Newton-X Platform: New Software Developments for Surface Hopping and Nuclear Ensembles

. 2022 Nov 08 ; 18 (11) : 6851-6865. [epub] 20221004

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36194696

Newton-X is an open-source computational platform to perform nonadiabatic molecular dynamics based on surface hopping and spectrum simulations using the nuclear ensemble approach. Both are among the most common methodologies in computational chemistry for photophysical and photochemical investigations. This paper describes the main features of these methods and how they are implemented in Newton-X. It emphasizes the newest developments, including zero-point-energy leakage correction, dynamics on complex-valued potential energy surfaces, dynamics induced by incoherent light, dynamics based on machine-learning potentials, exciton dynamics of multiple chromophores, and supervised and unsupervised machine learning techniques. Newton-X is interfaced with several third-party quantum-chemistry programs, spanning a broad spectrum of electronic structure methods.

Zobrazit více v PubMed

Crespo-Otero R.; Barbatti M. Recent Advances and Perspectives on Nonadiabatic Mixed Quantum-Classical Dynamics. Chem. Rev. 2018, 118, 7026–7068. 10.1021/acs.chemrev.7b00577. PubMed DOI

Nelson T. R.; White A. J.; Bjorgaard J. A.; Sifain A. E.; Zhang Y.; Nebgen B.; Fernandez-Alberti S.; Mozyrsky D.; Roitberg A. E.; Tretiak S. Non-adiabatic Excited-State Molecular Dynamics: Theory and Applications for Modeling Photophysics in Extended Molecular Materials. Chem. Rev. 2020, 120, 2215–2287. 10.1021/acs.chemrev.9b00447. PubMed DOI

Wang L.; Akimov A.; Prezhdo O. V. Recent Progress in Surface Hopping: 2011–2015. J. Phys. Chem. Lett. 2016, 7, 2100–2112. 10.1021/acs.jpclett.6b00710. PubMed DOI

Granucci G.; Persico M.; Toniolo A. Direct Semiclassical Simulation of Photochemical Processes with Semiempirical Wave Functions. J. Chem. Phys. 2001, 114, 10608–10615. 10.1063/1.1376633. DOI

Barbatti M.; Granucci G.; Persico M.; Ruckenbauer M.; Vazdar M.; Eckert-Maksić M.; Lischka H. The on-the-Fly Surface-Hopping Program System Newton-X: Application to Ab Initio Simulation of the Nonadiabatic Photodynamics of Benchmark Systems. J. Photochem. Photobiol., A 2007, 190, 228–240. 10.1016/j.jphotochem.2006.12.008. DOI

Barbatti M.; Ruckenbauer M.; Plasser F.; Pittner J.; Granucci G.; Persico M.; Lischka H. Newton-X: a surface-hopping program for nonadiabatic molecular dynamics. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2014, 4, 26–33. 10.1002/wcms.1158. DOI

Zheng J.; Li Z.-H.; Jasper A. W.; Bonhommeau D. A.; Valero R.; Meana-Pañeda R.; Mielke S. L.; Zhang L.; Truhlar D. G.. ANT, Version 2019; University of Minnesota: Minneapolis, 2019. http://comp.chem.umn.edu/ant.

Doltsinis N. L.; Marx D. Nonadiabatic Car-Parrinello Molecular Dynamics. Phys. Rev. Lett. 2002, 88, 166402.10.1103/physrevlett.88.166402. PubMed DOI

Gardner J.; Douglas-Gallardo O. A.; Stark W. G.; Westermayr J.; Janke S. M.; Habershon S.; Maurer R. NQCDynamics.jl: A Julia package for nonadiabatic quantum classical molecular dynamics in the condensed phase. J. Chem. Phys. 2022, 156, 174801.10.1063/5.0089436. PubMed DOI

Lee I. S.; Ha J.-K.; Han D.; Kim T. I.; Moon S. W.; Min S. K. PyUNIxMD A Python-based excited state molecular dynamics package. J. Comput. Chem. 2021, 42, 1755–1766. 10.1002/jcc.26711. PubMed DOI PMC

Malone W.; Nebgen B.; White A.; Zhang Y.; Song H.; Bjorgaard J. A.; Sifain A. E.; Rodriguez-Hernandez B.; Freixas V. M.; Fernandez-Alberti S.; Roitberg A. E.; Nelson T. R.; Tretiak S. NEXMD Software Package for Non-adiabatic Excited State Molecular Dynamics Simulations. J. Chem. Theory Comput. 2020, 16, 5771–5783. 10.1021/acs.jctc.0c00248. PubMed DOI

Menger M. F. S. J.; Ehrmaier J.; Faraji S. PySurf: A Framework for Database Accelerated Direct Dynamics. J. Chem. Theory Comput. 2020, 16, 7681–7689. 10.1021/acs.jctc.0c00825. PubMed DOI PMC

Weingart O.; Nenov A.; Altoè P.; Rivalta I.; Segarra-Martí J.; Dokukina I.; Garavelli M. COBRAMM 2.0 — A software interface for tailoring molecular electronic structure calculations and running nanoscale (QM/MM) simulations. J. Mol. Model. 2018, 24, 271.10.1007/s00894-018-3769-6. PubMed DOI

Humeniuk A.; Mitrić R. DFTBaby: A Software Package for Non-adiabatic Molecular Dynamics Simulations Based on Long-Range Corrected Tight-binding TD-DFT(B). Comput. Phys. Commun. 2017, 221, 174–202. 10.1016/j.cpc.2017.08.012. DOI

Akimov A. V. Libra: An Open-Source “Methodology Discovery” Library for Quantum and Classical Dynamics Simulations. J. Comput. Chem. 2016, 37, 1626–1649. 10.1002/jcc.24367. PubMed DOI

Du L.; Lan Z. An On-the-Fly Surface-Hopping Program JADE for Nonadiabatic Molecular Dynamics of Polyatomic Systems: Implementation and Applications. J. Chem. Theory Comput. 2015, 11, 1360–1374. 10.1021/ct501106d. PubMed DOI

Akimov A. V.; Prezhdo O. V. Advanced Capabilities of the PYXAID Program: Integration Schemes, Decoherence Effects, Multiexcitonic States, and Field-Matter Interaction. J. Chem. Theory Comput. 2014, 10, 789–804. 10.1021/ct400934c. PubMed DOI

Richter M.; Marquetand P.; González-Vázquez J.; Sola I.; González L. SHARC: Ab Initio Molecular Dynamics with Surface Hopping in the Adiabatic Representation Including Arbitrary Couplings. J. Chem. Theory Comput. 2011, 7, 1253–1258. 10.1021/ct1007394. PubMed DOI

Tapavicza E.; Tavernelli I.; Rothlisberger U. Trajectory Surface Hopping within Linear Response Time-Dependent Density-Functional Theory. Phys. Rev. Lett. 2007, 98, 023001–023004. 10.1103/PhysRevLett.98.023001. PubMed DOI

Fingerhut B. P.; Dorfman K. E.; Mukamel S. Monitoring Nonadiabatic Dynamics of the RNA Base Uracil by UV Pump–IR Probe Spectroscopy. J. Phys. Chem. Lett. 2013, 4, 1933–1942. 10.1021/jz400776r. PubMed DOI PMC

Fingerhut B. P.; Oesterling S.; Haiser K.; Heil K.; Glas A.; Schreier W. J.; Zinth W.; Carell T.; de Vivie-Riedle R. ONIOM approach for non-adiabatic on-the-fly molecular dynamics demonstrated for the backbone controlled Dewar valence isomerization. J. Chem. Phys. 2012, 136, 204307.10.1063/1.4720090. PubMed DOI

Ryabinkin I. G.; Joubert-Doriol L.; Izmaylov A. F. Geometric Phase Effects in Nonadiabatic Dynamics near Conical Intersections. Acc. Chem. Res. 2017, 50, 1785–1793. 10.1021/acs.accounts.7b00220. PubMed DOI

Park J. W.; Shiozaki T. On-the-Fly CASPT2 Surface-Hopping Dynamics. J. Chem. Theory Comput. 2017, 13, 3676–3683. 10.1021/acs.jctc.7b00559. PubMed DOI

Nakashima Y.; Okutsu K.; Fujimoto K.; Ito Y.; Kanno M.; Nakano M.; Ohshimo K.; Kono H.; Misaizu F. Visible photodissociation of the CO2 dimer cation: fast and slow dissociation dynamics in the excited state. Phys. Chem. Chem. Phys. 2019, 21, 3083–3091. 10.1039/c8cp07068g. PubMed DOI

do Casal M. T.; Toldo J. M.; Pinheiro M. Jr.; Barbatti M. Fewest switches surface hopping with Baeck-An couplings [version 1; peer review: 3 approved]. Open Res. Europe 2021, 1, 49.10.12688/openreseurope.13624.1. PubMed DOI PMC

Mukherjee S.; Barbatti M. A Hessian-Free Method to Prevent Zero-Point Energy Leakage in Classical Trajectories. J. Chem. Theory Comput. 2022, 18, 4109–4116. 10.1021/acs.jctc.2c00216. PubMed DOI

Barbatti M. Simulation of Excitation by Sunlight in Mixed Quantum-Classical Dynamics. J. Chem. Theory Comput. 2020, 16, 4849–4856. 10.1021/acs.jctc.0c00501. PubMed DOI PMC

Kossoski F.; Barbatti M. Nonadiabatic dynamics in multidimensional complex potential energy surfaces. Chem. Sci. 2020, 11, 9827–9835. 10.1039/d0sc04197a. PubMed DOI PMC

Gil E.; Granucci G.; Persico M. Surface Hopping Dynamics with the Frenkel Exciton Model in a Semiempirical Framework. J. Chem. Theory Comput. 2021, 17, 7373–7383. 10.1021/acs.jctc.1c00942. PubMed DOI PMC

Verlet L. Computer Experiments on Classical Fluids .I. Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev. 1967, 159, 98–103. 10.1103/physrev.159.98. DOI

Swope W. C.; Andersen H. C.; Berens P. H.; Wilson K. R. A Computer-Simulation Method for the Calculation of Equilibrium-Constants for the Formation of Physical Clusters of Molecules - Application to Small Water Clusters. J. Chem. Phys. 1982, 76, 637–649. 10.1063/1.442716. DOI

Andersen H. C. Molecular-Dynamics Simulations at Constant Pressure and/or Temperature. J. Chem. Phys. 1980, 72, 2384–2393. 10.1063/1.439486. DOI

Czakó G.; Kaledin A. L.; Bowman J. M. A practical method to avoid zero-point leak in molecular dynamics calculations: Application to the water dimer. J. Chem. Phys. 2010, 132, 164103.10.1063/1.3417999. PubMed DOI

Tully J. C. Molecular-Dynamics with Electronic-Transitions. J. Chem. Phys. 1990, 93, 1061–1071. 10.1063/1.459170. DOI

Tully J. C. Mixed Quantum-Classical Dynamics. Faraday Discuss. 1998, 110, 407–419. 10.1039/a801824c. DOI

Ferretti A.; Granucci G.; Lami A.; Persico M.; Villani G. Quantum mechanical and semiclassical dynamics at a conical intersection. J. Chem. Phys. 1996, 104, 5517–5527. 10.1063/1.471791. DOI

Butcher J. C. A Modified Multistep Method for the Numerical Integration of Ordinary Differential Equations. J. ACM 1965, 12, 124–135. 10.1145/321250.321261. DOI

Subotnik J. E.; Jain A.; Landry B.; Petit A.; Ouyang W.; Bellonzi N. Understanding the Surface Hopping View of Electronic Transitions and Decoherence. Annu. Rev. Phys. Chem. 2016, 67, 387–417. 10.1146/annurev-physchem-040215-112245. PubMed DOI

Bittner E. R.; Rossky P. J. Quantum decoherence in mixed quantum-classical systems: Nonadiabatic processes. J. Chem. Phys. 1995, 103, 8130–8143. 10.1063/1.470177. DOI

Granucci G.; Persico M. Critical appraisal of the fewest switches algorithm for surface hopping. J. Chem. Phys. 2007, 126, 134114.10.1063/1.2715585. PubMed DOI

Granucci G.; Persico M.; Zoccante A. Including quantum decoherence in surface hopping. J. Chem. Phys. 2010, 133, 134111.10.1063/1.3489004. PubMed DOI

Zhu C. Y.; Nangia S.; Jasper A. W.; Truhlar D. G. Coherent Switching with Decay of Mixing: An Improved Treatment of Electronic Coherence for Non-Born-Oppenheimer Trajectories. J. Chem. Phys. 2004, 121, 7658–7670. 10.1063/1.1793991. PubMed DOI

Hack M. D.; Truhlar D. G. A natural decay of mixing algorithm for non-Born–Oppenheimer trajectories. J. Chem. Phys. 2001, 114, 9305–9314. 10.1063/1.1368388. DOI

Jasper A. W.; Truhlar D. G. Electronic decoherence time for non-Born-Oppenheimer trajectories. J. Chem. Phys. 2005, 123, 064103.10.1063/1.1995695. PubMed DOI

Subotnik J. E.; Shenvi N. A new approach to decoherence and momentum rescaling in the surface hopping algorithm. J. Chem. Phys. 2011, 134, 024105.10.1063/1.3506779. PubMed DOI

Barbatti M. Velocity Adjustment in Surface Hopping: Ethylene as a Case Study of the Maximum Error Caused by Direction Choice. J. Chem. Theory Comput. 2021, 17, 3010–3018. 10.1021/acs.jctc.1c00012. PubMed DOI

Plasser F.; Mai S.; Fumanal M.; Gindensperger E.; Daniel C.; González L. Strong Influence of Decoherence Corrections and Momentum Rescaling in Surface Hopping Dynamics of Transition Metal Complexes. J. Chem. Theory Comput. 2019, 15, 5031–5045. 10.1021/acs.jctc.9b00525. PubMed DOI

Carof A.; Giannini S.; Blumberger J. Detailed balance, internal consistency, and energy conservation in fragment orbital-based surface hopping. J. Chem. Phys. 2017, 147, 214113.10.1063/1.5003820. PubMed DOI

Braun G.; Borges I. Jr.; Aquino A.; Lischka H.; Plasser F.; do Monte S. A.; Ventura E.; Mukherjee S.; Barbatti M. Non-Kasha fluorescence of pyrene emerges from a dynamic equilibrium between excited states. J. Chem. Phys. 2022, 10.1063/5.0113908. PubMed DOI

Plasser F.; Granucci G.; Pittner J.; Barbatti M.; Persico M.; Lischka H. Surface Hopping Dynamics Using a Locally Diabatic Formalism: Charge Transfer in the Ethylene Dimer Cation and Excited State Dynamics in the 2-Pyridone Dimer. J. Chem. Phys. 2012, 137, 22A514–13. 10.1063/1.4738960. PubMed DOI

Wang L.; Prezhdo O. V. A Simple Solution to the Trivial Crossing Problem in Surface Hopping. J. Phys. Chem. Lett. 2014, 5, 713–719. 10.1021/jz500025c. PubMed DOI

Fernandez-Alberti S.; Roitberg A. E.; Nelson T.; Tretiak S. Identification of Unavoided Crossings in Nonadiabatic Photoexcited Dynamics Involving Multiple Electronic States in Polyatomic Conjugated Molecules. J. Chem. Phys. 2012, 137, 014512.10.1063/1.4732536. PubMed DOI

Aguilera-Porta N.; Corral I.; Munoz-Muriedas J.; Granucci G. Excited state dynamics of some nonsteroidal anti-inflammatory drugs: A surface-hopping investigation. Comput. Theor. Chem. 2019, 1152, 20–27. 10.1016/j.comptc.2019.02.009. DOI

Hammes-Schiffer S.; Tully J. C. Proton-Transfer in Solution - Molecular-Dynamics with Quantum Transitions. J. Chem. Phys. 1994, 101, 4657–4667. 10.1063/1.467455. DOI

Pittner J.; Lischka H.; Barbatti M. Optimization of Mixed Quantum-Classical Dynamics: Time-Derivative Coupling Terms and Selected Couplings. Chem. Phys. 2009, 356, 147–152. 10.1016/j.chemphys.2008.10.013. DOI

Stojanović L.; Bai S.; Nagesh J.; Izmaylov A. F.; Crespo-Otero R.; Lischka H.; Barbatti M. New Insights into the State Trapping of UV-Excited Thymine. Molecules 2016, 21, 1603.10.3390/molecules21111603. PubMed DOI PMC

Ryabinkin I. G.; Nagesh J.; Izmaylov A. F. Fast Numerical Evaluation of Time-Derivative Nonadiabatic Couplings for Mixed Quantum–Classical Methods. J. Phys. Chem. Lett. 2015, 6, 4200–4203. 10.1021/acs.jpclett.5b02062. PubMed DOI

Werner U.; Mitrić R.; Suzuki T.; Bonačić-Koutecký V. Nonadiabatic Dynamics within the Time Dependent Density Functional Theory: Ultrafast Photodynamics in Pyrazine. Chem. Phys. 2008, 349, 319–324. 10.1016/j.chemphys.2008.02.061. PubMed DOI

Plasser F.; Crespo-Otero R.; Pederzoli M.; Pittner J.; Lischka H.; Barbatti M. Surface Hopping Dynamics with Correlated Single-Reference Methods: 9H-Adenine as a Case Study. J. Chem. Theory Comput. 2014, 10, 1395–1405. 10.1021/ct4011079. PubMed DOI

Gao X.; Bai S.; Fazzi D.; Niehaus T.; Barbatti M.; Thiel W. Evaluation of Spin-Orbit Couplings with Linear-Response Time-Dependent Density Functional Methods. J. Chem. Theory Comput. 2017, 13, 515–524. 10.1021/acs.jctc.6b00915. PubMed DOI

Shu Y.; Zhang L.; Chen X.; Sun S.; Huang Y.; Truhlar D. G. Nonadiabatic Dynamics Algorithms with Only Potential Energies and Gradients: Curvature-Driven Coherent Switching with Decay of Mixing and Curvature-Driven Trajectory Surface Hopping. J. Chem. Theory Comput. 2022, 18, 1320–1328. 10.1021/acs.jctc.1c01080. PubMed DOI

Li W.; Lucchese R. R.; Doyuran A.; Wu Z.; Loos H.; Hall G. E.; Suits A. G. Superexcited State Dynamics Probed with an Extreme-Ultraviolet Free Electron Laser. Phys. Rev. Lett. 2004, 92, 083002.10.1103/PhysRevLett.92.083002. PubMed DOI

Norman P.; Dreuw A. Simulating X-ray Spectroscopies and Calculating Core-Excited States of Molecules. Chem. Rev. 2018, 118, 7208–7248. 10.1021/acs.chemrev.8b00156. PubMed DOI

Fabrikant I. I.; Eden S.; Mason N. J.; Fedor J.. Recent Progress in Dissociative Electron Attachment. Advances In Atomic, Molecular, and Optical Physics; Arimondo E., Lin C. C., Yelin S. F., Eds.; Academic Press, 2017; Vol. 66, pp 545–657.

Kossoski F.; Varella M. T. d. N. Negative ion states of 5-bromouracil and 5-iodouracil. Phys. Chem. Chem. Phys. 2015, 17, 17271–17278. 10.1039/c5cp01475a. PubMed DOI

Chenu A.; Brumer P. Transform-limited-pulse representation of excitation with natural incoherent light. J. Chem. Phys. 2016, 144, 044103.10.1063/1.4940028. PubMed DOI

Polli D.; Altoè P.; Weingart O.; Spillane K. M.; Manzoni C.; Brida D.; Tomasello G.; Orlandi G.; Kukura P.; Mathies R. A.; Garavelli M.; Cerullo G. Conical Intersection Dynamics of the Primary Photoisomerization Event in Vision. Nature 2010, 467, 440–443. 10.1038/nature09346. PubMed DOI

Suchan J.; Hollas D.; Curchod B. F. E.; Slavíček P. On the importance of initial conditions for excited-state dynamics. Faraday Discuss. 2018, 212, 307.10.1039/c8fd00088c. PubMed DOI

Barbatti M.; Sen K. Effects of Different Initial Condition Samplings on Photodynamics and Spectrum of Pyrrole. Int. J. Quantum Chem. 2016, 116, 762–771. 10.1002/qua.25049. DOI

Ruckenbauer M.; Barbatti M.; Müller T.; Lischka H. Nonadiabatic Excited-State Dynamics with Hybrid ab Initio Quantum-Mechanical/Molecular-Mechanical Methods: Solvation of the Pentadieniminium Cation in Apolar Media. J. Phys. Chem. A 2010, 114, 6757–6765. 10.1021/jp103101t. PubMed DOI

Sellner B.; Barbatti M.; Lischka H. Dynamics starting at a conical intersection: application to the photochemistry of pyrrole. J. Chem. Phys. 2009, 131, 024312.10.1063/1.3175799. PubMed DOI

Crespo-Otero R.; Barbatti M. Spectrum Simulation and Decomposition with Nuclear Ensemble: Formal Derivation and Application to Benzene, Furan and 2-Phenylfuran. Theor. Chem. Acc. 2012, 131, 1237.10.1007/s00214-012-1237-4. DOI

Sršeň Š.; Slavíček P. Optimal Representation of the Nuclear Ensemble: Application to Electronic Spectroscopy. J. Chem. Theory Comput. 2021, 17, 6395–6404. 10.1021/acs.jctc.1c00749. PubMed DOI

Hillery M.; O’Connell R. F.; Scully M. O.; Wigner E. P. Distribution functions in physics: Fundamentals. Phys. Rep. 1984, 106, 121–167. 10.1016/0370-1573(84)90160-1. DOI

Case W. B. Wigner Functions and Weyl Transforms for Pedestrians. Am. J. Phys. 2008, 76, 937–946. 10.1119/1.2957889. DOI

Yao Y.; Hase W. L.; Granucci G.; Persico M. Sampling initial positions and momenta for nuclear trajectories from quantum mechanical distributions. J. Chem. Phys. 2021, 154, 074115.10.1063/5.0039592. PubMed DOI

Kossoski F.; Barbatti M. Nuclear Ensemble Approach with Importance Sampling. J. Chem. Theory Comput. 2018, 14, 3173–3183. 10.1021/acs.jctc.8b00059. PubMed DOI

Kossoski F.; Varella M. T. d. N.; Barbatti M. On-the-fly dynamics simulations of transient anions. J. Chem. Phys. 2019, 151, 224104.10.1063/1.5130547. PubMed DOI

Lee H.-W. Wigner trajectories of a Gaussian wave packet perturbed by a weak potential. Found. Phys. 1992, 22, 995–1010. 10.1007/BF00733392. DOI

Hilborn R. C. Einstein coefficients; Cross-Sections, f Values, Dipole-Moments, and All That. Am. J. Phys. 1982, 50, 982–986. 10.1119/1.12937. DOI

Demchenko A. P.; Tomin V. I.; Chou P.-T. Breaking the Kasha Rule for More Efficient Photochemistry. Chem. Rev. 2017, 117, 13353–13381. 10.1021/acs.chemrev.7b00110. PubMed DOI

Peng Q.; Niu Y.; Shi Q.; Gao X.; Shuai Z. Correlation Function Formalism for Triplet Excited State Decay: Combined Spin–Orbit and Nonadiabatic Couplings. J. Chem. Theory Comput. 2013, 9, 1132–1143. 10.1021/ct300798t. PubMed DOI

Parson W. W.Modern Optical Spectroscopy; Springer-Verlag: Berlin Heidelberg, 2007.

Arbelo-González W.; Crespo-Otero R.; Barbatti M. Steady and Time-Resolved Photoelectron Spectra Based on Nuclear Ensembles. J. Chem. Theory Comput. 2016, 12, 5037–5049. 10.1021/acs.jctc.6b00704. PubMed DOI

Lischka H.; Nachtigallová D.; Aquino A. J. A.; Szalay P. G.; Plasser F.; Machado F. B. C.; Barbatti M. Multireference Approaches for Excited States of Molecules. Chem. Rev. 2018, 118, 7293–7361. 10.1021/acs.chemrev.8b00244. PubMed DOI

Dallos M.; Lischka H.; Shepard R.; Yarkony D. R.; Szalay P. G. Analytic Evaluation of Nonadiabatic Coupling Terms at the MR-CI Level. II. Minima on the Crossing Seam: Formaldehyde and the Photodimerization of Ethylene. J. Chem. Phys. 2004, 120, 7330–7339. 10.1063/1.1668631. PubMed DOI

Shiozaki T.; Győrffy W.; Celani P.; Werner H.-J. Communication: Extended multi-state complete active space second-order perturbation theory: Energy and nuclear gradients. J. Chem. Phys. 2011, 135, 081106.10.1063/1.3633329. PubMed DOI

Granucci G.; Toniolo A. Molecular Gradients for Semiempirical CI Wavefunctions with Floating Occupation Molecular Orbitals. Chem. Phys. Lett. 2000, 325, 79–85. 10.1016/s0009-2614(00)00691-6. DOI

Koslowski A.; Beck M. E.; Thiel W. Implementation of a General Multireference Configuration Interaction Procedure with Analytic Gradients in a Semiempirical Context Using the Graphical Unitary Group Approach. J. Comput. Chem. 2003, 24, 714–726. 10.1002/jcc.10210. PubMed DOI

Dreuw A.; Wormit M. The Algebraic Diagrammatic Construction Scheme for the Polarization Propagator for the Calculation of Excited States. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2015, 5, 82–95. 10.1002/wcms.1206. DOI

Huix-Rotllant M.; Ferré N.; Barbatti M.. Time-Dependent Density Functional Theory: from the Fundamentals to Nonadiabatic Dynamics. In Quantum Chemistry and Dynamics of Excited States: Methods and Applications; González L., Lindh R., Eds.; John Wiley & Sons, 2020; pp 15–46.

Kranz J. J.; Elstner M.; Aradi B.; Frauenheim T.; Lutsker V.; Garcia A. D.; Niehaus T. A. Time-Dependent Extension of the Long-Range Corrected Density Functional Based Tight-Binding Method. J. Chem. Theory Comput. 2017, 13, 1737–1747. 10.1021/acs.jctc.6b01243. PubMed DOI

Polyak I.; Hutton L.; Crespo-Otero R.; Barbatti M.; Knowles P. J. Ultrafast Photoinduced Dynamics of 1,3-Cyclohexadiene Using XMS-CASPT2 Surface Hopping. J. Chem. Theory Comput. 2019, 15, 3929–3940. 10.1021/acs.jctc.9b00396. PubMed DOI

Stojanović L.; Aziz S. G.; Hilal R. H.; Plasser F.; Niehaus T. A.; Barbatti M. Nonadiabatic Dynamics of Cycloparaphenylenes with TD-DFTB Surface Hopping. J. Chem. Theory Comput. 2017, 13, 5846–5860. 10.1021/acs.jctc.7b01000. PubMed DOI

Lischka H.; Müller T.; Szalay P. G.; Shavitt I.; Pitzer R. M.; Shepard R. COLUMBUS – A Program System for Advanced Multireference Theory Calculations. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 191–199. 10.1002/wcms.25. DOI

Vlaisavljevich B.; Shiozaki T. Nuclear Energy Gradients for Internally Contracted Complete Active Space Second-Order Perturbation Theory: Multistate Extensions. J. Chem. Theory Comput. 2016, 12, 3781–3787. 10.1021/acs.jctc.6b00572. PubMed DOI

Barca G. M. J.; Bertoni C.; Carrington L.; Datta D.; De Silva N. D.; Deustua J. E.; Fedorov D. G.; Gour J. R.; Gunina A. O.; Guidez E.; Harville T.; Irle S.; Ivanic J.; Kowalski K.; Leang S. S.; Li H.; Li W.; Lutz J. J.; Magoulas I.; Mato J.; Mironov V.; Nakata H.; Pham B. Q.; Piecuch P.; Poole D.; Pruitt S. R.; Rendell A. P.; Roskop L. B.; Ruedenberg K.; Sattasathuchana T.; Schmidt M. W.; Shen J.; Slipchenko L.; Sosonkina M.; Sundriyal V.; Tiwari A.; Galvez Vallejo J. L. G.; Westheimer B.; Włoch M.; Xu P.; Zahariev F.; Gordon M. S. Recent developments in the general atomic and molecular electronic structure system. J. Chem. Phys. 2020, 152, 154102.10.1063/5.0005188. PubMed DOI

Balasubramani S. G.; Chen G. P.; Coriani S.; Diedenhofen M.; Frank M. S.; Franzke Y. J.; Furche F.; Grotjahn R.; Harding M. E.; Hättig C.; Hellweg A.; Helmich-Paris B.; Holzer C.; Huniar U.; Kaupp M.; Marefat Khah A. M.; Karbalaei Khani S. K.; Müller T.; Mack F.; Nguyen B. D.; Parker S. M.; Perlt E.; Rappoport D.; Reiter K.; Roy S.; Rückert M.; Schmitz G.; Sierka M.; Tapavicza E.; Tew D. P.; van Wüllen C. v.; Voora V. K.; Weigend F.; Wodyński A.; Yu J. M. TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations. J. Chem. Phys. 2020, 152, 184107.10.1063/5.0004635. PubMed DOI PMC

Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato M.; Marenich A. V.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ortiz J. V.; Izmaylov A. F.; Sonnenberg J. L.; Williams; Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V. G.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K.; Montgomery J. A. Jr.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J. J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Keith T. A.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Millam J. M.; Klene M.; Adamo C.; Cammi R.; Ochterski J. W.; Martin R. L.; Morokuma K.; Farkas O.; Foresman J. B.; Fox D. J.. Gaussian 16; Rev. C.01: Wallingford, CT, 2016. https://gaussian.com.

Hourahine B.; Aradi B.; Blum V.; Bonafé F.; Buccheri A.; Camacho C.; Cevallos C.; Deshaye M. Y.; Dumitrică T.; Dominguez A.; Ehlert S.; Elstner M.; van der Heide T.; Hermann J.; Irle S.; Kranz J. J.; Köhler C.; Kowalczyk T.; Kubař T.; Lee I. S.; Lutsker V.; Maurer R. J.; Min S. K.; Mitchell I.; Negre C.; Niehaus T. A.; Niklasson A. M. N.; Page A. J.; Pecchia A.; Penazzi G.; Persson M. P.; Řezáč J.; Sánchez C. G.; Sternberg M.; Stöhr M.; Stuckenberg F.; Tkatchenko A.; Yu V. W. z.; Frauenheim T. DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. J. Chem. Phys. 2020, 152, 124101.10.1063/1.5143190. PubMed DOI

Dral P. O.; Ge F.; Xue B.-X.; Hou Y.-F.; Pinheiro M.; Huang J.; Barbatti M. MLatom 2: An Integrative Platform for Atomistic Machine Learning. Top. Curr. Chem. 2021, 379, 27.10.1007/s41061-021-00339-5. PubMed DOI PMC

Rackers J. A.; Wang Z.; Lu C.; Laury M. L.; Lagardère L.; Schnieders M. J.; Piquemal J.-P.; Ren P.; Ponder J. W. Tinker 8: Software Tools for Molecular Design. J. Chem. Theory Comput. 2018, 14, 5273–5289. 10.1021/acs.jctc.8b00529. PubMed DOI PMC

Nikitin E. E. The Theory of Nonadiabatic Transitions: Recent Development with Exponential Models. Adv. Quantum Chem. 1970, 5, 135–184. 10.1016/s0065-3276(08)60338-x. DOI

Leggett A. J.; Chakravarty S.; Dorsey A. T.; Fisher M. P. A.; Garg A.; Zwerger W. Dynamics of the dissipative two-state system. Rev. Mod. Phys. 1987, 59, 1–85. 10.1103/revmodphys.59.1. DOI

Grimme S.; Waletzke M. A Combination of Kohn-Sham Density Functional Theory and Multi-Reference Configuration Interaction Methods. J. Chem. Phys. 1999, 111, 5645–5655. 10.1063/1.479866. DOI

Marian C. M.; Heil A.; Kleinschmidt M. The DFT/MRCI method. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2019, 9, e139410.1002/wcms.1394. DOI

Gozem S.; Gunina A. O.; Ichino T.; Osborn D. L.; Stanton J. F.; Krylov A. I. Photoelectron Wave Function in Photoionization: Plane Wave or Coulomb Wave?. J. Phys. Chem. Lett. 2015, 6, 4532–4540. 10.1021/acs.jpclett.5b01891. PubMed DOI

Plasser F. TheoDORE A toolbox for a detailed and automated analysis of electronic excited state computations. J. Chem. Phys. 2020, 152, 084108.10.1063/1.5143076. PubMed DOI

Plasser F.; Lischka H. Analysis of Excitonic and Charge Transfer Interactions from Quantum Chemical Calculations. J. Chem. Theory Comput. 2012, 8, 2777–2789. 10.1021/ct300307c. PubMed DOI

Weingart O. Combined Quantum and Molecular Mechanics (QM/MM) Approaches to Simulate Ultrafast Photodynamics in Biological Systems. Curr. Org. Chem. 2017, 21, 586–601. 10.2174/1385272821666161108150421. DOI

Ren P. Y.; Ponder J. W. Polarizable atomic multipole water model for molecular mechanics simulation. J. Phys. Chem. B 2003, 107, 5933–5947. 10.1021/jp027815+. DOI

Bondanza M.; Nottoli M.; Cupellini L.; Lipparini F.; Mennucci B. Polarizable embedding QM/MM: the future gold standard for complex (bio)systems?. Phys. Chem. Chem. Phys. 2020, 22, 14433–14448. 10.1039/D0CP02119A. PubMed DOI

Loco D.; Lagardère L.; Cisneros G. A.; Scalmani G.; Frisch M.; Lipparini F.; Mennucci B.; Piquemal J.-P. Towards large scale hybrid QM/MM dynamics of complex systems with advanced point dipole polarizable embeddings. Chem. Sci. 2019, 10, 7200–7211. 10.1039/c9sc01745c. PubMed DOI PMC

Bondanza M.; Demoulin B.; Lipparini F.; Barbatti M.; Mennucci B. Trajectory Surface Hopping for a Polarizable Embedding QM/MM Formulation. J. Phys. Chem. A 2022, 126, 6780–6789. 10.1021/acs.jpca.2c04756. PubMed DOI PMC

Xue B.-X.; Barbatti M.; Dral P. O. Machine Learning for Absorption Cross Sections. J. Phys. Chem. A 2020, 124, 7199–7210. 10.1021/acs.jpca.0c05310. PubMed DOI PMC

Westermayr J.; Marquetand P. Machine Learning for Electronically Excited States of Molecules. Chem. Rev. 2020, 121, 9873–9926. 10.1021/acs.chemrev.0c00749. PubMed DOI PMC

Dral P. O.; Barbatti M. Molecular excited states through a machine learning lens. Nat. Rev. Chem. 2021, 5, 388–405. 10.1038/s41570-021-00278-1. PubMed DOI

Pinheiro M.; Ge F.; Ferré N.; Dral P. O.; Barbatti M. Choosing the right molecular machine learning potential. Chem. Sci. 2021, 12, 14396–14413. 10.1039/d1sc03564a. PubMed DOI PMC

Axelrod S.; Shakhnovich E.; Gómez-Bombarelli R. Excited state non-adiabatic dynamics of large photoswitchable molecules using a chemically transferable machine learning potential. Nat. Commun. 2022, 13, 3440.10.1038/s41467-022-30999-w. PubMed DOI PMC

Dral P. O.; Barbatti M.; Thiel W. Nonadiabatic Excited-State Dynamics with Machine Learning. J. Phys. Chem. Lett. 2018, 9, 5660–5663. 10.1021/acs.jpclett.8b02469. PubMed DOI PMC

Brown W. M.; Martin S.; Pollock S. N.; Coutsias E. A.; Watson J.-P. Algorithmic dimensionality reduction for molecular structure analysis. J. Chem. Phys. 2008, 129, 064118.10.1063/1.2968610. PubMed DOI PMC

Li X.; Xie Y.; Hu D.; Lan Z. Analysis of the Geometrical Evolution in On-the-Fly Surface-Hopping Nonadiabatic Dynamics with Machine Learning Dimensionality Reduction Approaches: Classical Multidimensional Scaling and Isometric Mapping. J. Chem. Theory Comput. 2017, 13, 4611–4623. 10.1021/acs.jctc.7b00394. PubMed DOI

Glielmo A.; Husic B. E.; Rodriguez A.; Clementi C.; Noé F.; Laio A. Unsupervised Learning Methods for Molecular Simulation Data. Chem. Rev. 2021, 121, 9722–9758. 10.1021/acs.chemrev.0c01195. PubMed DOI PMC

Mukherjee S.; Pinheiro M. Jr.; Demoulin B.; Barbatti M. Simulations of molecular photodynamics in long timescales. Philos. Trans. R. Soc., A 2022, 380, 20200382.10.1098/rsta.2020.0382. PubMed DOI PMC

de Buyl P.; Colberg P. H.; Höfling F. H5MD A structured, efficient, and portable file format for molecular data. Comput. Phys. Commun. 2014, 185, 1546–1553. 10.1016/j.cpc.2014.01.018. DOI

Thompson A. P.; Aktulga H. M.; Berger R.; Bolintineanu D. S.; Brown W. M.; Crozier P. S.; in ’t Veld P. J.; Kohlmeyer A.; Moore S. G.; Nguyen T. D.; Shan R.; Stevens M. J.; Tranchida J.; Trott C.; Plimpton S. J. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2022, 271, 108171.10.1016/j.cpc.2021.108171. DOI

Fdez Galván I.; Vacher M.; Alavi A.; Angeli C.; Aquilante F.; Autschbach J.; Bao J. J.; Bokarev S. I.; Bogdanov N. A.; Carlson R. K.; Chibotaru L. F.; Creutzberg J.; Dattani N.; Delcey M. G.; Dong S. S.; Dreuw A.; Freitag L.; Frutos L. M.; Gagliardi L.; Gendron F.; Giussani A.; González L.; Grell G.; Guo M.; Hoyer C. E.; Johansson M.; Keller S.; Knecht S.; Kovačević G.; Källman E.; Li Manni G.; Lundberg M.; Ma Y.; Mai S.; Malhado J. P.; Malmqvist P. Å.; Marquetand P.; Mewes S. A.; Norell J.; Olivucci M.; Oppel M.; Phung Q. M.; Pierloot K.; Plasser F.; Reiher M.; Sand A. M.; Schapiro I.; Sharma P.; Stein C. J.; Sørensen L. K.; Truhlar D. G.; Ugandi M.; Ungur L.; Valentini A.; Vancoillie S.; Veryazov V.; Weser O.; Wesołowski T. A.; Widmark P.-O.; Wouters S.; Zech A.; Zobel J. P.; Lindh R. OpenMolcas From Source Code to Insight. J. Chem. Theory Comput. 2019, 15, 5925–5964. 10.1021/acs.jctc.9b00532. PubMed DOI

Humphrey W.; Dalke A.; Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. 10.1016/0263-7855(96)00018-5. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...