Vertical Excitation Energies and Lifetimes of the Two Lowest Singlet Excited States of Cytosine, 5-Aza-cytosine, and the Triazine Family: Quantum Mechanics-Molecular Mechanics Studies
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36961980
PubMed Central
PMC10100535
DOI
10.1021/acs.jctc.2c01262
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
A swarm of semi-classical quantum mechanics/molecular mechanics molecular-dynamics simulations where OM2/MNDO is combined with the Gromacs program for consideration of explicit water is performed, solving the time-dependent Schrödinger equation in each step of the trajectories together with the Tully's fewest switches algorithm. Within this stochastic treatment, time dependent probabilities of the three lowest electronic states are determined. The fact that nucleobases are quickly deactivated is confirmed in the cytosine case where our best lifetime estimation is τ1=0.82 ps for the model with 100 water molecules with the SPCE force field and a time step of 0.1 fs. Lifetimes of the remaining molecules are visibly longer: 5-azacytosine, 2,4-diamino-1,3,5-triazine (DT), and 2,4,6-triamino-1,3,5-triazine (TT) molecules have an S1 → S0 de-excitation time of slightly above 10 ps. The lifetimes of the triazine family increases with the increasing number of exocyclic amino groups, that is, s-triazine < 2-amino-1,3,5-triazine < DT < TT. This can be explained by a higher mobility of the carbon-bonded hydrogen atoms in comparison with heavier amino groups since their movement is slowed down due to a substantially higher mass than hydrogen atoms, which can easier reach the out-of-plane positions required in the conical intersection structures. Moreover, bulkier NH2 ligands suffer due to greater friction caused by the surrounding water environment. These mechanical aspects caused a change in the explored lifetime dependences in comparison with our previous gas-phase study.
Zobrazit více v PubMed
Ulrich S.; Schultz T.; Zgierski M. Z.; Stolow A. Electronic relaxation dynamics in DNA and RNA bases studied by time-resolved photoelectron spectroscopy. Phys. Chem. Chem. Phys. 2004, 6, 2796–2801. 10.1039/b316324e. PubMed DOI
Zhou Z.; Zhou X.; Wang X.; Jiang B.; Li Y.; Chen J.; Xu J. Ultrafast Excited-State Dynamics of Cytosine Aza-Derivative and Analogues. J. Phys. Chem. A 2017, 121, 2780–2789. 10.1021/acs.jpca.6b12290. PubMed DOI
Shi Y.; Zhao X.; Wang C.; Wang Y.; Zhang S.; Li P.; Feng X.; Jin B.; Yuan M.; Cui S.; Sun Y.; Zhang B.; Sun S.; Jin X.; Wang H.; Zhao G. Ultrafast Nonadiabatic Photoisomerization Dynamics Mechanism for the UV Photoprotection of Stilbenoids in Grape Skin. Chem. – Asian J. 2020, 15, 1478–1483. 10.1002/asia.202000219. PubMed DOI
Merchán M.; Serrano-Andrés L.; Robb M. A.; Blancafort L. Triplet-State Formation along the Ultrafast Decay of Excited Singlet Cytosine. J. Am. Chem. Soc. 2005, 127, 1820–1825. 10.1021/ja044371h. PubMed DOI
Pecourt J.-M. L.; Peon J.; Kohler B. DNA Excited-State Dynamics: Ultrafast Internal Conversion and Vibrational Cooling in a Series of Nucleosides. J. Am. Chem. Soc. 2001, 123, 10370–10378. 10.1021/ja0161453. PubMed DOI
Kosma K.; Schroeter C.; Samoylova E.; Hertel I. V.; Schultz T. Excited-State Dynamics of Cytosine Tautomers. J. Am. Chem. Soc. 2009, 131, 16939–16943. 10.1021/ja907355a. PubMed DOI
Ma C.; Cheng C. C.-W.; Chan C. T.-L.; Chan R. C.-T.; Kwok W.-M. Remarkable effects of solvent and substitution on the photo-dynamics of cytosine: a femtosecond broadband time-resolved fluorescence and transient absorption study. Phys. Chem. Chem.Phys. 2015, 17, 19045–19057. 10.1039/C5CP02624E. PubMed DOI
Quinn S.; Doorley G. W.; Watson G. W.; Cowan A. J.; George M. W.; Parker A. W.; Ronayne K. L.; Towrie M.; Kelly J. M. Ultrafast IR spectroscopy of the short-lived transients formed by UV excitation of cytosine derivatives. Chem. Commun. 2007, 2130–2132. 10.1039/b703344c. PubMed DOI
Martínez-Fernández L.; Pepino A. J.; Segarra-Martí J.; Jovaišaitė J.; Vaya I.; Nenov A.; Markovitsi D.; Gustavsson T.; Banyasz A.; Garavelli M.; Improta R. Photophysics of Deoxycytidine and 5-Methyldeoxycytidine in Solution: A Comprehensive Picture by Quantum Mechanical Calculations and Femtosecond Fluorescence Spectroscopy. J. Am. Chem. Soc. 2017, 139, 7780–7791. 10.1021/jacs.7b01145. PubMed DOI
Zhang Y.; Beckstead A.; Hu Y.; Piao X.; Bong D.; Kohler B. Excited-State Dynamics of Melamine and Its Lysine Derivative Investigated by Femtosecond Transient Absorption Spectroscopy. Molecules 2016, 21, 1645.10.3390/molecules21121645. PubMed DOI PMC
González-Luque R.; Climent T.; González-Ramírez I.; Merchán M.; Serrano-Andrés L. Singlet–Triplet States Interaction Regions in DNA/RNA Nucleobase Hypersurfaces. Phys. Chem. Chem. Phys. 2010, 6, 2103–2114. 10.1021/ct100164m. PubMed DOI
González-Vázquez J.; González L. A Time-Dependent Picture of the Ultrafast Deactivation of keto-Cytosine Including Three-State Conical Intersections. ChemPhysChem 2010, 11, 3617–3624. 10.1002/cphc.201000557. PubMed DOI
Richter M.; Marquetand P.; González-Vázquez J.; Sola I.; González L. Femtosecond Intersystem Crossing in the DNA Nucleobase Cytosine. J. Phys. Chem. Lett. 2012, 3, 3090–3095. 10.1021/jz301312h. PubMed DOI
Blancafort L.; Robb M. A. Key Role of a Threefold State Crossing in the Ultrafast Decay of Electronically Excited Cytosine. J. Phys. Chem. A 2004, 108, 10609–10614. 10.1021/jp045985b. DOI
Kistler K. A.; Matsika S. Three-State Conical Intersections in Cytosine and Pyrimidinone Bases. J. Chem. Phys. 2008, 128, 21510.10.1063/1.2932102. PubMed DOI
Richter M.; Mai S.; Marquetand P.; González L. Ultrafast intersystem crossing dynamics in uracil unravelled by ab initio molecular dynamics. Phys. Chem. Chem. Phys. 2014, 16, 24423–24436. 10.1039/C4CP04158E. PubMed DOI PMC
Yu H.; Sanchez-Rodriguez J. A.; Pollum M.; Crespo-Hernández C. E.; Mai S.; Marquetand P.; González L.; Ullrich S. Internal conversion and intersystem crossing pathways in UV excited, isolated uracils and their implications in prebiotic chemistry. Phys. Chem. Chem. Phys. 2016, 18, 20168–20176. 10.1039/C6CP01790H. PubMed DOI
Borin A. C.; Mai S.; Marquetand P.; González L. Ab Initio Molecular Dynamics Relaxation and Intersystem Crossing Mechanisms of 5-Azacytosine. Phys. Chem. Chem. Phys. 2017, 19, 5888–5894. 10.1039/C6CP07919A. PubMed DOI
Sherrill D. C.; Schaeffer H. F. I., The Configuration Interaction Method: Advances in Highly Correlated Approaches. In Advances in Quantum Chemistry; Academic Press: New York, 1999; Vol. 34, pp. 143–270, 10.1016/S0065-3276(08)60532-8. DOI
Tully J. C. Molecular dynamics with electronic transitions. J. Chem. Phys. 1990, 93, 1061–1071. 10.1063/1.459170. DOI
Tichý O.; Burda J. V. Estimation of electron absorption spectra and lifetime of the two lowest singlet excited states of pyrimidine nucleobases and their derivatives. J. Mol. Struc. 2022, 1250, 13186310.1016/j.molstruc.2021.131863. DOI
Fatková K.; Cajzl R.; Burda J. V. The vertical excitation energies and a lifetime of the two lowest singlet excited states of the conjugated polyenes from C2 to C22: Ab initio, DFT, and semiclassical MNDO-MD simulations. J. Comput. Chem. 2023, 44, 777–787. 10.1002/jcc.27040. PubMed DOI
Tuttle T.; Thiel W. OMx-D: semiempirical methods with orthogonalization and dispersion corrections. Implementation and biochemical application. Phys. Chem. Chem. Phys. 2008, 10, 2159–2166. 10.1039/b718795e. PubMed DOI
Dewar M. J. S.; Thiel W. Ground states of molekules. 38. The MNDO Method. Approximations and Parameters. J. Am. Chem. Soc. 1977, 99, 4899–4907. 10.1021/ja00457a004. DOI
Dral P. O.; Wu X.; Spörkel L.; Koslowski A.; Weber W.; Steiger R.; Scholten M.; Thiel W. Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Theory, Implementation, and Parameters. J. Chem. Theory Comput. 2016, 12, 1082–1096. 10.1021/acs.jctc.5b01046. PubMed DOI PMC
Van der Spoel D.; Lindahl E.; Hess B.; Groenhof G.; Mark A. E.; Berendsen H. J. C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. 10.1002/jcc.20291. PubMed DOI
Barbatti M.; Granucci G.; Ruckenbauer M.; Plasser F.; Crespo-Otero R.; Pittner J.; Persico M.; Lischka H.. NEWTON-X: a package for Newtonian dynamics close to the crossing seam, version 2.2; www.newtonx.orgNEWTON-X: 2018.
Andersen H. C. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 1980, 72, 2384–2393. 10.1063/1.439486. DOI
Fabiano E.; Keal T. W.; Thiel W. Implementation of surface hopping molecular dynamics using semiempirical methods. Chem. Phys. 2008, 349, 334–347. 10.1016/j.chemphys.2008.01.044. DOI
Williams T.; Kelley C.. GnuPlot v. 5.4.4 An Interactive Plotting Program, 5.4.5; Virginia Tech; http://gnuplot.info: 2022.
Humphrey W.; Dalke A.; Schulten K. VMD - Visual Molecular Dynamics. J. Mol. Graphics 1996, 14, 33–38. 10.1016/0263-7855(96)00018-5. PubMed DOI
Spörkel L.; Thiel W. Adaptive time steps in trajectory surface hopping simulations. J. Chem. Phys. 2016, 144, 194108.10.1063/1.4948956. PubMed DOI
Barbatti M.; Granucci G.; Persico M.; Ruckenbauer M.; Vazdar M.; Eckert-Maksić M.; Lischka H. The on-the-fly surface-hopping program system Newton-X: Application to ab initio simulation of the nonadiabatic photodynamics of benchmark systems. J. Photochem. Photobiol. A. Chemistry 2007, 190, 228–240.
Barbatti M.; Ruckenbauer M.; Plasser F.; Pittner J.; Granucci G.; Persico M.; Lischka H. Newton-X: a surface-hopping program for nonadiabatic molecular dynamics. Wiley Interdisciplinary Reviews: Computational Molecular Science 2014, 4, 26–33.
Barbatti M.; Bondanza M.; Crespo-Otero R.; Demoulin B.; Dral P. O.; Granucci G.; Kossoski F.; Lischka H.; Mennucci M.; Mukherjee S.; Pederzoli M.; Persico M.; Pinheiro M.; Pittner J.; Plasser F.; Gil E. S.; Stojanovic L. Newton-X: a surface-hopping program for nonadiabatic molecular dynamics. J Chem Theory Comput 2022, 18, 6851–6865. PubMed PMC
Dapprich S.; Komáromi I.; Byun K. S.; Morokuma K.; Frish M. J. A New ONIOM Implementation in Gaussian 98. 1. The Calculation of Energies, Gradients and Vibrational Frequencies and Electric Field Derivatives. J. Mol. Struct.: THEOCHEM 1999, 461-462, 1.10.1016/S0166-1280(98)00475-8. DOI
Lan Z.; Fabiano E.; Thiel W. Photoinduced nonadiabatic dynamics of pyrimidine nucleobases: on-the-fly surface-hopping study with semiempirical methods. J. Phys. Chem. B 2009, 113, 3548–3555. 10.1021/jp809085h. PubMed DOI
Shukla M. K.; Leszczynski J. Electronic Spectra, Excited State Structures and Interactions of Nucleic Acid Bases and Base Assemblies: A Review. J. Biomol. Struct. Dyn. 2007, 25, 93–118. 10.1080/07391102.2007.10507159. PubMed DOI
Nachtigallova D.; Zelený T.; Ruckenbauer M.; Müller T.; Barbatti M.; Hobza P.; Lischka H. Does Stacking Restrain the Photodynamics of Individual Nucleobases?. J. Am. Chem. Soc. 2010, 132, 8261–8263. 10.1021/ja1029705. PubMed DOI
Merchán M.; Serrano-Andrés L. Ultrafast Internal Conversion of Excited Cytosine via the Lowest ππ* Electronic Singlet State. J. Am. Chem. Soc. 2003, 125, 8108–8109. 10.1021/ja0351600. PubMed DOI
Tajti A.; Fogarasi G.; Szalay P. G. Reinterpretation of the UV Spectrum of Cytosine: Only Two Electronic Transitions?. ChemPhysChem 2009, 10, 1603–1606. 10.1002/cphc.200900244. PubMed DOI
Zhang Y.; Duan X.; Soon P. C.; Sychrovský V.; Canary J. W.; Jerschow A. Limits in Proton Nuclear Singlet-State Lifetimes Measured with para-Hydrogen-Induced Polarization. ChemPhysChem 2016, 17, 2967–2971. 10.1002/cphc.201600663. PubMed DOI
Giussani A.; Merchán M.; Gobbo J. P.; Borin A. C. Relaxation Mechanisms of 5-Azacytosine. J. Chem. Theory Comput. 2014, 10, 3915–3924. 10.1021/ct5003175. PubMed DOI
Pit’hová P.; Pískala A.; Pit’ha J.; Šorm F. Nucleic Acid Components And Their Analogues. LVIII. 5-Azacytidine And Related Compounds; Study Of Structure, Tautomerism And Possibilities Of Pairing With Purine Derivatives. Collect. Czech. Chem. Commun. 1965, 30, 1626–1634. 10.1135/cccc19651626. DOI
Raksányi K.; Földváry I.; Fidy J.; Kittler L. The Electronic Structure of Cytosine, 5-Azacytosine, and 6-Azacytosine. Biopolymers 1978, 17, 887–896. 10.1002/bip.1978.360170407. DOI
Hirt R. C.; Salley D. J. Ultraviolet Absorption Spectra of Derivatives of Symmetric Triazine. I. Amino Triazines. J. Chem. Phys. 1953, 21, 1181–1184. 10.1063/1.1699160. DOI
Hirt R. C.; Halverson F.; Schmitt R. G. s-Triazine. II. The Near Ultraviolet Absorption Spectrum. J. Chem. Phys. 1954, 22, 1148–1149. 10.1063/1.1740306. DOI
Clark L. B.; Peschel G. G.; Tinoco I. Jr. Vapor Spectra and Heats of Vaporization of Some Purine and Pyrimidine Bases. J. Phys. Chem. 1965, 69, 3615–3618. 10.1021/j100894a063. DOI
Tanaka M.; Nagakura S. Electronic Structures and Spectra of Adenine and Thymine. Theor. Chim. Acta 1966, 6, 320–332. 10.1007/BF00537278. DOI
Fujii M.; Tamura T.; Mikami N.; Ito M. Electronic spectra of uracil in a supersonic jet. Chem. Phys. Lett. 1986, 126, 583–587. 10.1016/S0009-2614(86)80178-6. DOI
Al Bakain R. Z.; Al-Degs Y. S.; El-Sheikh A. H.; Arar S. H. Spectrophotometric Determination of Melamine in Liquid Milk by Multivariate Second Order Calibration. Curr. Anal. Chem. 2016, 12, 74–84. 10.2174/1573411011666150710174559. DOI
Voet D.; Gratzer W. B.; Cox R. A.; Doty P. Absorption spectra of nucleotides, polynucleotides, and nucleic acids in the far ultraviolet. Biopolymers 1963, 1, 193–208. 10.1002/bip.360010302. DOI
Clark L. B.; Tinoco I. Jr. Correlations in the Ultraviolet Spectra of the Purine and Pyrimidine Bases. J. Am. Chem.Soc. 1965, 87, 11–15. 10.1021/ja01079a003. DOI
Sprecher C. A.; Johnson W. C. Circular dichroism of the nucleic acid monomers. Biopolymers 1977, 16, 2243–2264. 10.1002/bip.1977.360161012. PubMed DOI
Zaloudek F.; Novros J. S.; Clark L. B. The electronic spectrum of cytosine. J. Am. Chem. Soc. 1985, 107, 7344–7351. 10.1021/ja00311a022. DOI
Kaito A.; Hatano M.; Ueda T.; Shibuya S. The Application of Magnetic Circular Dichroism to the Study of the Tautomerism of Cytosine and Isocytosine. Bull. Chem. Soc. Jpn. 1980, 53, 3073–3078. 10.1246/bcsj.53.3073. DOI
Costa G. W.; Hirt R. C.; Salley D. J. Near Ultraviolet Absorption Spectra of Melamine and Some Related Compounds. J. Chem. Phys. 1950, 18, 434–437. 10.1063/1.1747656. DOI
Jaiswal V. K.; Segarra-Martí J.; Marazzi M.; Zvereva E.; Assfeld X.; Monari X.; Garavelli M.; Rivalta I. First-principles characterization of the singlet excited state manifold in DNA/RNA nucleobases. Phys. Chem. Chem. Phys. 2020, 22, 15496.10.1039/D0CP01823F. PubMed DOI
Mai S.; Marquetand P.; Richter M.; González-Vázquez J.; González L. Singlet and triplet excited-state dynamics study of the keto and enol tautomers of cytosine. ChemPhysChem 2013, 14, 2920–2931. 10.1002/cphc.201300370. PubMed DOI
Mai S.; Marquetand P.; González L. Nonadiabatic dynamics: The SHARC approach. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, 1370.10.1002/wcms.1370. PubMed DOI PMC
Peon J.; Zewail A. H. DNA/RNA nucleotides and nucleosides: direct measurement of excited-state lifetimes by femtosecond fluorescence up-conversion. Chem. Phys. Lett. 2001, 348, 255–262. 10.1016/S0009-2614(01)01128-9. DOI