Calculating Photoabsorption Cross-Sections for Atmospheric Volatile Organic Compounds

. 2022 Jan 20 ; 6 (1) : 207-217. [epub] 20211217

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35087992

Characterizing the photochemical reactivity of transient volatile organic compounds (VOCs) in our atmosphere begins with a proper understanding of their abilities to absorb sunlight. Unfortunately, the photoabsorption cross-sections for a large number of transient VOCs remain unavailable experimentally due to their short lifetime or high reactivity. While structure-activity relationships (SARs) have been successfully employed to estimate the unknown photoabsorption cross-sections of VOCs, computational photochemistry offers another promising strategy to predict not only the vertical electronic transitions of a given molecule but also the width and shape of the bands forming its absorption spectrum. In this work, we focus on the use of the nuclear ensemble approach (NEA) to determine the photoabsorption cross-section of four exemplary VOCs, namely, acrolein, methylhydroperoxide, 2-hydroperoxy-propanal, and (microsolvated) pyruvic acid. More specifically, we analyze the influence that different strategies for sampling the ground-state nuclear density-Wigner sampling and ab initio molecular dynamics with a quantum thermostat-can have on the simulated absorption spectra. We highlight the potential shortcomings of using uncoupled harmonic modes within Wigner sampling of nuclear density to describe flexible or microsolvated VOCs and some limitations of SARs for multichromophoric VOCs. Our results suggest that the NEA could constitute a powerful tool for the atmospheric community to predict the photoabsorption cross-section for transient VOCs.

Zobrazit více v PubMed

Keller-Rudek H.; Moortgat G. K.; Sander R.; Sörensen R. The MPI-Mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest. Earth Syst. Sci. Data 2013, 5, 365–373. 10.5194/essd-5-365-2013. DOI

Jenkin M. E.; Saunders S. M.; Pilling M. J. The tropospheric degradation of volatile organic compounds: a protocol for mechanism development. Atmos. Environ. 1997, 31, 81–104. 10.1016/s1352-2310(96)00105-7. DOI

Saunders S. M.; Jenkin M. E.; Derwent R. G.; Pilling M. J. Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds. Atmos. Chem. Phys. 2003, 3, 161–180. 10.5194/acp-3-161-2003. DOI

Jenkin M. E.; Saunders S. M.; Wagner V.; Pilling M. J. Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B): tropospheric degradation of aromatic volatile organic compounds. Atmos. Chem. Phys. 2003, 3, 181–193. 10.5194/acp-3-181-2003. DOI

Master Chemical Mechanism, MCM v3.3.1, 2021. http://mcm.york.ac.uk (accessed 1 November 2021).

ACP copernicus website, 2021. https://acp.copernicus.org/articles/special_issue8.html (accessed 1 November 2021).

Burkholder J. B.et al.Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 19; National Aeronautics and Space Administration, 2020.

TUV website, 2021https://www2.acom.ucar.edu/modeling/tropospheric-ultraviolet-and-visible-tuv-radiation-model (accessed 1 November 2021).

Dierksen M.; Grimme S. Density functional calculations of the vibronic structure of electronic absorption spectra. J. Chem. Phys. 2004, 120, 3544–3554. 10.1063/1.1642595. PubMed DOI

Improta R.; Barone V.; Santoro F. Ab initio calculations of absorption spectra of large molecules in solution: Coumarin C153. Angew. Chem., Int. Ed. 2007, 46, 405–408. 10.1002/anie.200602907. PubMed DOI

Charaf-Eddin A.; Cauchy T.; Felpin F.-X.; Jacquemin D. Vibronic spectra of organic electronic chromophores. RSC Adv. 2014, 4, 55466–55472. 10.1039/c4ra10731d. DOI

Crespo-Otero R.; Barbatti M. Spectrum simulation and decomposition with nuclear ensemble: formal derivation and application to benzene, furan and 2-phenylfuran. Theor. Chem. Acc. 2012, 131, 1237.10.1007/s00214-012-1237-4. DOI

Borrego-Sánchez A.; Zemmouche M.; Carmona-García J.; Francés-Monerris A.; Mulet P.; Navizet I.; Roca-Sanjuán D. Multiconfigurational Quantum Chemistry Determinations of Absorption Cross Sections (σ) in the Gas Phase and Molar Extinction Coefficients (ε) in Aqueous Solution and Air–Water Interface. J. Chem. Theory Comput. 2021, 17, 3571–3582. 10.1021/acs.jctc.0c01083. PubMed DOI PMC

Charaf-Eddin A.; Planchat A.; Mennucci B.; Adamo C.; Jacquemin D. Choosing a functional for computing absorption and fluorescence band shapes with TD-DFT. J. Chem. Theory Comput. 2013, 9, 2749–2760. 10.1021/ct4000795. PubMed DOI

Schreiber M.; Silva-Junior M. R.; Sauer S. P. A.; Thiel W. Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3. J. Chem. Phys. 2008, 128, 134110.10.1063/1.2889385. PubMed DOI

Silva-Junior M. R.; Schreiber M.; Sauer S. P. A.; Thiel W. Benchmarks for electronically excited states: Time-dependent density functional theory and density functional theory based multireference configuration interaction. J. Chem. Phys. 2008, 129, 104103.10.1063/1.2973541. PubMed DOI

Loos P.-F.; Scemama A.; Blondel A.; Garniron Y.; Caffarel M.; Jacquemin D. A Mountaineering Strategy to Excited States: Highly Accurate Reference Energies and Benchmarks. J. Chem. Theory Comput. 2018, 14, 4360–4379. 10.1021/acs.jctc.8b00406. PubMed DOI

Loos P.-F.; Scemama A.; Boggio-Pasqua M.; Jacquemin D. Mountaineering Strategy to Excited States: Highly Accurate Energies and Benchmarks for Exotic Molecules and Radicals. J. Chem. Theory Comput. 2020, 16, 3720–3736. 10.1021/acs.jctc.0c00227. PubMed DOI

Beck M.; Jäckle A.; Worth G. A.; Meyer H.-D. The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets. Phys. Rep. 2000, 324, 1–105. 10.1016/s0370-1573(99)00047-2. DOI

Heller E. J. The semiclassical way to molecular spectroscopy. Acc. Chem. Res. 1981, 14, 368–375. 10.1021/ar00072a002. DOI

Heller E. J.The Semiclassical Way to Dynamics and Spectroscopy; Princeton University Press, 2018.

Begušić T.; Vaníček J. Efficient Semiclassical Dynamics for Vibronic Spectroscopy beyond Harmonic, Condon, and Zero-Temperature Approximations. Chimia 2021, 75, 261–266. 10.2533/chimia.2021.261. PubMed DOI

Santoro F.; Improta R.; Lami A.; Bloino J.; Barone V. Effective method to compute Franck-Condon integrals for optical spectra of large molecules in solution. J. Chem. Phys. 2007, 126, 084509.10.1063/1.2437197. PubMed DOI

Frisch M. J.et al.Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford CT, 2013.

Santoro F.; Jacquemin D. Going beyond the vertical approximation with time-dependent density functional theory. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2016, 6, 460–486. 10.1002/wcms.1260. DOI

Bloino J.; Biczysko M.; Santoro F.; Barone V. General approach to compute vibrationally resolved one-photon electronic spectra. J. Chem. Theory Comput. 2010, 6, 1256–1274. 10.1021/ct9006772. PubMed DOI

Baiardi A.; Bloino J.; Barone V. General time dependent approach to vibronic spectroscopy including Franck–Condon, Herzberg–Teller, and Duschinsky effects. J. Chem. Theory Comput. 2013, 9, 4097–4115. 10.1021/ct400450k. PubMed DOI PMC

Petrenko T.; Neese F. Analysis and prediction of absorption band shapes, fluorescence band shapes, resonance Raman intensities, and excitation profiles using the time-dependent theory of electronic spectroscopy. J. Chem. Phys. 2007, 127, 164319.10.1063/1.2770706. PubMed DOI

Bai S.; Mansour R.; Stojanović L.; Toldo J. M.; Barbatti M. On the origin of the shift between vertical excitation and band maximum in molecular photoabsorption. J. Mol. Model. 2020, 26, 107.10.1007/s00894-020-04355-y. PubMed DOI PMC

Daday C.; Smart S.; Booth G. H.; Alavi A.; Filippi C. Full configuration interaction excitations of ethene and butadiene: Resolution of an ancient question. J. Chem. Theory Comput. 2012, 8, 4441–4451. 10.1021/ct300486d. PubMed DOI

Crespo-Otero R.; Barbatti M. Recent advances and perspectives on nonadiabatic mixed quantum–classical dynamics. Chem. Rev. 2018, 118, 7026–7068. 10.1021/acs.chemrev.7b00577. PubMed DOI

Della Sala F.; Rousseau R.; Görling A.; Marx D. Quantum and thermal fluctuation effects on the photoabsorption spectra of clusters. Phys. Rev. Lett. 2004, 92, 183401.10.1103/physrevlett.92.183401. PubMed DOI

Lee S. Y. Semiclassical theory of radiation interacting with a molecule. J. Chem. Phys. 1982, 76, 3064–3074. 10.1063/1.443346. DOI

Lee S. Y.; Brown R. C.; Heller E. J. Multidimensional reflection approximation: application to the photodissociation of polyatomics. J. Phys. Chem. 1983, 87, 2045–2053. 10.1021/j100235a006. DOI

Prakash M. K.; Weibel J. D.; Marcus R. A. Isotopomer fractionation in the UV photolysis of N2O: Comparison of theory and experiment. J. Geophys. Res.: Atmos. 2005, 110, D21315.10.1029/2005jd006127. DOI

Ončák M.; Šištík L.; Slavíček P. Can theory quantitatively model stratospheric photolysis? Ab initio estimate of absolute absorption cross sections of ClOOCl. J. Chem. Phys. 2010, 133, 174303.10.1063/1.3499599. PubMed DOI

Sršeň Š.; Hollas D.; Slavíček P. UV absorption of Criegee intermediates: quantitative cross sections from high-level ab initio theory. Phys. Chem. Chem. Phys. 2018, 20, 6421–6430. 10.1039/C8CP00199E. PubMed DOI

Cabral do Couto P.; Hollas D.; Slavíček P. On the performance of optimally tuned range-separated hybrid functionals for x-ray absorption modeling. J. Chem. Theory Comput. 2015, 11, 3234–3244. 10.1021/acs.jctc.5b00066. PubMed DOI

Zeng W.; Gong S.; Zhong C.; Yang C. Prediction of oscillator strength and transition dipole moments with the nuclear ensemble approach for thermally activated delayed fluorescence emitters. J. Phys. Chem. C 2019, 123, 10081–10086. 10.1021/acs.jpcc.9b02376. DOI

Riesen H.; Wiebeler C.; Schumacher S. Optical spectroscopy of graphene quantum dots: the case of C132. J. Phys. Chem. A 2014, 118, 5189–5195. 10.1021/jp502753a. PubMed DOI

Frandsen B. N.; Farahani S.; Vogt E.; Lane J. R.; Kjaergaard H. G. Spectroscopy of OSSO and other sulfur compounds thought to be present in the Venus atmosphere. J. Phys. Chem. A 2020, 124, 7047–7059. 10.1021/acs.jpca.0c04388. PubMed DOI

Keane T.; Rees T. W.; Baranoff E.; Curchod B. F. E. Capturing the interplay between spin–orbit coupling and non-Condon effects on the photoabsorption spectra of Ru and Os dyes. J. Mater. Chem. C 2019, 7, 6564–6570. 10.1039/c8tc06403b. DOI

Wiebeler C.; Plasser F.; Hedley G. J.; Ruseckas A.; Samuel I. D. W.; Schumacher S. Ultrafast electronic energy transfer in an orthogonal molecular dyad. J. Phys. Chem. Lett. 2017, 8, 1086–1092. 10.1021/acs.jpclett.7b00089. PubMed DOI

Sršeň Š.; Sita J.; Slavíček P.; Ladányi V.; Heger D. Limits of the nuclear ensemble method for electronic spectra simulations: Temperature dependence of the (E)-azobenzene spectrum. J. Chem. Theory Comput. 2020, 16, 6428–6438. 10.1021/acs.jctc.0c00579. PubMed DOI

Sršeň Š.; Slavíček P. Optimal Representation of the Nuclear Ensemble: Application to Electronic Spectroscopy. J. Chem. Theory Comput. 2021, 17, 6395–6404. 10.1021/acs.jctc.1c00749. PubMed DOI

Barbatti M.; Sen K. Effects of different initial condition samplings on photodynamics and spectrum of pyrrole. Int. J. Quantum Chem. 2016, 116, 762–771. 10.1002/qua.25049. DOI

Markland T. E.; Ceriotti M. Nuclear quantum effects enter the mainstream. Nat. Rev. Chem. 2018, 2, 0109.10.1038/s41570-017-0109. DOI

Ceriotti M.; Bussi G.; Parrinello M. Nuclear quantum effects in solids using a colored-noise thermostat. Phys. Rev. Lett. 2009, 103, 030603.10.1103/PhysRevLett.103.030603. PubMed DOI

Ceriotti M.; Bussi G.; Parrinello M. Colored-noise thermostats à la carte. J. Chem. Theory Comput. 2010, 6, 1170–1180. 10.1021/ct900563s. DOI

Suchan J.; Hollas D.; Curchod B. F. E.; Slavíček P. On the importance of initial conditions for excited-state dynamics. Faraday Discuss. 2018, 212, 307–330. 10.1039/c8fd00088c. PubMed DOI

Ceriotti M.; Manolopoulos D. E.; Parrinello M. Accelerating the convergence of path integral dynamics with a generalized Langevin equation. J. Chem. Phys. 2011, 134, 084104.10.1063/1.3556661. PubMed DOI

Ceriotti M.; Manolopoulos D. E. Efficient first-principles calculation of the quantum kinetic energy and momentum distribution of nuclei. Phys. Rev. Lett. 2012, 109, 100604.10.1103/physrevlett.109.100604. PubMed DOI

Hollas D.; Muchová E.; Slavíček P. Modeling Liquid Photoemission Spectra: Path-Integral Molecular Dynamics Combined with Tuned Range-Separated Hybrid Functionals. J. Chem. Theory Comput. 2016, 12, 5009–5017. 10.1021/acs.jctc.6b00630. PubMed DOI

Prlj A.; Ibele L. M.; Marsili E.; Curchod B. F. E. On the theoretical determination of photolysis properties for atmospheric volatile organic compounds. J. Phys. Chem. Lett. 2020, 11, 5418–5425. 10.1021/acs.jpclett.0c01439. PubMed DOI PMC

Carmona-García J.; Francés-Monerris A.; Cuevas C. A.; Trabelsi T.; Saiz-Lopez A.; Francisco J. S.; Roca-Sanjuán D. Photochemistry and Non-adiabatic Photodynamics of the HOSO Radical. J. Am. Chem. Soc. 2021, 143, 10836–10841. 10.1021/jacs.1c05149. PubMed DOI

McGillen M. R.; Curchod B. F. E.; Chhantyal-Pun R.; Beames J. M.; Watson N.; Khan M. A. H.; McMahon L.; Shallcross D. E.; Orr-Ewing A. J. Criegee intermediate–alcohol reactions, a potential source of functionalized hydroperoxides in the atmosphere. ACS Earth Space Chem. 2017, 1, 664–672. 10.1021/acsearthspacechem.7b00108. DOI

Francés-Monerris A.; Carmona-García J.; Acuña A. U.; Dávalos J. Z.; Cuevas C. A.; Kinnison D. E.; Francisco J. S.; Saiz-Lopez A.; Roca-Sanjuán D. Photodissociation mechanisms of major mercury (II) species in the atmospheric chemical cycle of mercury. Angew. Chem., Int. Ed. 2020, 59, 7605–7610. 10.1002/anie.201915656. PubMed DOI

Adamo C.; Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. 10.1063/1.478522. DOI

Runge E.; Gross E. K. U. Density-Functional Theory for Time-Dependent Systems. Phys. Rev. Lett. 1984, 52, 997–1000. 10.1103/physrevlett.52.997. DOI

Casida M. E.Recent Advances in Density Functional Methods, Part I; World Scientific, 1995; pp 155–192.

Hirata S.; Head-Gordon M. Time-dependent density functional theory within the Tamm–Dancoff approximation. Chem. Phys. Lett. 1999, 314, 291–299. 10.1016/s0009-2614(99)01149-5. DOI

Barbatti M.; Ruckenbauer M.; Plasser F.; Pittner J.; Granucci G.; Persico M.; Lischka H. Newton-X: a surface-hopping program for nonadiabatic molecular dynamics. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2014, 4, 26–33. 10.1002/wcms.1158. DOI

Hollas D.; Suchan J.; Ončák M.; Svoboda O.; Slavíček P.. ABIN: source code available at https://github.com/PHOTOX/ABIN, 2021. https://doi.org/10.5281/zenodo.1228463 (accessed 1 November 2021).

Seritan S.; Bannwarth C.; Fales B. S.; Hohenstein E. G.; Kokkila-Schumacher S. I. L.; Luehr N.; Snyder J. W. Jr.; Song C.; Titov A. V.; Ufimtsev I. S.; Martinez T. J. TeraChem: Accelerating electronic structure and ab initio molecular dynamics with graphical processing units. J. Chem. Phys. 2020, 152, 224110.10.1063/5.0007615. PubMed DOI PMC

Seritan S.; Bannwarth C.; Fales B. S.; Hohenstein E. G.; Isborn C. M.; Kokkila-Schumacher S. I. L.; Li X.; Liu F.; Luehr N.; Snyder J. W. Jr.; Song C.; Titov A. V.; Ufimtsev I. S.; Wang L.-P.; Martínez T. J. TeraChem: A graphical processing unit-accelerated electronic structure package for large-scale ab initio molecular dynamics. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2021, 11, e149410.1002/wcms.1494. DOI

GLE4MD Website, 2021. http://gle4md.org/ (accessed 1 November 2021).

Grosjean E.; Williams E. L. II; Grosjean D. Atmospheric chemistry of acrolein. Sci. Total Environ. 1994, 153, 195–202. 10.1016/0048-9697(94)90198-8. DOI

Becker R. S.; Inuzuka K.; King J. Acrolein: Spectroscopy, Photoisomerization, and Theoretical Considerations. J. Chem. Phys. 1970, 52, 5164–5170. 10.1063/1.1672755. DOI

Walsh A. D. The absorption spectra of acrolein, crotonaldehyde and mesityl oxide in the vacuum ultra-violet. Trans. Faraday Soc. 1945, 41, 498–505. 10.1039/tf9454100498. DOI

Paulisse K. W.; Friday T. O.; Graske M. L.; Polik W. F. Vibronic Spectroscopy and lifetime of S1 Acrolein. J. Chem. Phys. 2000, 113, 184–191. 10.1063/1.481785. DOI

Magneron I.; Thévenet R.; Mellouki A.; Le Bras G.; Moortgat G. K.; Wirtz K. A study of the photolysis and OH-initiated oxidation of acrolein and trans-crotonaldehyde. J. Phys. Chem. A 2002, 106, 2526–2537. 10.1021/jp013413a. DOI

Aquilante F.; Barone V.; Roos B. O. A theoretical investigation of valence and Rydberg electronic states of acrolein. J. Chem. Phys. 2003, 119, 12323–12334. 10.1063/1.1625363. DOI

Saha B.; Ehara M.; Nakatsuji H. Singly and doubly excited states of butadiene, acrolein, and glyoxal: Geometries and electronic spectra. J. Chem. Phys. 2006, 125, 014316.10.1063/1.2200344. PubMed DOI

Barone V.; Biczysko M.; Brancato G. Extending the range of computational spectroscopy by QM/MM approaches: Time-dependent and time-independent routes. Adv. Quantum Chem. 2010, 59, 17–57. 10.1016/s0065-3276(10)59002-6. DOI

Kimber P.; Plasser F. Toward an understanding of electronic excitation energies beyond the molecular orbital picture. Phys. Chem. Chem. Phys. 2020, 22, 6058–6080. 10.1039/d0cp00369g. PubMed DOI

Wang Z.; Herbinet O.; Hansen N.; Battin-Leclerc F. Exploring hydroperoxides in combustion: History, recent advances and perspectives. Prog. Energy Combust. Sci. 2019, 73, 132–181. 10.1016/j.pecs.2019.02.003. DOI

Hallquist M.; et al. The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos. Chem. Phys. 2009, 9, 5155–5236. 10.5194/acp-9-5155-2009. DOI

Vaghjiani G. L.; Ravishankara A. R. Photodissociation of H2O2 and CH3OOH at 248 nm and 298 K: Quantum yields for OH, O(3P) and H(2S). J. Chem. Phys. 1990, 92, 996–1003. 10.1063/1.458081. DOI

Matthews J.; Sinha A.; Francisco J. S. The importance of weak absorption features in promoting tropospheric radical production. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 7449–7452. 10.1073/pnas.0502687102. PubMed DOI PMC

Vaghjiani G. L.; Ravishankara A. R. Absorption cross sections of CH3OOH, H2O2, and D2O2 vapors between 210 and 365 nm at 297 K. J. Geophys. Res.: Atmos. 1989, 94, 3487–3492. 10.1029/jd094id03p03487. DOI

McCoy A. B. The role of electrical anharmonicity in the association band in the water spectrum. J. Phys. Chem. B 2014, 118, 8286–8294. 10.1021/jp501647e. PubMed DOI

Persico M.; Granucci G. An overview of nonadiabatic dynamics simulations methods, with focus on the direct approach versus the fitting of potential energy surfaces. Theor. Chem. Acc. 2014, 133, 1526.10.1007/s00214-014-1526-1. DOI

Mai S.; Gattuso H.; Monari A.; González L. Novel molecular-dynamics-based protocols for phase space sampling in complex systems. Front. Chem. 2018, 6, 495.10.3389/fchem.2018.00495. PubMed DOI PMC

Ban L.; et al. Molecules in confinement in liquid solvents: general discussion. Faraday Discuss. 2018, 212, 383–397. 10.1039/c8fd90051e. PubMed DOI

Wolfe G. M.; Crounse J. D.; Parrish J. D.; St. Clair J. M.; Beaver M. R.; Paulot F.; Yoon T. P.; Wennberg P. O.; Keutsch F. N. Photolysis, OH reactivity and ozone reactivity of a proxy for isoprene-derived hydroperoxyenals (HPALDs). Phys. Chem. Chem. Phys. 2012, 14, 7276–7286. 10.1039/c2cp40388a. PubMed DOI

Müller J.-F.; Peeters J.; Stavrakou T. Fast photolysis of carbonyl nitrates from isoprene. Atmos. Chem. Phys. 2014, 14, 2497–2508. 10.5194/acp-14-2497-2014. DOI

Liu Z.; Nguyen V. S.; Harvey J.; Müller J.-F.; Peeters J. The photolysis of α-hydroperoxycarbonyls. Phys. Chem. Chem. Phys. 2018, 20, 6970–6979. 10.1039/c7cp08421h. PubMed DOI

Griffith E. C.; Carpenter B. K.; Shoemaker R. K.; Vaida V. Photochemistry of aqueous pyruvic acid. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 11714–11719. 10.1073/pnas.1303206110. PubMed DOI PMC

Shemesh D.; Luo M.; Grassian V. H.; Gerber R. B. Absorption spectra of pyruvic acid in water: insights from calculations for small hydrates and comparison to experiment. Phys. Chem. Chem. Phys. 2020, 22, 12658–12670. 10.1039/d0cp01810d. PubMed DOI

Blair S. L.; Reed Harris A. E.; Frandsen B. N.; Kjaergaard H. G.; Pangui E.; Cazaunau M.; Doussin J.-F.; Vaida V. Conformer-specific photolysis of pyruvic acid and the effect of water. J. Phys. Chem. A 2020, 124, 1240–1252. 10.1021/acs.jpca.9b10613. PubMed DOI

Chang X.-P.; Fang Q.; Cui G. Mechanistic photodecarboxylation of pyruvic acid: Excited-state proton transfer and three-state intersection. J. Chem. Phys. 2014, 141, 154311.10.1063/1.4898085. PubMed DOI

Reed Harris A. E.; Pajunoja A.; Cazaunau M.; Gratien A.; Pangui E.; Monod A.; Griffith E. C.; Virtanen A.; Doussin J.-F.; Vaida V. Multiphase photochemistry of pyruvic acid under atmospheric conditions. J. Phys. Chem. A 2017, 121, 3327–3339. 10.1021/acs.jpca.7b01107. PubMed DOI

Yamamoto S.; Back R. A. The photolysis and thermal decomposition of pyruvic acid in the gas phase. Can. J. Chem. 1985, 63, 549–554. 10.1139/v85-089. DOI

Reed Harris A. E.; Cazaunau M.; Gratien A.; Pangui E.; Doussin J.-F.; Vaida V. Atmospheric simulation chamber studies of the gas-phase photolysis of pyruvic acid. J. Phys. Chem. A 2017, 121, 8348–8358. 10.1021/acs.jpca.7b05139. PubMed DOI

Horowitz A.; Meller R.; Moortgat G. K. The UV–VIS absorption cross sections of the α-dicarbonyl compounds: pyruvic acid, biacetyl and glyoxal. J. Photochem. Photobiol., A 2001, 146, 19–27. 10.1016/s1010-6030(01)00601-3. DOI

Zuehlsdorff T. J.; Isborn C. M. Modeling absorption spectra of molecules in solution. Int. J. Quantum Chem. 2019, 119, e2571910.1002/qua.25719. DOI

Svoboda O.; Ončák M.; Slavíček P. Simulations of light induced processes in water based on ab initio path integrals molecular dynamics. I. Photoabsorption. J. Chem. Phys. 2011, 135, 154301.10.1063/1.3649942. PubMed DOI

Favero L.; Granucci G.; Persico M. Dynamics of acetone photodissociation: a surface hopping study. Phys. Chem. Chem. Phys. 2013, 15, 20651–20661. 10.1039/c3cp54016b. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...