Newton-X Platform: New Software Developments for Surface Hopping and Nuclear Ensembles
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36194696
PubMed Central
PMC9648185
DOI
10.1021/acs.jctc.2c00804
Knihovny.cz E-zdroje
- MeSH
- kvantová teorie * MeSH
- simulace molekulární dynamiky MeSH
- software * MeSH
- Publikační typ
- časopisecké články MeSH
Newton-X is an open-source computational platform to perform nonadiabatic molecular dynamics based on surface hopping and spectrum simulations using the nuclear ensemble approach. Both are among the most common methodologies in computational chemistry for photophysical and photochemical investigations. This paper describes the main features of these methods and how they are implemented in Newton-X. It emphasizes the newest developments, including zero-point-energy leakage correction, dynamics on complex-valued potential energy surfaces, dynamics induced by incoherent light, dynamics based on machine-learning potentials, exciton dynamics of multiple chromophores, and supervised and unsupervised machine learning techniques. Newton-X is interfaced with several third-party quantum-chemistry programs, spanning a broad spectrum of electronic structure methods.
Aix Marseille University CNRS ICR 13013Marseille France
Department of Chemistry and Biochemistry Texas Tech University Lubbock Texas79409 United States
Department of Chemistry Loughborough University LE11 3TULoughborough U K
Department of Chemistry Queen Mary University of London Mile End Road E1 4NSLondon U K
Department of Physics and Astronomy University College London Gower Street WC1E 6BTLondon U K
Dipartimento di Chimica e Chimica Industriale Università di Pisa via Moruzzi 13 56124Pisa Italy
Institut Universitaire de France 75231Paris France
Laboratoire de Chimie et Physique Quantiques Université de Toulouse CNRS UPS 31000Toulouse France
Zobrazit více v PubMed
Crespo-Otero R.; Barbatti M. Recent Advances and Perspectives on Nonadiabatic Mixed Quantum-Classical Dynamics. Chem. Rev. 2018, 118, 7026–7068. 10.1021/acs.chemrev.7b00577. PubMed DOI
Nelson T. R.; White A. J.; Bjorgaard J. A.; Sifain A. E.; Zhang Y.; Nebgen B.; Fernandez-Alberti S.; Mozyrsky D.; Roitberg A. E.; Tretiak S. Non-adiabatic Excited-State Molecular Dynamics: Theory and Applications for Modeling Photophysics in Extended Molecular Materials. Chem. Rev. 2020, 120, 2215–2287. 10.1021/acs.chemrev.9b00447. PubMed DOI
Wang L.; Akimov A.; Prezhdo O. V. Recent Progress in Surface Hopping: 2011–2015. J. Phys. Chem. Lett. 2016, 7, 2100–2112. 10.1021/acs.jpclett.6b00710. PubMed DOI
Granucci G.; Persico M.; Toniolo A. Direct Semiclassical Simulation of Photochemical Processes with Semiempirical Wave Functions. J. Chem. Phys. 2001, 114, 10608–10615. 10.1063/1.1376633. DOI
Barbatti M.; Granucci G.; Persico M.; Ruckenbauer M.; Vazdar M.; Eckert-Maksić M.; Lischka H. The on-the-Fly Surface-Hopping Program System Newton-X: Application to Ab Initio Simulation of the Nonadiabatic Photodynamics of Benchmark Systems. J. Photochem. Photobiol., A 2007, 190, 228–240. 10.1016/j.jphotochem.2006.12.008. DOI
Barbatti M.; Ruckenbauer M.; Plasser F.; Pittner J.; Granucci G.; Persico M.; Lischka H. Newton-X: a surface-hopping program for nonadiabatic molecular dynamics. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2014, 4, 26–33. 10.1002/wcms.1158. DOI
Zheng J.; Li Z.-H.; Jasper A. W.; Bonhommeau D. A.; Valero R.; Meana-Pañeda R.; Mielke S. L.; Zhang L.; Truhlar D. G.. ANT, Version 2019; University of Minnesota: Minneapolis, 2019. http://comp.chem.umn.edu/ant.
Doltsinis N. L.; Marx D. Nonadiabatic Car-Parrinello Molecular Dynamics. Phys. Rev. Lett. 2002, 88, 166402.10.1103/physrevlett.88.166402. PubMed DOI
Gardner J.; Douglas-Gallardo O. A.; Stark W. G.; Westermayr J.; Janke S. M.; Habershon S.; Maurer R. NQCDynamics.jl: A Julia package for nonadiabatic quantum classical molecular dynamics in the condensed phase. J. Chem. Phys. 2022, 156, 174801.10.1063/5.0089436. PubMed DOI
Lee I. S.; Ha J.-K.; Han D.; Kim T. I.; Moon S. W.; Min S. K. PyUNIxMD A Python-based excited state molecular dynamics package. J. Comput. Chem. 2021, 42, 1755–1766. 10.1002/jcc.26711. PubMed DOI PMC
Malone W.; Nebgen B.; White A.; Zhang Y.; Song H.; Bjorgaard J. A.; Sifain A. E.; Rodriguez-Hernandez B.; Freixas V. M.; Fernandez-Alberti S.; Roitberg A. E.; Nelson T. R.; Tretiak S. NEXMD Software Package for Non-adiabatic Excited State Molecular Dynamics Simulations. J. Chem. Theory Comput. 2020, 16, 5771–5783. 10.1021/acs.jctc.0c00248. PubMed DOI
Menger M. F. S. J.; Ehrmaier J.; Faraji S. PySurf: A Framework for Database Accelerated Direct Dynamics. J. Chem. Theory Comput. 2020, 16, 7681–7689. 10.1021/acs.jctc.0c00825. PubMed DOI PMC
Weingart O.; Nenov A.; Altoè P.; Rivalta I.; Segarra-Martí J.; Dokukina I.; Garavelli M. COBRAMM 2.0 — A software interface for tailoring molecular electronic structure calculations and running nanoscale (QM/MM) simulations. J. Mol. Model. 2018, 24, 271.10.1007/s00894-018-3769-6. PubMed DOI
Humeniuk A.; Mitrić R. DFTBaby: A Software Package for Non-adiabatic Molecular Dynamics Simulations Based on Long-Range Corrected Tight-binding TD-DFT(B). Comput. Phys. Commun. 2017, 221, 174–202. 10.1016/j.cpc.2017.08.012. DOI
Akimov A. V. Libra: An Open-Source “Methodology Discovery” Library for Quantum and Classical Dynamics Simulations. J. Comput. Chem. 2016, 37, 1626–1649. 10.1002/jcc.24367. PubMed DOI
Du L.; Lan Z. An On-the-Fly Surface-Hopping Program JADE for Nonadiabatic Molecular Dynamics of Polyatomic Systems: Implementation and Applications. J. Chem. Theory Comput. 2015, 11, 1360–1374. 10.1021/ct501106d. PubMed DOI
Akimov A. V.; Prezhdo O. V. Advanced Capabilities of the PYXAID Program: Integration Schemes, Decoherence Effects, Multiexcitonic States, and Field-Matter Interaction. J. Chem. Theory Comput. 2014, 10, 789–804. 10.1021/ct400934c. PubMed DOI
Richter M.; Marquetand P.; González-Vázquez J.; Sola I.; González L. SHARC: Ab Initio Molecular Dynamics with Surface Hopping in the Adiabatic Representation Including Arbitrary Couplings. J. Chem. Theory Comput. 2011, 7, 1253–1258. 10.1021/ct1007394. PubMed DOI
Tapavicza E.; Tavernelli I.; Rothlisberger U. Trajectory Surface Hopping within Linear Response Time-Dependent Density-Functional Theory. Phys. Rev. Lett. 2007, 98, 023001–023004. 10.1103/PhysRevLett.98.023001. PubMed DOI
Fingerhut B. P.; Dorfman K. E.; Mukamel S. Monitoring Nonadiabatic Dynamics of the RNA Base Uracil by UV Pump–IR Probe Spectroscopy. J. Phys. Chem. Lett. 2013, 4, 1933–1942. 10.1021/jz400776r. PubMed DOI PMC
Fingerhut B. P.; Oesterling S.; Haiser K.; Heil K.; Glas A.; Schreier W. J.; Zinth W.; Carell T.; de Vivie-Riedle R. ONIOM approach for non-adiabatic on-the-fly molecular dynamics demonstrated for the backbone controlled Dewar valence isomerization. J. Chem. Phys. 2012, 136, 204307.10.1063/1.4720090. PubMed DOI
Ryabinkin I. G.; Joubert-Doriol L.; Izmaylov A. F. Geometric Phase Effects in Nonadiabatic Dynamics near Conical Intersections. Acc. Chem. Res. 2017, 50, 1785–1793. 10.1021/acs.accounts.7b00220. PubMed DOI
Park J. W.; Shiozaki T. On-the-Fly CASPT2 Surface-Hopping Dynamics. J. Chem. Theory Comput. 2017, 13, 3676–3683. 10.1021/acs.jctc.7b00559. PubMed DOI
Nakashima Y.; Okutsu K.; Fujimoto K.; Ito Y.; Kanno M.; Nakano M.; Ohshimo K.; Kono H.; Misaizu F. Visible photodissociation of the CO2 dimer cation: fast and slow dissociation dynamics in the excited state. Phys. Chem. Chem. Phys. 2019, 21, 3083–3091. 10.1039/c8cp07068g. PubMed DOI
do Casal M. T.; Toldo J. M.; Pinheiro M. Jr.; Barbatti M. Fewest switches surface hopping with Baeck-An couplings [version 1; peer review: 3 approved]. Open Res. Europe 2021, 1, 49.10.12688/openreseurope.13624.1. PubMed DOI PMC
Mukherjee S.; Barbatti M. A Hessian-Free Method to Prevent Zero-Point Energy Leakage in Classical Trajectories. J. Chem. Theory Comput. 2022, 18, 4109–4116. 10.1021/acs.jctc.2c00216. PubMed DOI
Barbatti M. Simulation of Excitation by Sunlight in Mixed Quantum-Classical Dynamics. J. Chem. Theory Comput. 2020, 16, 4849–4856. 10.1021/acs.jctc.0c00501. PubMed DOI PMC
Kossoski F.; Barbatti M. Nonadiabatic dynamics in multidimensional complex potential energy surfaces. Chem. Sci. 2020, 11, 9827–9835. 10.1039/d0sc04197a. PubMed DOI PMC
Gil E.; Granucci G.; Persico M. Surface Hopping Dynamics with the Frenkel Exciton Model in a Semiempirical Framework. J. Chem. Theory Comput. 2021, 17, 7373–7383. 10.1021/acs.jctc.1c00942. PubMed DOI PMC
Verlet L. Computer Experiments on Classical Fluids .I. Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev. 1967, 159, 98–103. 10.1103/physrev.159.98. DOI
Swope W. C.; Andersen H. C.; Berens P. H.; Wilson K. R. A Computer-Simulation Method for the Calculation of Equilibrium-Constants for the Formation of Physical Clusters of Molecules - Application to Small Water Clusters. J. Chem. Phys. 1982, 76, 637–649. 10.1063/1.442716. DOI
Andersen H. C. Molecular-Dynamics Simulations at Constant Pressure and/or Temperature. J. Chem. Phys. 1980, 72, 2384–2393. 10.1063/1.439486. DOI
Czakó G.; Kaledin A. L.; Bowman J. M. A practical method to avoid zero-point leak in molecular dynamics calculations: Application to the water dimer. J. Chem. Phys. 2010, 132, 164103.10.1063/1.3417999. PubMed DOI
Tully J. C. Molecular-Dynamics with Electronic-Transitions. J. Chem. Phys. 1990, 93, 1061–1071. 10.1063/1.459170. DOI
Tully J. C. Mixed Quantum-Classical Dynamics. Faraday Discuss. 1998, 110, 407–419. 10.1039/a801824c. DOI
Ferretti A.; Granucci G.; Lami A.; Persico M.; Villani G. Quantum mechanical and semiclassical dynamics at a conical intersection. J. Chem. Phys. 1996, 104, 5517–5527. 10.1063/1.471791. DOI
Butcher J. C. A Modified Multistep Method for the Numerical Integration of Ordinary Differential Equations. J. ACM 1965, 12, 124–135. 10.1145/321250.321261. DOI
Subotnik J. E.; Jain A.; Landry B.; Petit A.; Ouyang W.; Bellonzi N. Understanding the Surface Hopping View of Electronic Transitions and Decoherence. Annu. Rev. Phys. Chem. 2016, 67, 387–417. 10.1146/annurev-physchem-040215-112245. PubMed DOI
Bittner E. R.; Rossky P. J. Quantum decoherence in mixed quantum-classical systems: Nonadiabatic processes. J. Chem. Phys. 1995, 103, 8130–8143. 10.1063/1.470177. DOI
Granucci G.; Persico M. Critical appraisal of the fewest switches algorithm for surface hopping. J. Chem. Phys. 2007, 126, 134114.10.1063/1.2715585. PubMed DOI
Granucci G.; Persico M.; Zoccante A. Including quantum decoherence in surface hopping. J. Chem. Phys. 2010, 133, 134111.10.1063/1.3489004. PubMed DOI
Zhu C. Y.; Nangia S.; Jasper A. W.; Truhlar D. G. Coherent Switching with Decay of Mixing: An Improved Treatment of Electronic Coherence for Non-Born-Oppenheimer Trajectories. J. Chem. Phys. 2004, 121, 7658–7670. 10.1063/1.1793991. PubMed DOI
Hack M. D.; Truhlar D. G. A natural decay of mixing algorithm for non-Born–Oppenheimer trajectories. J. Chem. Phys. 2001, 114, 9305–9314. 10.1063/1.1368388. DOI
Jasper A. W.; Truhlar D. G. Electronic decoherence time for non-Born-Oppenheimer trajectories. J. Chem. Phys. 2005, 123, 064103.10.1063/1.1995695. PubMed DOI
Subotnik J. E.; Shenvi N. A new approach to decoherence and momentum rescaling in the surface hopping algorithm. J. Chem. Phys. 2011, 134, 024105.10.1063/1.3506779. PubMed DOI
Barbatti M. Velocity Adjustment in Surface Hopping: Ethylene as a Case Study of the Maximum Error Caused by Direction Choice. J. Chem. Theory Comput. 2021, 17, 3010–3018. 10.1021/acs.jctc.1c00012. PubMed DOI
Plasser F.; Mai S.; Fumanal M.; Gindensperger E.; Daniel C.; González L. Strong Influence of Decoherence Corrections and Momentum Rescaling in Surface Hopping Dynamics of Transition Metal Complexes. J. Chem. Theory Comput. 2019, 15, 5031–5045. 10.1021/acs.jctc.9b00525. PubMed DOI
Carof A.; Giannini S.; Blumberger J. Detailed balance, internal consistency, and energy conservation in fragment orbital-based surface hopping. J. Chem. Phys. 2017, 147, 214113.10.1063/1.5003820. PubMed DOI
Braun G.; Borges I. Jr.; Aquino A.; Lischka H.; Plasser F.; do Monte S. A.; Ventura E.; Mukherjee S.; Barbatti M. Non-Kasha fluorescence of pyrene emerges from a dynamic equilibrium between excited states. J. Chem. Phys. 2022, 10.1063/5.0113908. PubMed DOI
Plasser F.; Granucci G.; Pittner J.; Barbatti M.; Persico M.; Lischka H. Surface Hopping Dynamics Using a Locally Diabatic Formalism: Charge Transfer in the Ethylene Dimer Cation and Excited State Dynamics in the 2-Pyridone Dimer. J. Chem. Phys. 2012, 137, 22A514–13. 10.1063/1.4738960. PubMed DOI
Wang L.; Prezhdo O. V. A Simple Solution to the Trivial Crossing Problem in Surface Hopping. J. Phys. Chem. Lett. 2014, 5, 713–719. 10.1021/jz500025c. PubMed DOI
Fernandez-Alberti S.; Roitberg A. E.; Nelson T.; Tretiak S. Identification of Unavoided Crossings in Nonadiabatic Photoexcited Dynamics Involving Multiple Electronic States in Polyatomic Conjugated Molecules. J. Chem. Phys. 2012, 137, 014512.10.1063/1.4732536. PubMed DOI
Aguilera-Porta N.; Corral I.; Munoz-Muriedas J.; Granucci G. Excited state dynamics of some nonsteroidal anti-inflammatory drugs: A surface-hopping investigation. Comput. Theor. Chem. 2019, 1152, 20–27. 10.1016/j.comptc.2019.02.009. DOI
Hammes-Schiffer S.; Tully J. C. Proton-Transfer in Solution - Molecular-Dynamics with Quantum Transitions. J. Chem. Phys. 1994, 101, 4657–4667. 10.1063/1.467455. DOI
Pittner J.; Lischka H.; Barbatti M. Optimization of Mixed Quantum-Classical Dynamics: Time-Derivative Coupling Terms and Selected Couplings. Chem. Phys. 2009, 356, 147–152. 10.1016/j.chemphys.2008.10.013. DOI
Stojanović L.; Bai S.; Nagesh J.; Izmaylov A. F.; Crespo-Otero R.; Lischka H.; Barbatti M. New Insights into the State Trapping of UV-Excited Thymine. Molecules 2016, 21, 1603.10.3390/molecules21111603. PubMed DOI PMC
Ryabinkin I. G.; Nagesh J.; Izmaylov A. F. Fast Numerical Evaluation of Time-Derivative Nonadiabatic Couplings for Mixed Quantum–Classical Methods. J. Phys. Chem. Lett. 2015, 6, 4200–4203. 10.1021/acs.jpclett.5b02062. PubMed DOI
Werner U.; Mitrić R.; Suzuki T.; Bonačić-Koutecký V. Nonadiabatic Dynamics within the Time Dependent Density Functional Theory: Ultrafast Photodynamics in Pyrazine. Chem. Phys. 2008, 349, 319–324. 10.1016/j.chemphys.2008.02.061. PubMed DOI
Plasser F.; Crespo-Otero R.; Pederzoli M.; Pittner J.; Lischka H.; Barbatti M. Surface Hopping Dynamics with Correlated Single-Reference Methods: 9H-Adenine as a Case Study. J. Chem. Theory Comput. 2014, 10, 1395–1405. 10.1021/ct4011079. PubMed DOI
Gao X.; Bai S.; Fazzi D.; Niehaus T.; Barbatti M.; Thiel W. Evaluation of Spin-Orbit Couplings with Linear-Response Time-Dependent Density Functional Methods. J. Chem. Theory Comput. 2017, 13, 515–524. 10.1021/acs.jctc.6b00915. PubMed DOI
Shu Y.; Zhang L.; Chen X.; Sun S.; Huang Y.; Truhlar D. G. Nonadiabatic Dynamics Algorithms with Only Potential Energies and Gradients: Curvature-Driven Coherent Switching with Decay of Mixing and Curvature-Driven Trajectory Surface Hopping. J. Chem. Theory Comput. 2022, 18, 1320–1328. 10.1021/acs.jctc.1c01080. PubMed DOI
Li W.; Lucchese R. R.; Doyuran A.; Wu Z.; Loos H.; Hall G. E.; Suits A. G. Superexcited State Dynamics Probed with an Extreme-Ultraviolet Free Electron Laser. Phys. Rev. Lett. 2004, 92, 083002.10.1103/PhysRevLett.92.083002. PubMed DOI
Norman P.; Dreuw A. Simulating X-ray Spectroscopies and Calculating Core-Excited States of Molecules. Chem. Rev. 2018, 118, 7208–7248. 10.1021/acs.chemrev.8b00156. PubMed DOI
Fabrikant I. I.; Eden S.; Mason N. J.; Fedor J.. Recent Progress in Dissociative Electron Attachment. Advances In Atomic, Molecular, and Optical Physics; Arimondo E., Lin C. C., Yelin S. F., Eds.; Academic Press, 2017; Vol. 66, pp 545–657.
Kossoski F.; Varella M. T. d. N. Negative ion states of 5-bromouracil and 5-iodouracil. Phys. Chem. Chem. Phys. 2015, 17, 17271–17278. 10.1039/c5cp01475a. PubMed DOI
Chenu A.; Brumer P. Transform-limited-pulse representation of excitation with natural incoherent light. J. Chem. Phys. 2016, 144, 044103.10.1063/1.4940028. PubMed DOI
Polli D.; Altoè P.; Weingart O.; Spillane K. M.; Manzoni C.; Brida D.; Tomasello G.; Orlandi G.; Kukura P.; Mathies R. A.; Garavelli M.; Cerullo G. Conical Intersection Dynamics of the Primary Photoisomerization Event in Vision. Nature 2010, 467, 440–443. 10.1038/nature09346. PubMed DOI
Suchan J.; Hollas D.; Curchod B. F. E.; Slavíček P. On the importance of initial conditions for excited-state dynamics. Faraday Discuss. 2018, 212, 307.10.1039/c8fd00088c. PubMed DOI
Barbatti M.; Sen K. Effects of Different Initial Condition Samplings on Photodynamics and Spectrum of Pyrrole. Int. J. Quantum Chem. 2016, 116, 762–771. 10.1002/qua.25049. DOI
Ruckenbauer M.; Barbatti M.; Müller T.; Lischka H. Nonadiabatic Excited-State Dynamics with Hybrid ab Initio Quantum-Mechanical/Molecular-Mechanical Methods: Solvation of the Pentadieniminium Cation in Apolar Media. J. Phys. Chem. A 2010, 114, 6757–6765. 10.1021/jp103101t. PubMed DOI
Sellner B.; Barbatti M.; Lischka H. Dynamics starting at a conical intersection: application to the photochemistry of pyrrole. J. Chem. Phys. 2009, 131, 024312.10.1063/1.3175799. PubMed DOI
Crespo-Otero R.; Barbatti M. Spectrum Simulation and Decomposition with Nuclear Ensemble: Formal Derivation and Application to Benzene, Furan and 2-Phenylfuran. Theor. Chem. Acc. 2012, 131, 1237.10.1007/s00214-012-1237-4. DOI
Sršeň Š.; Slavíček P. Optimal Representation of the Nuclear Ensemble: Application to Electronic Spectroscopy. J. Chem. Theory Comput. 2021, 17, 6395–6404. 10.1021/acs.jctc.1c00749. PubMed DOI
Hillery M.; O’Connell R. F.; Scully M. O.; Wigner E. P. Distribution functions in physics: Fundamentals. Phys. Rep. 1984, 106, 121–167. 10.1016/0370-1573(84)90160-1. DOI
Case W. B. Wigner Functions and Weyl Transforms for Pedestrians. Am. J. Phys. 2008, 76, 937–946. 10.1119/1.2957889. DOI
Yao Y.; Hase W. L.; Granucci G.; Persico M. Sampling initial positions and momenta for nuclear trajectories from quantum mechanical distributions. J. Chem. Phys. 2021, 154, 074115.10.1063/5.0039592. PubMed DOI
Kossoski F.; Barbatti M. Nuclear Ensemble Approach with Importance Sampling. J. Chem. Theory Comput. 2018, 14, 3173–3183. 10.1021/acs.jctc.8b00059. PubMed DOI
Kossoski F.; Varella M. T. d. N.; Barbatti M. On-the-fly dynamics simulations of transient anions. J. Chem. Phys. 2019, 151, 224104.10.1063/1.5130547. PubMed DOI
Lee H.-W. Wigner trajectories of a Gaussian wave packet perturbed by a weak potential. Found. Phys. 1992, 22, 995–1010. 10.1007/BF00733392. DOI
Hilborn R. C. Einstein coefficients; Cross-Sections, f Values, Dipole-Moments, and All That. Am. J. Phys. 1982, 50, 982–986. 10.1119/1.12937. DOI
Demchenko A. P.; Tomin V. I.; Chou P.-T. Breaking the Kasha Rule for More Efficient Photochemistry. Chem. Rev. 2017, 117, 13353–13381. 10.1021/acs.chemrev.7b00110. PubMed DOI
Peng Q.; Niu Y.; Shi Q.; Gao X.; Shuai Z. Correlation Function Formalism for Triplet Excited State Decay: Combined Spin–Orbit and Nonadiabatic Couplings. J. Chem. Theory Comput. 2013, 9, 1132–1143. 10.1021/ct300798t. PubMed DOI
Parson W. W.Modern Optical Spectroscopy; Springer-Verlag: Berlin Heidelberg, 2007.
Arbelo-González W.; Crespo-Otero R.; Barbatti M. Steady and Time-Resolved Photoelectron Spectra Based on Nuclear Ensembles. J. Chem. Theory Comput. 2016, 12, 5037–5049. 10.1021/acs.jctc.6b00704. PubMed DOI
Lischka H.; Nachtigallová D.; Aquino A. J. A.; Szalay P. G.; Plasser F.; Machado F. B. C.; Barbatti M. Multireference Approaches for Excited States of Molecules. Chem. Rev. 2018, 118, 7293–7361. 10.1021/acs.chemrev.8b00244. PubMed DOI
Dallos M.; Lischka H.; Shepard R.; Yarkony D. R.; Szalay P. G. Analytic Evaluation of Nonadiabatic Coupling Terms at the MR-CI Level. II. Minima on the Crossing Seam: Formaldehyde and the Photodimerization of Ethylene. J. Chem. Phys. 2004, 120, 7330–7339. 10.1063/1.1668631. PubMed DOI
Shiozaki T.; Győrffy W.; Celani P.; Werner H.-J. Communication: Extended multi-state complete active space second-order perturbation theory: Energy and nuclear gradients. J. Chem. Phys. 2011, 135, 081106.10.1063/1.3633329. PubMed DOI
Granucci G.; Toniolo A. Molecular Gradients for Semiempirical CI Wavefunctions with Floating Occupation Molecular Orbitals. Chem. Phys. Lett. 2000, 325, 79–85. 10.1016/s0009-2614(00)00691-6. DOI
Koslowski A.; Beck M. E.; Thiel W. Implementation of a General Multireference Configuration Interaction Procedure with Analytic Gradients in a Semiempirical Context Using the Graphical Unitary Group Approach. J. Comput. Chem. 2003, 24, 714–726. 10.1002/jcc.10210. PubMed DOI
Dreuw A.; Wormit M. The Algebraic Diagrammatic Construction Scheme for the Polarization Propagator for the Calculation of Excited States. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2015, 5, 82–95. 10.1002/wcms.1206. DOI
Huix-Rotllant M.; Ferré N.; Barbatti M.. Time-Dependent Density Functional Theory: from the Fundamentals to Nonadiabatic Dynamics. In Quantum Chemistry and Dynamics of Excited States: Methods and Applications; González L., Lindh R., Eds.; John Wiley & Sons, 2020; pp 15–46.
Kranz J. J.; Elstner M.; Aradi B.; Frauenheim T.; Lutsker V.; Garcia A. D.; Niehaus T. A. Time-Dependent Extension of the Long-Range Corrected Density Functional Based Tight-Binding Method. J. Chem. Theory Comput. 2017, 13, 1737–1747. 10.1021/acs.jctc.6b01243. PubMed DOI
Polyak I.; Hutton L.; Crespo-Otero R.; Barbatti M.; Knowles P. J. Ultrafast Photoinduced Dynamics of 1,3-Cyclohexadiene Using XMS-CASPT2 Surface Hopping. J. Chem. Theory Comput. 2019, 15, 3929–3940. 10.1021/acs.jctc.9b00396. PubMed DOI
Stojanović L.; Aziz S. G.; Hilal R. H.; Plasser F.; Niehaus T. A.; Barbatti M. Nonadiabatic Dynamics of Cycloparaphenylenes with TD-DFTB Surface Hopping. J. Chem. Theory Comput. 2017, 13, 5846–5860. 10.1021/acs.jctc.7b01000. PubMed DOI
Lischka H.; Müller T.; Szalay P. G.; Shavitt I.; Pitzer R. M.; Shepard R. COLUMBUS – A Program System for Advanced Multireference Theory Calculations. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 191–199. 10.1002/wcms.25. DOI
Vlaisavljevich B.; Shiozaki T. Nuclear Energy Gradients for Internally Contracted Complete Active Space Second-Order Perturbation Theory: Multistate Extensions. J. Chem. Theory Comput. 2016, 12, 3781–3787. 10.1021/acs.jctc.6b00572. PubMed DOI
Barca G. M. J.; Bertoni C.; Carrington L.; Datta D.; De Silva N. D.; Deustua J. E.; Fedorov D. G.; Gour J. R.; Gunina A. O.; Guidez E.; Harville T.; Irle S.; Ivanic J.; Kowalski K.; Leang S. S.; Li H.; Li W.; Lutz J. J.; Magoulas I.; Mato J.; Mironov V.; Nakata H.; Pham B. Q.; Piecuch P.; Poole D.; Pruitt S. R.; Rendell A. P.; Roskop L. B.; Ruedenberg K.; Sattasathuchana T.; Schmidt M. W.; Shen J.; Slipchenko L.; Sosonkina M.; Sundriyal V.; Tiwari A.; Galvez Vallejo J. L. G.; Westheimer B.; Włoch M.; Xu P.; Zahariev F.; Gordon M. S. Recent developments in the general atomic and molecular electronic structure system. J. Chem. Phys. 2020, 152, 154102.10.1063/5.0005188. PubMed DOI
Balasubramani S. G.; Chen G. P.; Coriani S.; Diedenhofen M.; Frank M. S.; Franzke Y. J.; Furche F.; Grotjahn R.; Harding M. E.; Hättig C.; Hellweg A.; Helmich-Paris B.; Holzer C.; Huniar U.; Kaupp M.; Marefat Khah A. M.; Karbalaei Khani S. K.; Müller T.; Mack F.; Nguyen B. D.; Parker S. M.; Perlt E.; Rappoport D.; Reiter K.; Roy S.; Rückert M.; Schmitz G.; Sierka M.; Tapavicza E.; Tew D. P.; van Wüllen C. v.; Voora V. K.; Weigend F.; Wodyński A.; Yu J. M. TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations. J. Chem. Phys. 2020, 152, 184107.10.1063/5.0004635. PubMed DOI PMC
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato M.; Marenich A. V.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ortiz J. V.; Izmaylov A. F.; Sonnenberg J. L.; Williams; Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V. G.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K.; Montgomery J. A. Jr.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J. J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Keith T. A.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Millam J. M.; Klene M.; Adamo C.; Cammi R.; Ochterski J. W.; Martin R. L.; Morokuma K.; Farkas O.; Foresman J. B.; Fox D. J.. Gaussian 16; Rev. C.01: Wallingford, CT, 2016. https://gaussian.com.
Hourahine B.; Aradi B.; Blum V.; Bonafé F.; Buccheri A.; Camacho C.; Cevallos C.; Deshaye M. Y.; Dumitrică T.; Dominguez A.; Ehlert S.; Elstner M.; van der Heide T.; Hermann J.; Irle S.; Kranz J. J.; Köhler C.; Kowalczyk T.; Kubař T.; Lee I. S.; Lutsker V.; Maurer R. J.; Min S. K.; Mitchell I.; Negre C.; Niehaus T. A.; Niklasson A. M. N.; Page A. J.; Pecchia A.; Penazzi G.; Persson M. P.; Řezáč J.; Sánchez C. G.; Sternberg M.; Stöhr M.; Stuckenberg F.; Tkatchenko A.; Yu V. W. z.; Frauenheim T. DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. J. Chem. Phys. 2020, 152, 124101.10.1063/1.5143190. PubMed DOI
Dral P. O.; Ge F.; Xue B.-X.; Hou Y.-F.; Pinheiro M.; Huang J.; Barbatti M. MLatom 2: An Integrative Platform for Atomistic Machine Learning. Top. Curr. Chem. 2021, 379, 27.10.1007/s41061-021-00339-5. PubMed DOI PMC
Rackers J. A.; Wang Z.; Lu C.; Laury M. L.; Lagardère L.; Schnieders M. J.; Piquemal J.-P.; Ren P.; Ponder J. W. Tinker 8: Software Tools for Molecular Design. J. Chem. Theory Comput. 2018, 14, 5273–5289. 10.1021/acs.jctc.8b00529. PubMed DOI PMC
Nikitin E. E. The Theory of Nonadiabatic Transitions: Recent Development with Exponential Models. Adv. Quantum Chem. 1970, 5, 135–184. 10.1016/s0065-3276(08)60338-x. DOI
Leggett A. J.; Chakravarty S.; Dorsey A. T.; Fisher M. P. A.; Garg A.; Zwerger W. Dynamics of the dissipative two-state system. Rev. Mod. Phys. 1987, 59, 1–85. 10.1103/revmodphys.59.1. DOI
Grimme S.; Waletzke M. A Combination of Kohn-Sham Density Functional Theory and Multi-Reference Configuration Interaction Methods. J. Chem. Phys. 1999, 111, 5645–5655. 10.1063/1.479866. DOI
Marian C. M.; Heil A.; Kleinschmidt M. The DFT/MRCI method. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2019, 9, e139410.1002/wcms.1394. DOI
Gozem S.; Gunina A. O.; Ichino T.; Osborn D. L.; Stanton J. F.; Krylov A. I. Photoelectron Wave Function in Photoionization: Plane Wave or Coulomb Wave?. J. Phys. Chem. Lett. 2015, 6, 4532–4540. 10.1021/acs.jpclett.5b01891. PubMed DOI
Plasser F. TheoDORE A toolbox for a detailed and automated analysis of electronic excited state computations. J. Chem. Phys. 2020, 152, 084108.10.1063/1.5143076. PubMed DOI
Plasser F.; Lischka H. Analysis of Excitonic and Charge Transfer Interactions from Quantum Chemical Calculations. J. Chem. Theory Comput. 2012, 8, 2777–2789. 10.1021/ct300307c. PubMed DOI
Weingart O. Combined Quantum and Molecular Mechanics (QM/MM) Approaches to Simulate Ultrafast Photodynamics in Biological Systems. Curr. Org. Chem. 2017, 21, 586–601. 10.2174/1385272821666161108150421. DOI
Ren P. Y.; Ponder J. W. Polarizable atomic multipole water model for molecular mechanics simulation. J. Phys. Chem. B 2003, 107, 5933–5947. 10.1021/jp027815+. DOI
Bondanza M.; Nottoli M.; Cupellini L.; Lipparini F.; Mennucci B. Polarizable embedding QM/MM: the future gold standard for complex (bio)systems?. Phys. Chem. Chem. Phys. 2020, 22, 14433–14448. 10.1039/D0CP02119A. PubMed DOI
Loco D.; Lagardère L.; Cisneros G. A.; Scalmani G.; Frisch M.; Lipparini F.; Mennucci B.; Piquemal J.-P. Towards large scale hybrid QM/MM dynamics of complex systems with advanced point dipole polarizable embeddings. Chem. Sci. 2019, 10, 7200–7211. 10.1039/c9sc01745c. PubMed DOI PMC
Bondanza M.; Demoulin B.; Lipparini F.; Barbatti M.; Mennucci B. Trajectory Surface Hopping for a Polarizable Embedding QM/MM Formulation. J. Phys. Chem. A 2022, 126, 6780–6789. 10.1021/acs.jpca.2c04756. PubMed DOI PMC
Xue B.-X.; Barbatti M.; Dral P. O. Machine Learning for Absorption Cross Sections. J. Phys. Chem. A 2020, 124, 7199–7210. 10.1021/acs.jpca.0c05310. PubMed DOI PMC
Westermayr J.; Marquetand P. Machine Learning for Electronically Excited States of Molecules. Chem. Rev. 2020, 121, 9873–9926. 10.1021/acs.chemrev.0c00749. PubMed DOI PMC
Dral P. O.; Barbatti M. Molecular excited states through a machine learning lens. Nat. Rev. Chem. 2021, 5, 388–405. 10.1038/s41570-021-00278-1. PubMed DOI
Pinheiro M.; Ge F.; Ferré N.; Dral P. O.; Barbatti M. Choosing the right molecular machine learning potential. Chem. Sci. 2021, 12, 14396–14413. 10.1039/d1sc03564a. PubMed DOI PMC
Axelrod S.; Shakhnovich E.; Gómez-Bombarelli R. Excited state non-adiabatic dynamics of large photoswitchable molecules using a chemically transferable machine learning potential. Nat. Commun. 2022, 13, 3440.10.1038/s41467-022-30999-w. PubMed DOI PMC
Dral P. O.; Barbatti M.; Thiel W. Nonadiabatic Excited-State Dynamics with Machine Learning. J. Phys. Chem. Lett. 2018, 9, 5660–5663. 10.1021/acs.jpclett.8b02469. PubMed DOI PMC
Brown W. M.; Martin S.; Pollock S. N.; Coutsias E. A.; Watson J.-P. Algorithmic dimensionality reduction for molecular structure analysis. J. Chem. Phys. 2008, 129, 064118.10.1063/1.2968610. PubMed DOI PMC
Li X.; Xie Y.; Hu D.; Lan Z. Analysis of the Geometrical Evolution in On-the-Fly Surface-Hopping Nonadiabatic Dynamics with Machine Learning Dimensionality Reduction Approaches: Classical Multidimensional Scaling and Isometric Mapping. J. Chem. Theory Comput. 2017, 13, 4611–4623. 10.1021/acs.jctc.7b00394. PubMed DOI
Glielmo A.; Husic B. E.; Rodriguez A.; Clementi C.; Noé F.; Laio A. Unsupervised Learning Methods for Molecular Simulation Data. Chem. Rev. 2021, 121, 9722–9758. 10.1021/acs.chemrev.0c01195. PubMed DOI PMC
Mukherjee S.; Pinheiro M. Jr.; Demoulin B.; Barbatti M. Simulations of molecular photodynamics in long timescales. Philos. Trans. R. Soc., A 2022, 380, 20200382.10.1098/rsta.2020.0382. PubMed DOI PMC
de Buyl P.; Colberg P. H.; Höfling F. H5MD A structured, efficient, and portable file format for molecular data. Comput. Phys. Commun. 2014, 185, 1546–1553. 10.1016/j.cpc.2014.01.018. DOI
Thompson A. P.; Aktulga H. M.; Berger R.; Bolintineanu D. S.; Brown W. M.; Crozier P. S.; in ’t Veld P. J.; Kohlmeyer A.; Moore S. G.; Nguyen T. D.; Shan R.; Stevens M. J.; Tranchida J.; Trott C.; Plimpton S. J. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2022, 271, 108171.10.1016/j.cpc.2021.108171. DOI
Fdez Galván I.; Vacher M.; Alavi A.; Angeli C.; Aquilante F.; Autschbach J.; Bao J. J.; Bokarev S. I.; Bogdanov N. A.; Carlson R. K.; Chibotaru L. F.; Creutzberg J.; Dattani N.; Delcey M. G.; Dong S. S.; Dreuw A.; Freitag L.; Frutos L. M.; Gagliardi L.; Gendron F.; Giussani A.; González L.; Grell G.; Guo M.; Hoyer C. E.; Johansson M.; Keller S.; Knecht S.; Kovačević G.; Källman E.; Li Manni G.; Lundberg M.; Ma Y.; Mai S.; Malhado J. P.; Malmqvist P. Å.; Marquetand P.; Mewes S. A.; Norell J.; Olivucci M.; Oppel M.; Phung Q. M.; Pierloot K.; Plasser F.; Reiher M.; Sand A. M.; Schapiro I.; Sharma P.; Stein C. J.; Sørensen L. K.; Truhlar D. G.; Ugandi M.; Ungur L.; Valentini A.; Vancoillie S.; Veryazov V.; Weser O.; Wesołowski T. A.; Widmark P.-O.; Wouters S.; Zech A.; Zobel J. P.; Lindh R. OpenMolcas From Source Code to Insight. J. Chem. Theory Comput. 2019, 15, 5925–5964. 10.1021/acs.jctc.9b00532. PubMed DOI
Humphrey W.; Dalke A.; Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. 10.1016/0263-7855(96)00018-5. PubMed DOI