:135–216. doi: 10.1080/0144235X.2020.1757942. DOI

Lang B., Rosspeintner A., Angulo G., Vauthey E.. Model-free decomposition of transient absorption spectra into components with time-dependent shape. EPJ Web Conf. 2019;205:09011. doi: 10.1051/epjconf/201920509011. DOI

Lang B., Rosspeintner A., Vauthey E.. Model-free Investigation of Ultrafast Bimolecular Chemical Reactions: Bimolecular Photo Induced Electron Transfer. EPJ. Web Conf. 2013;41:05041. doi: 10.1051/epjconf/20134105041. DOI

Tudorovskaya M., Minns R. S., Kirrander A.. Effects of probe energy and competing pathways on time-resolved photoelectron spectroscopy: the ring-opening of 1,3-cyclohexadiene. Phys. Chem. Chem. Phys. 2018;20:17714–17726. doi: 10.1039/C8CP02397B. PubMed DOI

Kirrander A., Saita K., Shalashilin D. V.. Ultrafast X-ray Scattering from Molecules. J. Chem. Theory Comput. 2016;12:957–967. doi: 10.1021/acs.jctc.5b01042. PubMed DOI

Zhong D., Zewail A. H.. Femtosecond Real-Time Probing of Reactions. 23. Studies of Temporal, Velocity, Angular, and State Dynamics from Transition States to Final Products by Femtosecond-Resolved Mass Spectrometry. J. Phys. Chem. A. 1998;102:4031–4058. doi: 10.1021/jp9805196. DOI

Dantus M.. Tracking Molecular Fragmentation in Electron–Ionization Mass Spectrometry with Ultrafast Time Resolution. Acc. Chem. Res. 2024;57:845–854. doi: 10.1021/acs.accounts.3c00713. PubMed DOI PMC

Roeding S., Brixner T.. Coherent two-dimensional electronic mass spectrometry. Nat. Commun. 2018;9:2519. doi: 10.1038/s41467-018-04927-w. PubMed DOI PMC

Hervé M., Despré V., Castellanos Nash P., Loriot V., Boyer A., Scognamiglio A., Karras G., Brédy R., Constant E., Tielens A. G. G. M.. et al. Ultrafast dynamics of correlation bands following XUV molecular photoionization. Nat. Phys. 2021;17:327–331. doi: 10.1038/s41567-020-01073-3. DOI

Marciniak A., Despré V., Barillot T., Rouzée A., Galbraith M. C. E., Klei J., Yang C.-H., Smeenk C. T. L., Loriot V., Nagaprasad Reddy S.. et al. XUV excitation followed by ultrafast non-adiabatic relaxation in PAH molecules as a femto-astrochemistry experiment. Nat. Commun. 2015;6:7909. doi: 10.1038/ncomms8909. PubMed DOI PMC

Wang S., Kind T., Bremer P. L., Tantillo D. J., Fiehn O.. Beyond the Ground State: Predicting Electron Ionization Mass Spectra Using Excited-State Molecular Dynamics. J. Chem. Inf. Model. 2022;62:4403–4410. doi: 10.1021/acs.jcim.2c00597. PubMed DOI PMC

Gonçalves C. E. M., Levine R. D., Remacle F.. Ultrafast geometrical reorganization of a methane cation upon sudden ionization: an isotope effect on electronic non-equilibrium quantum dynamics. Phys. Chem. Chem. Phys. 2021;23(21):12051–12059. doi: 10.1039/D1CP01029H. PubMed DOI

Koopman J., Grimme S.. Calculation of Mass Spectra with the QCxMS Method for Negatively and Multiply Charged Molecules. J. Am. Soc. Mass Spectrom. 2022;33:2226–2242. doi: 10.1021/jasms.2c00209. PubMed DOI

Silva-Junior M. R., Schreiber M., Sauer S. P. A., Thiel W.. Benchmarks of electronically excited states: Basis set effects on CASPT2 results. J. Chem. Phys. 2010;133:174318. doi: 10.1063/1.3499598. PubMed DOI

Silva-Junior M. R., Sauer S. P. A., Schreiber M., Thiel W.. Basis set effects on coupled cluster benchmarks of electronically excited states: CC3, CCSDR(3) and CC2. Mol. Phys. 2010;108:453–465. doi: 10.1080/00268970903549047. DOI

Kulichenko M., Nebgen B., Lubbers N., Smith J. S., Barros K., Allen A. E. A., Habib A., Shinkle E., Fedik N., Li Y. W.. et al. Data Generation for Machine Learning Interatomic Potentials and Beyond. Chem. Rev. 2024;24:13681–13714. doi: 10.1021/acs.chemrev.4c00572. PubMed DOI PMC

Pinheiro M., de Oliveira Bispo M., Mattos R. S., Telles do Casal M., Garain B. C., Toldo J. M., Mukherjee S., Barbatti M.. ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning. Digital Discovery. 2025;4:666–682. doi: 10.1039/D4DD00374H. PubMed DOI PMC

Polonius S., Zhuravel O., Bachmair B., Mai S.. LVC/MM: A Hybrid Linear Vibronic Coupling/Molecular Mechanics Model with Distributed Multipole-Based Electrostatic Embedding for Highly Efficient Surface Hopping Dynamics in Solution. J. Chem. Theory Comput. 2023;19:7171–7186. doi: 10.1021/acs.jctc.3c00805. PubMed DOI PMC

Cigrang L. L. E., Green J. A., Gómez S., Cerezo J., Improta R., Prampolini G., Santoro F., Worth G. A.. Non-adiabatic direct quantum dynamics using force fields: Toward solvation. J. Chem. Phys. 2024;160:174120. doi: 10.1063/5.0204911. PubMed DOI

Vandaele E., Mališ M., Luber S.. The ΔSCF method for non-adiabatic dynamics of systems in the liquid phase. J. Chem. Phys. 2022;156:130901. doi: 10.1063/5.0083340. PubMed DOI

Rivera M., Dommett M., Crespo-Otero R.. ONIOM­(QM:QM’) Electrostatic Embedding Schemes for Photochemistry in Molecular Crystals. J. Chem. Theory Comput. 2019;15:2504–2516. doi: 10.1021/acs.jctc.8b01180. PubMed DOI

Zuehlsdorff T. J., Isborn C. M.. Modeling absorption spectra of molecules in solution. Int. J. Quantum Chem. 2018;119:e25719. doi: 10.1002/qua.25719. DOI

Dral P. O., Barbatti M., Thiel W.. Nonadiabatic Excited-State Dynamics with Machine Learning. J. Phys. Chem. Lett. 2018;9(19):5660–5663. doi: 10.1021/acs.jpclett.8b02469. PubMed DOI PMC

Dupuy L., Maitra N. T.. Exciting DeePMD: Learning excited-state energies, forces, and non-adiabatic couplings. J. Chem. Phys. 2024;161:134103. doi: 10.1063/5.0227523. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...