Simulations of light induced processes in water based on ab initio path integrals molecular dynamics. I. Photoabsorption

. 2011 Oct 21 ; 135 (15) : 154301.

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid22029307

We have performed large-scale simulations of UV absorption spectra of water clusters (monomer to octamer) using a combination of ab initio path-integral molecular dynamics with reflection principle. The aim of the present work is four-fold: (1) To explore the transition from isolated molecules to bulk water from the perspective of UV photoabsorption. (2) To investigate quantum nuclear and thermal effects on the shape of the water UV spectra. (3) To make an assessment of the density functional theory functionals to be used for water excited states. (4) To check the applicability of the QM/MM schemes for a description of the UV absorption. Within the path integral molecular dynamics (PIMD)/reflection principle approach both the thermal and quantum vibrational effects including anharmonicities are accounted for. We demonstrate that shape of the spectra is primarily controlled by the nuclear quantum effects. The excited states and transition characteristics of the water clusters were calculated with the time-dependent density functional theory and equation-of-motion coupled clusters singles and doubles methods. Based on our benchmark calculations considering the whole UV spectrum we argue that the BHandHLYP method performs best among the 6 functionals tested (B3LYP, BHandHLYP, BNL, CAM-B3LYP, LC-ωPBE, and M06HF). We observe a gradual blueshift of the maximum of the first absorption peak with the increasing cluster size. The UV absorption spectrum for the finite size clusters (i.e., the peak centers, peak widths, and photoabsorption cross section) essentially converges into the corresponding bulk water spectrum. The effect of distant molecules accounted for within the polarizable continuum model is shown to be almost negligible. Using the natural transition orbitals we demonstrate that the first absorption band is formed by localized excitations while the second band includes delocalized excited states. Consequently, the QM/MM electrostatic embedding scheme can only be used for the modeling of the low energy part of the spectrum.

Citace poskytuje Crossref.org

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Selecting Initial Conditions for Trajectory-Based Nonadiabatic Simulations

. 2025 Jan 21 ; 58 (2) : 261-270. [epub] 20250109

Calculating Photoabsorption Cross-Sections for Atmospheric Volatile Organic Compounds

. 2022 Jan 20 ; 6 (1) : 207-217. [epub] 20211217

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...