Machine learning for nonadiabatic molecular dynamics: best practices and recent progress
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
40959384
PubMed Central
PMC12434613
DOI
10.1039/d5sc05579b
PII: d5sc05579b
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Exploring molecular excited states holds immense significance across organic chemistry, chemical biology, and materials science. Understanding the photophysical properties of molecular chromophores is crucial for designing nature-inspired functional molecules, with applications ranging from photosynthesis to pharmaceuticals. Non-adiabatic molecular dynamics simulations are powerful tools to investigate the photochemistry of molecules and materials, but demand extensive computing resources, especially for complex molecules and environments. To address these challenges, the integration of machine learning has emerged. Machine learning algorithms can be used to analyse vast datasets and accelerate discoveries by identifying relationships between geometrical features and ground as well as excited-state properties. However, challenges persist, including the acquisition of accurate excited-state data and managing the complexity of the data. This article provides an overview of recent and best practices in machine learning for non-adiabatic molecular dynamics, focusing on pre-processing, surface fitting, and post-processing of data.
Aix Marseille University CNRS ICR Marseille France
Center for Scalable Data Analytics and Artificial Intelligence Dresden Leipzig Germany
Department of Chemistry University College London 20 Gordon Street London WC1H 0AJ UK
Vienna Doctoral School in Chemistry University of Vienna Währinger Straße 42 1090 Vienna Austria
Wilhelm Ostwald Institute Leipzig Universityy Linnéstraße 2 04103 Leipzig Germany
Zobrazit více v PubMed
Gómez S., Galván I. F., Lindh R. and González L., in Motivation and Basic Concepts, John Wiley & Sons, Ltd, 2020, ch. 1, pp. 1–12
Cwiklik L. Pederzoli M. Baig M. W. Kývala M. Pittner J. J. Biophys. J. 2020;118:79a. doi: 10.1016/j.bpj.2019.11.603. DOI
Mathew S. Yella A. Gao P. Humphry-Baker R. Curchod B. F. E. Ashari-Astani N. Tavernelli I. Rothlisberger U. Nazeeruddin M. K. Grätzel M. Nat. Chem. 2014;6:242–247. doi: 10.1038/nchem.1861. PubMed DOI
Westermayr J. Gilkes J. Barrett R. Maurer R. J. Nat. Comput. Sci. 2023;3:139–148. doi: 10.1038/s43588-022-00391-1. PubMed DOI
Mai S., Marquetand P. and González L., in Surface hopping molecular dynamics, John Wiley & Sons, Ltd, 2020, pp. 499–530
Toldo J. M. do Casal M. T. Ventura E. do Monte S. A. Barbatti M. Phys. Chem. Chem. Phys. 2023;25:8293–8316. doi: 10.1039/D3CP00247K. PubMed DOI PMC
Westermayr J. and Marquetand P., Machine Learning in Chemistry: The Impact of Artificial Intelligence, The Royal Society of Chemistry, 2020, pp. 76–108
Westermayr J. Marquetand P. Chem. Rev. 2020;121:9873–9926. doi: 10.1021/acs.chemrev.0c00749. PubMed DOI PMC
Li J. Lopez S. A. Acc. Chem. Res. 2022;55:1972–1984. doi: 10.1021/acs.accounts.2c00288. PubMed DOI
Quantum Chemistry in the Age of Machine Learning, ed. P. O. Dral, Elsevier, 1st edn, 2022 PubMed
Zhang C. Zhong Y. Tao Z.-G. Qin X. Shang H. Lan Z. Prezhdo O. V. Gong X.-G. Chu W. Xiang H. Nat. Commun. 2025;16:2033. doi: 10.1038/s41467-025-57328-1. PubMed DOI PMC
Editorials, Nat. Synth., 2023, 2, 459
Unke O. T. Chmiela S. Sauceda H. E. Gastegger M. Poltavsky I. Schütt K. T. Tkatchenko A. Müller K.-R. Chem. Rev. 2021;121:10142. doi: 10.1021/acs.chemrev.0c01111. PubMed DOI PMC
Dral P. O. Barbatti M. Nat. Rev. Chem. 2021;5:388–405. doi: 10.1038/s41570-021-00278-1. PubMed DOI
Unke O. T. Chmiela S. Sauceda H. E. Gastegger M. Poltavsky I. Schütt K. T. Tkatchenko A. Müller K.-R. Chem. Rev. 2021;121:10142–10186. doi: 10.1021/acs.chemrev.0c01111. PubMed DOI PMC
Li J. Reiser P. Boswell B. R. Eberhard A. Burns N. Z. Friederich P. Lopez S. A. Chem. Sci. 2021;12:5302–5314. doi: 10.1039/D0SC05610C. PubMed DOI PMC
Westermayr J. Gastegger M. Menger M. F. S. J. Mai S. González L. Marquetand P. Chem. Sci. 2019;10:8100–8107. doi: 10.1039/C9SC01742A. PubMed DOI PMC
Akimov A. V. J. Phys. Chem. Lett. 2021;12:12119–12128. doi: 10.1021/acs.jpclett.1c03823. PubMed DOI
Akimov A. V. J. Phys. Chem. Lett. 2018;9:6096–6102. doi: 10.1021/acs.jpclett.8b02826. PubMed DOI
Westermayr J., Gastegger M. and Marquetand P., SchNarc, 2021, https://github.com/schnarc/SchNarc PubMed PMC
Westermayr J. Marquetand P. Mach. Learn.: Sci. Technol. 2020;1:043001.
Li J. Reiser P. Boswell B. R. Eberhard A. Burns N. Z. Friederich P. Lopez S. A. Chem. Sci. 2021;12:5302–5314. doi: 10.1039/D0SC05610C. PubMed DOI PMC
Li C. Hou S. Xie C. J. Chem. Theory Comput. 2023;19:3063–3079. doi: 10.1021/acs.jctc.2c01074. PubMed DOI
Mausenberger S. Müller C. Tkatchenko A. Marquetand P. González L. Westermayr J. Chem. Sci. 2024;15:15880–15890. doi: 10.1039/D4SC04164J. PubMed DOI PMC
Zhang L. Pios S. V. Martyka M. Ge F. Hou Y.-F. Chen Y. Chen L. Jankowska J. Barbatti M. Dral P. O. J. Chem. Theory Comput. 2024;20:5043–5057. doi: 10.1021/acs.jctc.4c00468. PubMed DOI
Barrett R., Ortner C. and Westermayr J., arXiv, 2025, arXiv:2502.12870, 10.48550/arXiv.2502.12870 DOI
Tiefenbacher M. X. Bachmair B. Chen C. G. Westermayr J. Marquetand P. Dietschreit J. C. B. González L. Digital Discovery. 2025;4:1478–1491. doi: 10.1039/D5DD00044K. PubMed DOI PMC
Curchod B. F. E. Martínez T. J. Chem. Rev. 2018;118:3305–3336. doi: 10.1021/acs.chemrev.7b00423. PubMed DOI
Crespo-Otero R. Barbatti M. Chem. Rev. 2018;118:7026–7068. doi: 10.1021/acs.chemrev.7b00577. PubMed DOI
Nelson T. R. White A. J. Bjorgaard J. A. Sifain A. E. Zhang Y. Nebgen B. Fernandez-Alberti S. Mozyrsky D. Roitberg A. E. Tretiak S. Chem. Rev. 2020;120:2215–2287. doi: 10.1021/acs.chemrev.9b00447. PubMed DOI
Tapavicza E. Bellchambers G. D. Vincent J. C. Furche F. Phys. Chem. Chem. Phys. 2013;15:18336–18348. doi: 10.1039/C3CP51514A. PubMed DOI
Cigrang L. L. E. Curchod B. F. E. Ingle R. A. Kelly A. Mannouch J. R. Accomasso D. Alijah A. Barbatti M. Chebbi W. Došlić N. Eklund E. C. Fernandez-Alberti S. Freibert A. González L. Granucci G. Hernández F. J. Hernández-Rodríguez J. Jain A. Janoš J. Kassal I. Kirrander A. Lan Z. Larsson H. R. Lauvergnat D. Le Dé B. Lee Y. Maitra N. T. Min S. K. Peláez D. Picconi D. Qiu Z. Raucci U. Robertson P. Sangiogo Gil E. Sapunar M. Schürger P. Sinnott P. Tretiak S. Tikku A. Vindel-Zandbergen P. Worth G. A. Agostini F. Gómez S. Ibele L. M. Prlj A. J. Phys. Chem. A. 2025;129(31):7023–7050. doi: 10.1021/acs.jpca.5c02171. PubMed DOI PMC
Li J. Lopez S. A. Chem. Phys. Rev. 2023;4:031309. doi: 10.1063/5.0159247. DOI
Beck M. H. Jäckle A. Worth G. A. Meyer H. D. Phys. Rep. 2000;324:1–105. doi: 10.1016/S0370-1573(99)00047-2. DOI
Worth G. A. and Lasorne B., Quantum Chemistry and Dynamics of Excited States, John Wiley & Sons Ltd, 2020, pp. 413–433
Curchod B. F. E. Martínez T. J. Chem. Rev. 2018;118:3305–3336. doi: 10.1021/acs.chemrev.7b00423. PubMed DOI
Levine B. G. Coe J. D. Virshup A. M. Martínez T. J. Chem. Phys. 2008;347:3–16. doi: 10.1016/j.chemphys.2008.01.014. DOI
Ben-Nun M. Martínez T. J. Chem. Phys. Lett. 1998;298:57–65. doi: 10.1016/S0009-2614(98)01115-4. DOI
Kirrander A. and Vacher M., Quantum Chemistry and Dynamics of Excited States, John Wiley & Sons Ltd, 2020, pp. 469–497
Tully J. C. Faraday Discuss. 1998;110:407–419. doi: 10.1039/A801824C. DOI
Tully J. C. J. Chem. Phys. 2012;137:22A301. doi: 10.1063/1.4757762. PubMed DOI
Tully J. C. Catal. Lett. 1991;9:205–217. doi: 10.1007/BF00773179. DOI
Plasser F. Gómez S. Menger M. F. S. J. Mai S. González L. Phys. Chem. Chem. Phys. 2019;21:57–69. doi: 10.1039/C8CP05662E. PubMed DOI
Mai S. Marquetand P. González L. Wiley Interdiscip. Rev.:Comput. Mol. Sci. 2018;8:e1370. PubMed PMC
Mai S., Bachmair B., Gagliardi L., Gallmetzer H. G., Grünewald L., Hennefarth M., Machholdt Høyer N., Korsaye F. A., Mausenberger S., Oppel M., Piteša T., Polonius S., Sangiogo Gil E., Shu Y., Singer N. K., Tiefenbacher M. X., Truhlar D., Vörös D., Zhang L. and Gonzalez L., sharc-md/sharc4: SHARC Release 4.0, 2025, 10.5281/zenodo.15496427 DOI
Barbatti M. Ruckenbauer M. Plasser F. Pittner J. Granucci G. Persico M. Lischka H. Wiley Interdiscip. Rev.:Comput. Mol. Sci. 2014;4:26–33.
Barbatti M. Bondanza M. Crespo-Otero R. Demoulin B. Dral P. O. Granucci G. Kossoski F. Lischka H. Mennucci B. Mukherjee S. Pederzoli M. Persico M. Pinheiro Jr M. Pittner J. Plasser F. Sangiogo Gil E. Stojanovic L. J. Chem. Theory Comput. 2022;18:6851–6865. doi: 10.1021/acs.jctc.2c00804. PubMed DOI PMC
Du L. Lan Z. J. Chem. Theory Comput. 2015;11:1360–1374. doi: 10.1021/ct501106d. PubMed DOI
Plasser F. Granucci G. Pittner J. Barbatti M. Persico M. Lischka H. J. Chem. Phys. 2012;137:22A514. doi: 10.1063/1.4738960. PubMed DOI
Mai S. Marquetand P. González L. Int. J. Quantum Chem. 2015;115:1215–1231. doi: 10.1002/qua.24891. DOI
Cui G. Thiel W. J. Chem. Phys. 2014;141:124101. doi: 10.1063/1.4894849. PubMed DOI
Jaeger H. M. Fischer S. Prezhdo O. V. J. Chem. Phys. 2012;137:22A545. doi: 10.1063/1.4757100. PubMed DOI
Persico M. and Granucci G., Photochemistry: A modern theoretical perspective, Springer, 2018
Mai S. González L. Angew. Chem., Int. Ed. 2020;59:16832–16846. doi: 10.1002/anie.201916381. PubMed DOI PMC
Papineau T. V. Jacquemin D. Vacher M. J. Phys. Chem. Lett. 2024;15:636–643. doi: 10.1021/acs.jpclett.3c03014. PubMed DOI
Janoš J. Slavíček P. J. Chem. Theory Comput. 2023;19:8273–8284. doi: 10.1021/acs.jctc.3c00908. PubMed DOI PMC
Westermayr J. Gastegger M. Schütt K. T. Maurer R. J. J. Chem. Phys. 2021;154:230903. doi: 10.1063/5.0047760. PubMed DOI
Plasser F. Crespo-Otero R. Pederzoli M. Pittner J. Lischka H. Barbatti M. J. Chem. Theory Comput. 2014;10:1395–1405. doi: 10.1021/ct4011079. PubMed DOI
Barbatti M. and Crespo-Otero R., Density-Functional Methods for Excited States, Springer International Publishing, Cham, 2016, pp. 415–444
Huix-Rotllant M., Ferré N. and Barbatti M., Quantum Chemistry and Dynamics of Excited States, John Wiley & Sons Ltd, 2020, pp. 13–46
Casanova D. Krylov A. I. Phys. Chem. Chem. Phys. 2020;22:4326–4342. doi: 10.1039/C9CP06507E. PubMed DOI
Lefrancois D. Tuna D. Martínez T. J. Dreuw A. J. Chem. Theory Comput. 2017;13:4436–4441. doi: 10.1021/acs.jctc.7b00634. PubMed DOI
Lee S. Shostak S. Filatov M. Choi C. H. J. Phys. Chem. A. 2019;123:6455–6462. doi: 10.1021/acs.jpca.9b06142. PubMed DOI
Christiansen O. Koch H. Jørgensen P. Chem. Phys. Lett. 1995;243:409–418. doi: 10.1016/0009-2614(95)00841-Q. DOI
Dreuw A. Wormit M. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2015;5:82–95.
Levine B. G. Ko C. Quenneville J. Martínez T. J. Mol. Phys. 2006;104:1039–1051. doi: 10.1080/00268970500417762. DOI
Huix-Rotllant M., Nikiforov A., Thiel W. and Filatov M., Density-Functional Methods for Excited States, Springer International Publishing, Cham, 2016, pp. 445–476
Stojanović L. Bai S. Nagesh J. Izmaylov A. F. Crespo-Otero R. Lischka H. Barbatti M. Molecules. 2016;21:1603. doi: 10.3390/molecules21111603. PubMed DOI PMC
Horbatenko Y. Sadiq S. Lee S. Filatov M. Choi C. H. J. Chem. Theory Comput. 2021;17:848–859. doi: 10.1021/acs.jctc.0c01074. PubMed DOI
Lee I. S. Filatov M. Min S. K. J. Chem. Theory Comput. 2019;15:3021–3032. doi: 10.1021/acs.jctc.9b00132. PubMed DOI
Park W. Lee S. Huix-Rotllant M. Filatov M. Choi C. H. J. Phys. Chem. Lett. 2021;12:4339–4346. doi: 10.1021/acs.jpclett.1c00712. PubMed DOI
Andersson K. Malmqvist P. A. Roos B. O. Sadlej A. J. Wolinski K. J. Phys. Chem. 1990;94:5483–5488. doi: 10.1021/j100377a012. DOI
Angeli C. Cimiraglia R. Malrieu J.-P. J. Chem. Phys. 2002;117:9138–9153. doi: 10.1063/1.1515317. DOI
Lischka H. Nachtigallová D. Aquino A. J. A. Szalay P. G. Plasser F. Machado F. B. C. Barbatti M. Chem. Rev. 2018;118:7293–7361. doi: 10.1021/acs.chemrev.8b00244. PubMed DOI
Szalay P. G. Müller T. Gidofalvi G. Lischka H. Shepard R. Chem. Rev. 2012;112:108–181. doi: 10.1021/cr200137a. PubMed DOI
David Sherrill C. Schaefer H. F. Adv. Quant. Chem. 1999;34:143–269. doi: 10.1016/S0065-3276(08)60532-8. DOI
Shiozaki T. Győrffy W. Celani P. Werner H.-J. J. Chem. Phys. 2011;135:081106. doi: 10.1063/1.3633329. PubMed DOI
Battaglia S. Lindh R. J. Chem. Theory Comput. 2020;16:1555–1567. doi: 10.1021/acs.jctc.9b01129. PubMed DOI PMC
Battaglia S. Lindh R. J. Chem. Phys. 2021;154:034102. doi: 10.1063/5.0030944. PubMed DOI
Levine D. S. Hait D. Tubman N. M. Lehtola S. Whaley K. B. Head-Gordon M. J. Chem. Theory Comput. 2020;16:2340–2354. doi: 10.1021/acs.jctc.9b01255. PubMed DOI
Park J. W. J. Chem. Theory Comput. 2021;17:4092–4104. doi: 10.1021/acs.jctc.1c00272. PubMed DOI
Polyak I. Hutton L. Crespo-Otero R. Barbatti M. Knowles P. J. J. Chem. Theory Comput. 2019;15:3929–3940. doi: 10.1021/acs.jctc.9b00396. PubMed DOI
Gómez S. Ibele L. M. González L. Phys. Chem. Chem. Phys. 2019;21:4871–4878. doi: 10.1039/C8CP07766E. PubMed DOI
Li Manni G. Carlson R. K. Luo S. Ma D. Olsen J. Truhlar D. G. Gagliardi L. J. Chem. Theory Comput. 2014;10:3669–3680. doi: 10.1021/ct500483t. PubMed DOI
Gagliardi L. Truhlar D. G. Li Manni G. Carlson R. K. Hoyer C. E. Bao J. L. Acc. Chem. Res. 2017;50:66–73. doi: 10.1021/acs.accounts.6b00471. PubMed DOI
Lykhin A. O. Truhlar D. G. Gagliardi L. J. Am. Chem. Soc. 2021;143:5878–5889. doi: 10.1021/jacs.1c00989. PubMed DOI
Westermayr J. Gastegger M. Vörös D. Panzenboeck L. Joerg F. González L. Marquetand P. Nat. Chem. 2022;14:914–919. doi: 10.1038/s41557-022-00950-z. PubMed DOI
Kidwell N. M. Li H. Wang X. Bowman J. M. Lester M. I. Nat. Chem. 2016;8:509–514. doi: 10.1038/nchem.2488. PubMed DOI
Atalar K. Rath Y. Crespo-Otero R. Booth G. H. Faraday Discuss. 2024;254:542–569. doi: 10.1039/D4FD00062E. PubMed DOI
de Souza B. Angew. Chem., Int. Ed. 2025:e202500393. PubMed
Grimme S. J. Chem. Theory Comput. 2019;15:2847–2862. doi: 10.1021/acs.jctc.9b00143. PubMed DOI
Pracht P. Grimme S. Bannwarth C. Bohle F. Ehlert S. Feldmann G. Gorges J. Müller M. Neudecker T. Plett C. Spicher S. Steinbach P. Wesolowski P. A. Zeller F. J. Chem. Phys. 2024;160:114110. doi: 10.1063/5.0197592. PubMed DOI
Steinmetzer J. Kupfer S. Gräfe S. Int. J. Quantum Chem. 2021;121:e26390. doi: 10.1002/qua.26390. DOI
Sanz García J. Maskri R. Mitrushchenkov A. Joubert-Doriol L. J. Chem. Theory Comput. 2024;20:5643–5654. doi: 10.1021/acs.jctc.4c00326. PubMed DOI
Pracht P. Bannwarth C. J. Chem. Theory Comput. 2022;18:6370–6385. doi: 10.1021/acs.jctc.2c00578. PubMed DOI
Vandaele E. Mališ M. Luber S. J. Chem. Theory Comput. 2024;20:856–872. doi: 10.1021/acs.jctc.3c01008. PubMed DOI
Keal T. W. Koslowski A. Thiel W. Theor. Chem. Acc. 2007;118:837–844.
Galvan I. F. Delcey M. G. Pedersen T. B. Aquilante F. Lindh R. J. Chem. Theory Comput. 2016;12:3636–3653. doi: 10.1021/acs.jctc.6b00384. PubMed DOI
Pinheiro Jr M. Zhang S. Dral P. O. Barbatti M. Sci. Data. 2023;10:95. doi: 10.1038/s41597-023-01998-3. PubMed DOI PMC
Suchan J. Hollas D. Curchod B. F. E. Slavíček P. Faraday Discuss. 2018;212:307–330. doi: 10.1039/C8FD00088C. PubMed DOI
Crespo-Otero R. Barbatti M. Theor. Chem. Acc. 2012;131:7026–7068.
Sršeň Š. Sita J. Slavíček P. Ladányi V. Heger D. J. Chem. Theory Comput. 2020;16:6428–6438. doi: 10.1021/acs.jctc.0c00579. PubMed DOI
Barbatti M. Sen K. Int. J. Quantum Chem. 2016;116:762–771. doi: 10.1002/qua.25049. DOI
Ceriotti M. Bussi G. Parrinello M. J. Chem. Theory Comput. 2010;6:1170–1180. doi: 10.1021/ct900563s. DOI
Zobel J. P. Nogueira J. J. González L. Phys. Chem. Chem. Phys. 2019;21:13906–13915. doi: 10.1039/C8CP03273D. PubMed DOI
Li C. Voth G. A. J. Chem. Theory Comput. 2022;18:599–604. doi: 10.1021/acs.jctc.1c01085. PubMed DOI PMC
Althorpe S. C. Eur. Phys. J. B. 2021;94:155. doi: 10.1140/epjb/s10051-021-00155-2. DOI
Ceriotti M. Manolopoulos D. E. Parrinello M. J. Chem. Phys. 2011;134:84104. doi: 10.1063/1.3556661. PubMed DOI
Pios S. V. Gelin M. F. Ullah A. Dral P. O. Chen L. J. Phys. Chem. Lett. 2024;15:2325–2331. doi: 10.1021/acs.jpclett.4c00107. PubMed DOI
Chen W.-K. Liu X.-Y. Fang W.-H. Dral P. O. Cui G. J. Phys. Chem. Lett. 2018;9:6702–6708. doi: 10.1021/acs.jpclett.8b03026. PubMed DOI
Hu D. Xie Y. Li X. Li L. Lan Z. J. Phys. Chem. Lett. 2018;9:2725–2732. doi: 10.1021/acs.jpclett.8b00684. PubMed DOI
Martyka M. Zhang L. Ge F. Hou Y.-F. Jankowska J. Barbatti M. Dral P. O. npj Comput. Mater. 2025;11:1–12. doi: 10.1038/s41524-025-01636-z. PubMed DOI PMC
Dral P. O. Barbatti M. Thiel W. J. Phys. Chem. Lett. 2018;9:5660–5663. doi: 10.1021/acs.jpclett.8b02469. PubMed DOI PMC
Li J. Stein R. Adrion D. M. Lopez S. A. J. Am. Chem. Soc. 2021;143:20166–20175. doi: 10.1021/jacs.1c07725. PubMed DOI
Smith J. S. Nebgen B. Lubbers N. Isayev O. Roitberg A. E. J. Chem. Phys. 2018;148:241733. doi: 10.1063/1.5023802. PubMed DOI
Behler J. Int. J. Quantum Chem. 2015;115:1032–1050. doi: 10.1002/qua.24890. DOI
Hu D. Xie Y. Li X. Li L. Lan Z. J. Phys. Chem. Lett. 2018;9:2725–2732. doi: 10.1021/acs.jpclett.8b00684. PubMed DOI
Zhang L. Hou Y.-F. Ge F. Dral P. O. Phys. Chem. Chem. Phys. 2023;25:23467–23476. doi: 10.1039/D3CP03515H. PubMed DOI
Behler J. J. Phys.:Condens. Matter. 2014;26:183001. doi: 10.1088/0953-8984/26/18/183001. PubMed DOI
Musil F. Willatt M. J. Langovoy M. A. Ceriotti M. J. Chem. Theory Comput. 2019;15:906–915. doi: 10.1021/acs.jctc.8b00959. PubMed DOI
Abdar M. Pourpanah F. Hussain S. Rezazadegan D. Liu L. Ghavamzadeh M. Fieguth P. Cao X. Khosravi A. Acharya U. R. et al. . Inf. Fusion. 2021;76:243–297. doi: 10.1016/j.inffus.2021.05.008. DOI
Gawlikowski J. Tassi C. R. N. Ali M. Lee J. Humt M. Feng J. Kruspe A. Triebel R. Jung P. Roscher R. et al. . Artif. Intell. Rev. 2023;56:1513–1589. doi: 10.1007/s10462-023-10562-9. DOI
Deringer V. L. Bartók A. P. Bernstein N. Wilkins D. M. Ceriotti M. Csányi G. Chem. Rev. 2021;121:10073–10141. doi: 10.1021/acs.chemrev.1c00022. PubMed DOI PMC
Kellner M. Ceriotti M. Mach. Learn.: Sci. Technol. 2024;5:035006.
Bigi F. Chong S. Ceriotti M. Grasselli F. Mach. Learn.: Sci. Technol. 2024;5:045018.
Chong S. Bigi F. Grasselli F. Loche P. Kellner M. Ceriotti M. Faraday Discuss. 2025;256:322–344. doi: 10.1039/D4FD00101J. PubMed DOI PMC
Mukherjee S. Barbatti M. Res. Chem. 2022;4:100521.
Batzner S. Musaelian A. Sun L. Geiger M. Mailoa J. P. Kornbluth M. Molinari N. Smidt T. E. Kozinsky B. Nat. Commun. 2022;13:2453. doi: 10.1038/s41467-022-29939-5. PubMed DOI PMC
Batatia I., Batzner S., Kovács D. P., Musaelian A., Simm G. N., Drautz R., Ortner C., Kozinsky B. and Csányi G., arXiv, 2022, arXiv:2205.06643, 10.48550/arXiv.2205.06643 PubMed DOI PMC
Schütt K., Unke O. and Gastegger M., Proceedings of the 38th International Conference on Machine Learning, 2021, pp. 9377–9388
Christensen A. S. von Lilienfeld O. A. Mach. Learn.: Sci. Technol. 2020;1:045018.
Artrith N. Butler K. T. Coudert F.-X. Han S. Isayev O. Jain A. Walsh A. Nat. Chem. 2021;13:505–508. doi: 10.1038/s41557-021-00716-z. PubMed DOI
Conical Intersections: Electronic Structure, Dynamics & Spectroscopy, ed. W. Domcke, D. Yarkony and H. Köppel, World Scientific, 2004
Westermayr J. Faber F. A. Christensen A. S. von Lilienfeld O. A. Marquetand P. Mach. Learn.: Sci. Technol. 2020;1:025009.
Westermayr J. Gastegger M. Marquetand P. J. Phys. Chem. Lett. 2020;11:3828–3834. doi: 10.1021/acs.jpclett.0c00527. PubMed DOI PMC
Richardson J. O. J. Chem. Phys. 2023;158:011102. doi: 10.1063/5.0133191. PubMed DOI
An H. Baeck K. K. Chem. Phys. Lett. 2018;696:100–105. doi: 10.1016/j.cplett.2018.02.036. DOI
Baeck K. K. An H. J. Chem. Phys. 2017;146:064107. doi: 10.1063/1.4975323. PubMed DOI
do Casal M. T. Toldo J. M. Jr M. P. Barbatti M. Open Res. Europe. 2021;1:49. PubMed PMC
Shu Y. Zhang L. Chen X. Sun S. Huang Y. Truhlar D. G. J. Chem. Theory Comput. 2022;18:1320–1328. doi: 10.1021/acs.jctc.1c01080. PubMed DOI
Shu Y. Zhang L. Chen X. Sun S. Huang Y. Truhlar D. G. J. Chem. Theory Comput. 2022;18:1320–1328. doi: 10.1021/acs.jctc.1c01080. PubMed DOI
Landau L. Phys. Z. Sowjetunion. 1932;2:46–51.
Zener C. Fowler R. H. Proc. R. Soc. London, Ser. A. 1932;137:696–702.
Suchan J. Janoš J. Slavíček P. J. Chem. Theory Comput. 2020;16:5809–5820. doi: 10.1021/acs.jctc.0c00512. PubMed DOI
Ishida T. Nanbu S. Nakamura H. Int. Rev. Phys. Chem. 2017;36:229–285.
Yu L. Xu C. Lei Y. Zhu C. Wen Z. Phys. Chem. Chem. Phys. 2014;16:25883–25895. doi: 10.1039/C4CP03498H. PubMed DOI
Shchepanovska D. Shannon R. J. Curchod B. F. E. Glowacki D. R. J. Phys. Chem. A. 2021;125:3473–3488. doi: 10.1021/acs.jpca.1c01260. PubMed DOI
Yue L. Yu L. Xu C. Lei Y. Liu Y. Zhu C. ChemPhysChem. 2017;18:1274–1287. doi: 10.1002/cphc.201700049. PubMed DOI
Yue L. Yu L. Xu C. Zhu C. Liu Y. Phys. Chem. Chem. Phys. 2020;22:11440–11451. doi: 10.1039/D0CP00811G. PubMed DOI
Mead C. A. Truhlar D. G. J. Chem. Phys. 1982;77:6090–6098. doi: 10.1063/1.443853. DOI
Shu Y. Varga Z. Kanchanakungwankul S. Zhang L. Truhlar D. G. J. Phys. Chem. A. 2022;126:992–1018. doi: 10.1021/acs.jpca.1c10583. PubMed DOI
Zhu X. Yarkony D. R. J. Chem. Phys. 2014;140:024112. doi: 10.1063/1.4857335. PubMed DOI
Shen Y. Yarkony D. R. J. Phys. Chem. A. 2020;124:4539–4548. doi: 10.1021/acs.jpca.0c02763. PubMed DOI
Abrol R. Kuppermann A. J. Chem. Phys. 2002;116:1035–1062. doi: 10.1063/1.1419257. DOI
Köppel H. Faraday Discuss. 2004;127:35–47. doi: 10.1039/B314471B. PubMed DOI
Zhu X. Yarkony D. R. J. Chem. Phys. 2010;132:104101. doi: 10.1063/1.3324982. PubMed DOI
Varga Z. Parker K. A. Truhlar D. G. Phys. Chem. Chem. Phys. 2018;20:26643–26659. doi: 10.1039/C8CP03410A. PubMed DOI
Atchity G. J. Ruedenberg K. Theor. Chem. Acc. 1997;97:47–58.
Pacher T. Köppel H. Cederbaum L. S. J. Chem. Phys. 1991;95:6668–6680. doi: 10.1063/1.461537. DOI
Yang K. R. Xu X. Truhlar D. G. Chem. Phys. Lett. 2013;573:84–89. doi: 10.1016/j.cplett.2013.04.036. DOI
Wittenbrink N. Venghaus F. Williams D. Eisfeld W. J. Chem. Phys. 2016;145:184108. doi: 10.1063/1.4967258. PubMed DOI
Subotnik J. E. Yeganeh S. Cave R. J. Ratner M. A. J. Chem. Phys. 2008;129:244101. doi: 10.1063/1.3042233. PubMed DOI
Hoyer C. E. Parker K. Gagliardi L. Truhlar D. G. J. Chem. Phys. 2016;144:194101. doi: 10.1063/1.4948728. PubMed DOI
Sršeň Š. von Lilienfeld O. A. Slavíček P. Phys. Chem. Chem. Phys. 2024;26:4306–4319. doi: 10.1039/D3CP05685F. PubMed DOI PMC
Williams D. M. Eisfeld W. J. Chem. Phys. 2018;149:204106. doi: 10.1063/1.5053664. PubMed DOI
Guan Y. Zhang D. H. Guo H. Yarkony D. R. Phys. Chem. Chem. Phys. 2019;21:14205–14213. doi: 10.1039/C8CP06598E. PubMed DOI
Shu Y. Truhlar D. G. J. Chem. Theory Comput. 2020;16:6456–6464. doi: 10.1021/acs.jctc.0c00623. PubMed DOI
Shu Y. Varga Z. Sampaio De Oliveira-Filho A. G. Truhlar D. G. J. Chem. Theory Comput. 2021;17:1106–1116. doi: 10.1021/acs.jctc.0c01110. PubMed DOI
Axelrod S. Shakhnovich E. Gómez-Bombarelli R. Nat. Commun. 2022;13:3440. doi: 10.1038/s41467-022-30999-w. PubMed DOI PMC
Shu Y. Kryven J. Sampaio de Oliveira-Filho A. G. Zhang L. Song G.-L. Li S. L. Meana-Pañeda R. Fu B. Bowman J. M. Truhlar D. G. J. Chem. Phys. 2019;151:104311. doi: 10.1063/1.5111547. PubMed DOI
Guan Y. Guo H. Yarkony D. R. J. Chem. Theory Comput. 2020;16:302–313. doi: 10.1021/acs.jctc.9b00898. PubMed DOI
Werner H.-J. Knowles P. J. Knizia G. Manby F. R. Schütz M. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012;2:242–253.
Christopoulou G. Freibert A. Worth G. A. J. Chem. Phys. 2021;154:124127. doi: 10.1063/5.0043720. PubMed DOI
Opalka D. Domcke W. J. Chem. Phys. 2013;138:224103. doi: 10.1063/1.4808358. PubMed DOI
Wang T. Y. Neville S. P. Schuurman M. S. J. Phys. Chem. Lett. 2023;14:7780–7786. doi: 10.1021/acs.jpclett.3c01649. PubMed DOI PMC
Shu Y. Varga Z. Parameswaran A. M. Truhlar D. G. J. Chem. Theory Comput. 2024;20:7042–7051. doi: 10.1021/acs.jctc.4c00424. PubMed DOI
Gutleb T. S., Barrett R., Westermayr J. and Ortner C., arXiv, 2024, arXiv:2407.03731, 10.48550/arXiv.2407.03731 DOI
Zaheer M. Kottur S. Ravanbakhsh S. Poczos B. Salakhutdinov R. R. Smola A. J. Adv. Neural Inf. Process. Syst. 2017;30:3391–3401.
Batatia I. Kovacs D. P. Simm G. Ortner C. Csanyi G. Adv. Neural Inf. Process. Syst. 2022:11423–11436.
Li J. Stein R. Adrion D. M. Lopez S. A. J. Am. Chem. Soc. 2021;143:20166–20175. doi: 10.1021/jacs.1c07725. PubMed DOI
Schütt K. T. Sauceda H. E. Kindermans P.-J. Tkatchenko A. Müller K.-R. J. Chem. Phys. 2018;148:241722. doi: 10.1063/1.5019779. PubMed DOI
Musil F. Grisafi A. Bartók A. P. Ortner C. Csányi G. Ceriotti M. Chem. Rev. 2021;121:9759–9815. doi: 10.1021/acs.chemrev.1c00021. PubMed DOI
Musil F. Grisafi A. Bartók A. P. Ortner C. Csányi G. Ceriotti M. Chem. Rev. 2021;121:9759–9815. doi: 10.1021/acs.chemrev.1c00021. PubMed DOI
Hansen K. Montavon G. Biegler F. Fazli S. Rupp M. Scheffler M. von Lilienfeld O. A. Tkatchenko A. Müller K.-R. J. Chem. Theory Comput. 2013;9:3404–3419. doi: 10.1021/ct400195d. PubMed DOI
Dral P. O. Owens A. Yurchenko S. N. Thiel W. J. Chem. Phys. 2017;146:244108. doi: 10.1063/1.4989536. PubMed DOI
Bartók A. P. Csányi G. Int. J. Quantum Chem. 2015;115:1051–1057. doi: 10.1002/qua.24927. DOI
Rupp M. Tkatchenko A. Müller K.-R. von Lilienfeld O. A. Phys. Rev. Lett. 2012;108:058301. doi: 10.1103/PhysRevLett.108.058301. PubMed DOI
Chmiela S. Sauceda H. E. Poltavsky I. Müller K. R. Tkatchenko A. Comput. Phys. Commun. 2019;240:38–45. doi: 10.1016/j.cpc.2019.02.007. DOI
Hou Y.-F. Ge F. Dral P. O. J. Chem. Theory Comput. 2023;19:2369–2379. doi: 10.1021/acs.jctc.2c01038. PubMed DOI
Westermayr J. Faber F. A. Christensen A. S. von Lilienfeld O. A. Marquetand P. Mach. Learn.: Sci. Technol. 2020;1:025009.
Pinheiro M. Ge F. Ferré N. Dral P. O. Barbatti M. Chem. Sci. 2021;12:14396–14413. doi: 10.1039/D1SC03564A. PubMed DOI PMC
Bartók A. P. Kondor R. Csányi G. Phys. Rev. B:Condens. Matter Mater. Phys. 2013;87:184115. doi: 10.1103/PhysRevB.87.184115. DOI
Behler J. J. Chem. Phys. 2011;134:074106. doi: 10.1063/1.3553717. PubMed DOI
Christensen A. S. Bratholm L. A. Faber F. A. Anatole von Lilienfeld O. J. Chem. Phys. 2020;152:044107. doi: 10.1063/1.5126701. PubMed DOI
Wilson A. and Nickisch H., Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 2015, pp. 1775–1784
Wilson A. G., Hu Z., Salakhutdinov R. and Xing E. P., Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, Cadiz, Spain, 2016, pp. 370–378
Manzhos S. Ihara M. J. Phys. Chem. A. 2023;127:7823–7835. doi: 10.1021/acs.jpca.3c02949. PubMed DOI
Rupp M. Int. J. Quantum Chem. 2015;115:1058–1073. doi: 10.1002/qua.24954. DOI
Dral P. O. Ge F. Xue B.-X. Hou Y.-F. Pinheiro Jr M. Huang J. Barbatti M. Top. Curr. Chem. 2021;379:27. doi: 10.1007/s41061-021-00339-5. PubMed DOI PMC
Rupp M. von Lilienfeld O. A. Burke K. J. Chem. Phys. 2018;148:241401. doi: 10.1063/1.5043213. PubMed DOI
Pedregosa F. Varoquaux G. Gramfort A. Michel V. Thirion B. Grisel O. Blondel M. Prettenhofer P. Weiss R. Dubourg V. Vanderplas J. Passos A. Cournapeau D. Brucher M. Perrot M. Duchesnay E. J. Mach. Learn. Res. 2011;12:2825–2830.
Huo H. Rupp M. Mach. Learn.: Sci. Technol. 2022;3:045017.
Dral P. O. J. Comput. Chem. 2019;40:2339–2347. doi: 10.1002/jcc.26004. PubMed DOI
Dral P. O., Zheng P., Xue B.-X., Ge F., Hou Y.-F., Max Pinheiro J., Su Y., Dai Y. and Chen Y., MLatom: a Package for Atomistic Simulations with Machine Learning, version 2.3.3., Xiamen University, Xiamen, China, 2013–2023
Bartók A. P. Payne M. C. Kondor R. Csányi G. Phys. Rev. Lett. 2010;104:136403. doi: 10.1103/PhysRevLett.104.136403. PubMed DOI
Deringer V. L. Bartók A. P. Bernstein N. Wilkins D. M. Ceriotti M. Csányi G. Chem. Rev. 2021;121:10073–10141. doi: 10.1021/acs.chemrev.1c00022. PubMed DOI PMC
Christensen A. S., Faber F. A., Huang B., Bratholm L. A., Tkatchenko A., Müller K.-R. and von Lilienfeld O. A., ML: A Python Toolkit for Quantum Machine Learning, 2017, https://github.com/qmlcode/qml
Chmiela S. Vassilev-Galindo V. Unke O. T. Kabylda A. Sauceda H. E. Tkatchenko A. Müller K. R. Sci. Adv. 2023;9:eadf0873. doi: 10.1126/sciadv.adf0873. PubMed DOI PMC
Sauceda H. E. Gálvez-González L. E. Chmiela S. Paz-Borbón L. O. Müller K.-R. Tkatchenko A. Nat. Commun. 2022;13:3733. doi: 10.1038/s41467-022-31093-x. PubMed DOI PMC
Chmiela S. Sauceda H. E. Müller K.-R. Tkatchenko A. Nat. Commun. 2018;9:3887. doi: 10.1038/s41467-018-06169-2. PubMed DOI PMC
Bigi F. Pozdnyakov S. N. Ceriotti M. J. Chem. Phys. 2024;161:44116. doi: 10.1063/5.0208746. PubMed DOI
Behler J. Chem. Rev. 2021;121:10037–10072. doi: 10.1021/acs.chemrev.0c00868. PubMed DOI
Behler J. Parrinello M. Phys. Rev. Lett. 2007;98:146401. doi: 10.1103/PhysRevLett.98.146401. PubMed DOI
Devereux C. Smith J. S. Huddleston K. K. Barros K. Zubatyuk R. Isayev O. Roitberg A. E. J. Chem. Theory Comput. 2020;16:4192–4202. doi: 10.1021/acs.jctc.0c00121. PubMed DOI
Drautz R. Phys. Rev. B. 2019;99:014104. doi: 10.1103/PhysRevB.99.014104. DOI
Batzner S. Musaelian A. Sun L. Geiger M. Mailoa J. P. Kornbluth M. Molinari N. Smidt T. E. Kozinsky B. Nat. Commun. 2022;13:2453. doi: 10.1038/s41467-022-29939-5. PubMed DOI PMC
Frank J. T. Unke O. T. Müller K.-R. Chmiela S. Nat. Commun. 2024;15:6539. doi: 10.1038/s41467-024-50620-6. PubMed DOI PMC
Schütt K. T. Kessel P. Gastegger M. Nicoli K. A. Tkatchenko A. Müller K. R. J. Chem. Theory Comput. 2019;15:448–455. doi: 10.1021/acs.jctc.8b00908. PubMed DOI
Gastegger M. McSloy A. Luya M. Schutt K. T. Maurer R. J. J. Chem. Phys. 2020;153:044123. doi: 10.1063/5.0012911. PubMed DOI
Gastegger M. Schütt K. T. Müller K.-R. Chem. Sci. 2021;12:11473–11483. doi: 10.1039/D1SC02742E. PubMed DOI PMC
Martinka J. Zhang L. Hou Y.-F. Martyka M. Pittner J. Barbatti M. Dral P. O. NPJ Comput. Mater. 2025;11(1):132. doi: 10.1038/s41524-025-01636-z. PubMed DOI PMC
Martyka M., Tong X.-Y., Jankowska J. and Dral P. O., ChemRxiv, 2025, 10.26434/chemrxiv-2025-j207x DOI
Li J. Lopez S. A. Chem.–Eur. J. 2022;28:e202200651. doi: 10.1002/chem.202200651. PubMed DOI
Zhu C. Nakamura H. J. Chem. Phys. 1995;102:7448–7461. doi: 10.1063/1.469057. DOI
Wang L. Salguero C. Lopez S. A. Li J. Chem. 2024;10:2295–2310.
Li Z. Hernández F. J. Salguero C. Lopez S. A. Crespo-Otero R. Li J. Nat. Commun. 2025;16:1194. doi: 10.1038/s41467-025-56480-y. PubMed DOI PMC
Barrett R., Dietschreit J. C. and Westermayr J., arXiv, 2025, arXiv:2502.21045, 10.48550/arXiv.2502.21045 DOI
Batatia I., Benner P., Chiang Y., Elena A. M., Kovács D. P., Riebesell J., Advincula X. R., Asta M., Avaylon M., Baldwin W. J., Berger F., Bernstein N., Bhowmik A., Blau S. M., Cărare V., Darby J. P., De S., Pia F. D., Deringer V. L., Elijošius R., El-Machachi Z., Falcioni F., Fako E., Ferrari A. C., Genreith-Schriever A., George J., Goodall R. E. A., Grey C. P., Grigorev P., Han S., Handley W., Heenen H. H., Hermansson K., Holm C., Jaafar J., Hofmann S., Jakob K. S., Jung H., Kapil V., Kaplan A. D., Karimitari N., Kermode J. R., Kroupa N., Kullgren J., Kuner M. C., Kuryla D., Liepuoniute G., Margraf J. T., Magdău I.-B., Michaelides A., Moore J. H., Naik A. A., Niblett S. P., Norwood S. W., O'Neill N., Ortner C., Persson K. A., Reuter K., Rosen A. S., Schaaf L. L., Schran C., Shi B. X., Sivonxay E., Stenczel T. K., Svahn V., Sutton C., Swinburne T. D., Tilly J., van der Oord C., Varga-Umbrich E., Vegge T., Vondrák M., Wang Y., Witt W. C., Zills F. and Csányi G., A foundation model for atomistic materials chemistry, 2024, https://arxiv.org/abs/2401.00096
Kovács D. P., Moore J. H., Browning N. J., Batatia I., Horton J. T., Pu Y., Kapil V., Witt W. C., Magdąu I.-B., Cole D. J. and Cs'anyi G., MACE-OFF: Transferable Short Range Machine Learning Force Fields for Organic Molecules, 2025, https://arxiv.org/abs/2312.15211 PubMed PMC
Cignoni E. Suman D. Nigam J. Cupellini L. Mennucci B. Ceriotti M. ACS Cent. Sci. 2024;10:637–648. doi: 10.1021/acscentsci.3c01480. PubMed DOI PMC
Westermayr J. Maurer R. J. Chem. Sci. 2021;12:10755–10764. doi: 10.1039/D1SC01542G. PubMed DOI PMC
Behler J. Chem. Rev. 2021;121:10037–10072. doi: 10.1021/acs.chemrev.0c00868. PubMed DOI
Richter M. Marquetand P. González-Vázquez J. Sola I. González L. J. Chem. Theory Comput. 2011;7:1253–1258. doi: 10.1021/ct1007394. PubMed DOI
Richings G. W. Polyak I. Spinlove K. E. Worth G. A. Burghardt I. Lasorne B. Int. Rev. Phys. Chem. 2015;34:269–308.
Spinlove K. E. Richings G. Robb M. A. Worth G. A. Faraday Discuss. 2018;212:191–215. doi: 10.1039/C8FD00090E. PubMed DOI
Błasiak B. Brey D. Koch W. Martinazzo R. Burghardt I. Chem. Phys. 2022;560:111542. doi: 10.1016/j.chemphys.2022.111542. DOI
Frankcombe T. J. Collins M. A. Worth G. A. Chem. Phys. Lett. 2010;489:242–247. doi: 10.1016/j.cplett.2010.02.068. DOI
Richings G. W. Habershon S. J. Chem. Phys. 2018;148:134116. doi: 10.1063/1.5024869. PubMed DOI
Koch W. Bonfanti M. Eisenbrandt P. Nandi A. Fu B. Bowman J. Tannor D. Burghardt I. J. Chem. Phys. 2019;151:064121. doi: 10.1063/1.5113579. DOI
Manzhos S. Carrington J. Tucker M. J. J. Chem. Phys. 2006;125:194105. doi: 10.1063/1.2387950. PubMed DOI
Westermayr J. Marquetand P. J. Chem. Phys. 2020;153:154112. doi: 10.1063/5.0021915. PubMed DOI
Zhu Y. Peng J. Xu C. Lan Z. J. Phys. Chem. Lett. 2024;15:9601–9619. doi: 10.1021/acs.jpclett.4c01751. PubMed DOI
Häse F. Galván I. F. Aspuru-Guzik A. Lindh R. Vacher M. Chem. Sci. 2019;10:2298–2307. doi: 10.1039/C8SC04516J. PubMed DOI PMC
Hare S. R. Bratholm L. A. Glowacki D. R. Carpenter B. K. Chem. Sci. 2019;10:9954–9968. doi: 10.1039/C9SC02742D. PubMed DOI PMC
Zhu Y. Peng J. Kang X. Xu C. Lan Z. Phys. Chem. Chem. Phys. 2022;24:24362–24382. doi: 10.1039/D2CP03323B. PubMed DOI
Li X. Hu D. Xie Y. Lan Z. J. Chem. Phys. 2018;149:244104. doi: 10.1063/1.5048049. PubMed DOI
Häse F. Galván I. F. Aspuru-Guzik A. Lindh R. Vacher M. Chem. Sci. 2019;10:2298–2307. doi: 10.1039/C8SC04516J. PubMed DOI PMC
Häse F. Galván I. F. Aspuru-Guzik A. Lindh R. Vacher M. J. Phys.:Conf. Ser. 2020;1412:042003. doi: 10.1088/1742-6596/1412/4/042003. DOI
Bishop C. M., Pattern Recognition and Machine Learning, Springer-Verlag, New York, 1st edn, 2006
Schölkopf B., Smola A. and Müller K.-R., Artificial Neural Networks — ICANN'97, 1997, pp. 583–588
Mead A. J. R. Stat. Soc. Ser. D. 1992;41:27–39. doi: 10.2307/2348634. DOI
Cox M. A. A. and Cox T. F., Handbook of Data Visualization, Springer Berlin Heidelberg, 2008, pp. 315–347
Xue B. X. Barbatti M. Dral P. O. J. Phys. Chem. A. 2020;124:7199–7210. doi: 10.1021/acs.jpca.0c05310. PubMed DOI PMC
Ghojogh B., Crowley M., Karray F. and Ghodsi A., in Multidimensional Scaling, Sammon Mapping, and Isomap, Springer International Publishing, Cham, 2023, pp. 185–205
Pezzotti N. Höllt T. Lelieveldt B. Eisemann E. Vilanova A. Comput. Graph. Forum. 2016;35:21–30. doi: 10.1111/cgf.12878. DOI
Ankerst M. Breunig M. M. Kriegel H.-P. Sander J. SIGMOD Rec. 1999;28:49–60. doi: 10.1145/304181.304187. DOI
Zhang T. Ramakrishnan R. Livny M. Data Min. Knowl. Discov. 1997;1:141–182. doi: 10.1023/A:1009783824328. DOI
Zhang T. Ramakrishnan R. Livny M. SIGMOD Rec. 1996;25:103–114. doi: 10.1145/235968.233324. DOI
Jin X. and Han J., Encyclopedia of Machine Learning, Springer US, 2010, pp. 563–564
Schubert E. Sander J. Ester M. Kriegel H. P. Xu X. ACM Trans. Database Syst. 2017;42:1–21. doi: 10.1145/3068335. DOI
Klem H. Hocky G. M. McCullagh M. J. Chem. Theory Comput. 2022;18:3218–3230. doi: 10.1021/acs.jctc.1c01290. PubMed DOI PMC
Rousseeuw P. J. J. Comput. Appl. Math. 1987;20:53–65. doi: 10.1016/0377-0427(87)90125-7. DOI
Ekemeyong Awong L. E. Zielinska T. Sensors. 2023;23:7925. doi: 10.3390/s23187925. PubMed DOI PMC
Shannon P. Markiel A. Ozier O. Baliga N. S. Wang J. T. Ramage D. Amin N. Schwikowski B. Ideker T. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC
Tavenard R. Faouzi J. Vandewiele G. Divo F. Androz G. Holtz C. Payne M. Yurchak R. Rußwurm M. Kolar K. J. Mach. Learn. Res. 2020;21:1–6.
Drautz R. Phys. Rev. B. 2019;99:014104. doi: 10.1103/PhysRevB.99.014104. DOI
Singh K. Munchmeyer J. Weber L. Leser U. Bande A. J. Chem. Theory Comput. 2022;18:4408–4417. doi: 10.1021/acs.jctc.2c00255. PubMed DOI
Curth R. Röhrkasten T. E. Müller C. Westermayr J. Sci. Data. 2025;12:1300. doi: 10.1038/s41597-025-05443-5. PubMed DOI PMC