Calculating Photoabsorption Cross-Sections for Atmospheric Volatile Organic Compounds
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35087992
PubMed Central
PMC8785186
DOI
10.1021/acsearthspacechem.1c00355
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Characterizing the photochemical reactivity of transient volatile organic compounds (VOCs) in our atmosphere begins with a proper understanding of their abilities to absorb sunlight. Unfortunately, the photoabsorption cross-sections for a large number of transient VOCs remain unavailable experimentally due to their short lifetime or high reactivity. While structure-activity relationships (SARs) have been successfully employed to estimate the unknown photoabsorption cross-sections of VOCs, computational photochemistry offers another promising strategy to predict not only the vertical electronic transitions of a given molecule but also the width and shape of the bands forming its absorption spectrum. In this work, we focus on the use of the nuclear ensemble approach (NEA) to determine the photoabsorption cross-section of four exemplary VOCs, namely, acrolein, methylhydroperoxide, 2-hydroperoxy-propanal, and (microsolvated) pyruvic acid. More specifically, we analyze the influence that different strategies for sampling the ground-state nuclear density-Wigner sampling and ab initio molecular dynamics with a quantum thermostat-can have on the simulated absorption spectra. We highlight the potential shortcomings of using uncoupled harmonic modes within Wigner sampling of nuclear density to describe flexible or microsolvated VOCs and some limitations of SARs for multichromophoric VOCs. Our results suggest that the NEA could constitute a powerful tool for the atmospheric community to predict the photoabsorption cross-section for transient VOCs.
ArtSci International Foundation 5th Floor Mariner House Bristol BS1 4QD U K
Centre for Computational Chemistry School of Chemistry University of Bristol Bristol BS8 1TH U K
Department of Chemistry Durham University Durham DH1 3LE U K
Zobrazit více v PubMed
Keller-Rudek H.; Moortgat G. K.; Sander R.; Sörensen R. The MPI-Mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest. Earth Syst. Sci. Data 2013, 5, 365–373. 10.5194/essd-5-365-2013. DOI
Jenkin M. E.; Saunders S. M.; Pilling M. J. The tropospheric degradation of volatile organic compounds: a protocol for mechanism development. Atmos. Environ. 1997, 31, 81–104. 10.1016/s1352-2310(96)00105-7. DOI
Saunders S. M.; Jenkin M. E.; Derwent R. G.; Pilling M. J. Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds. Atmos. Chem. Phys. 2003, 3, 161–180. 10.5194/acp-3-161-2003. DOI
Jenkin M. E.; Saunders S. M.; Wagner V.; Pilling M. J. Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B): tropospheric degradation of aromatic volatile organic compounds. Atmos. Chem. Phys. 2003, 3, 181–193. 10.5194/acp-3-181-2003. DOI
Master Chemical Mechanism, MCM v3.3.1, 2021. http://mcm.york.ac.uk (accessed 1 November 2021).
ACP copernicus website, 2021. https://acp.copernicus.org/articles/special_issue8.html (accessed 1 November 2021).
Burkholder J. B.et al.Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 19; National Aeronautics and Space Administration, 2020.
TUV website, 2021https://www2.acom.ucar.edu/modeling/tropospheric-ultraviolet-and-visible-tuv-radiation-model (accessed 1 November 2021).
Dierksen M.; Grimme S. Density functional calculations of the vibronic structure of electronic absorption spectra. J. Chem. Phys. 2004, 120, 3544–3554. 10.1063/1.1642595. PubMed DOI
Improta R.; Barone V.; Santoro F. Ab initio calculations of absorption spectra of large molecules in solution: Coumarin C153. Angew. Chem., Int. Ed. 2007, 46, 405–408. 10.1002/anie.200602907. PubMed DOI
Charaf-Eddin A.; Cauchy T.; Felpin F.-X.; Jacquemin D. Vibronic spectra of organic electronic chromophores. RSC Adv. 2014, 4, 55466–55472. 10.1039/c4ra10731d. DOI
Crespo-Otero R.; Barbatti M. Spectrum simulation and decomposition with nuclear ensemble: formal derivation and application to benzene, furan and 2-phenylfuran. Theor. Chem. Acc. 2012, 131, 1237.10.1007/s00214-012-1237-4. DOI
Borrego-Sánchez A.; Zemmouche M.; Carmona-García J.; Francés-Monerris A.; Mulet P.; Navizet I.; Roca-Sanjuán D. Multiconfigurational Quantum Chemistry Determinations of Absorption Cross Sections (σ) in the Gas Phase and Molar Extinction Coefficients (ε) in Aqueous Solution and Air–Water Interface. J. Chem. Theory Comput. 2021, 17, 3571–3582. 10.1021/acs.jctc.0c01083. PubMed DOI PMC
Charaf-Eddin A.; Planchat A.; Mennucci B.; Adamo C.; Jacquemin D. Choosing a functional for computing absorption and fluorescence band shapes with TD-DFT. J. Chem. Theory Comput. 2013, 9, 2749–2760. 10.1021/ct4000795. PubMed DOI
Schreiber M.; Silva-Junior M. R.; Sauer S. P. A.; Thiel W. Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3. J. Chem. Phys. 2008, 128, 134110.10.1063/1.2889385. PubMed DOI
Silva-Junior M. R.; Schreiber M.; Sauer S. P. A.; Thiel W. Benchmarks for electronically excited states: Time-dependent density functional theory and density functional theory based multireference configuration interaction. J. Chem. Phys. 2008, 129, 104103.10.1063/1.2973541. PubMed DOI
Loos P.-F.; Scemama A.; Blondel A.; Garniron Y.; Caffarel M.; Jacquemin D. A Mountaineering Strategy to Excited States: Highly Accurate Reference Energies and Benchmarks. J. Chem. Theory Comput. 2018, 14, 4360–4379. 10.1021/acs.jctc.8b00406. PubMed DOI
Loos P.-F.; Scemama A.; Boggio-Pasqua M.; Jacquemin D. Mountaineering Strategy to Excited States: Highly Accurate Energies and Benchmarks for Exotic Molecules and Radicals. J. Chem. Theory Comput. 2020, 16, 3720–3736. 10.1021/acs.jctc.0c00227. PubMed DOI
Beck M.; Jäckle A.; Worth G. A.; Meyer H.-D. The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets. Phys. Rep. 2000, 324, 1–105. 10.1016/s0370-1573(99)00047-2. DOI
Heller E. J. The semiclassical way to molecular spectroscopy. Acc. Chem. Res. 1981, 14, 368–375. 10.1021/ar00072a002. DOI
Heller E. J.The Semiclassical Way to Dynamics and Spectroscopy; Princeton University Press, 2018.
Begušić T.; Vaníček J. Efficient Semiclassical Dynamics for Vibronic Spectroscopy beyond Harmonic, Condon, and Zero-Temperature Approximations. Chimia 2021, 75, 261–266. 10.2533/chimia.2021.261. PubMed DOI
Santoro F.; Improta R.; Lami A.; Bloino J.; Barone V. Effective method to compute Franck-Condon integrals for optical spectra of large molecules in solution. J. Chem. Phys. 2007, 126, 084509.10.1063/1.2437197. PubMed DOI
Frisch M. J.et al.Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford CT, 2013.
Santoro F.; Jacquemin D. Going beyond the vertical approximation with time-dependent density functional theory. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2016, 6, 460–486. 10.1002/wcms.1260. DOI
Bloino J.; Biczysko M.; Santoro F.; Barone V. General approach to compute vibrationally resolved one-photon electronic spectra. J. Chem. Theory Comput. 2010, 6, 1256–1274. 10.1021/ct9006772. PubMed DOI
Baiardi A.; Bloino J.; Barone V. General time dependent approach to vibronic spectroscopy including Franck–Condon, Herzberg–Teller, and Duschinsky effects. J. Chem. Theory Comput. 2013, 9, 4097–4115. 10.1021/ct400450k. PubMed DOI PMC
Petrenko T.; Neese F. Analysis and prediction of absorption band shapes, fluorescence band shapes, resonance Raman intensities, and excitation profiles using the time-dependent theory of electronic spectroscopy. J. Chem. Phys. 2007, 127, 164319.10.1063/1.2770706. PubMed DOI
Bai S.; Mansour R.; Stojanović L.; Toldo J. M.; Barbatti M. On the origin of the shift between vertical excitation and band maximum in molecular photoabsorption. J. Mol. Model. 2020, 26, 107.10.1007/s00894-020-04355-y. PubMed DOI PMC
Daday C.; Smart S.; Booth G. H.; Alavi A.; Filippi C. Full configuration interaction excitations of ethene and butadiene: Resolution of an ancient question. J. Chem. Theory Comput. 2012, 8, 4441–4451. 10.1021/ct300486d. PubMed DOI
Crespo-Otero R.; Barbatti M. Recent advances and perspectives on nonadiabatic mixed quantum–classical dynamics. Chem. Rev. 2018, 118, 7026–7068. 10.1021/acs.chemrev.7b00577. PubMed DOI
Della Sala F.; Rousseau R.; Görling A.; Marx D. Quantum and thermal fluctuation effects on the photoabsorption spectra of clusters. Phys. Rev. Lett. 2004, 92, 183401.10.1103/physrevlett.92.183401. PubMed DOI
Lee S. Y. Semiclassical theory of radiation interacting with a molecule. J. Chem. Phys. 1982, 76, 3064–3074. 10.1063/1.443346. DOI
Lee S. Y.; Brown R. C.; Heller E. J. Multidimensional reflection approximation: application to the photodissociation of polyatomics. J. Phys. Chem. 1983, 87, 2045–2053. 10.1021/j100235a006. DOI
Prakash M. K.; Weibel J. D.; Marcus R. A. Isotopomer fractionation in the UV photolysis of N2O: Comparison of theory and experiment. J. Geophys. Res.: Atmos. 2005, 110, D21315.10.1029/2005jd006127. DOI
Ončák M.; Šištík L.; Slavíček P. Can theory quantitatively model stratospheric photolysis? Ab initio estimate of absolute absorption cross sections of ClOOCl. J. Chem. Phys. 2010, 133, 174303.10.1063/1.3499599. PubMed DOI
Sršeň Š.; Hollas D.; Slavíček P. UV absorption of Criegee intermediates: quantitative cross sections from high-level ab initio theory. Phys. Chem. Chem. Phys. 2018, 20, 6421–6430. 10.1039/C8CP00199E. PubMed DOI
Cabral do Couto P.; Hollas D.; Slavíček P. On the performance of optimally tuned range-separated hybrid functionals for x-ray absorption modeling. J. Chem. Theory Comput. 2015, 11, 3234–3244. 10.1021/acs.jctc.5b00066. PubMed DOI
Zeng W.; Gong S.; Zhong C.; Yang C. Prediction of oscillator strength and transition dipole moments with the nuclear ensemble approach for thermally activated delayed fluorescence emitters. J. Phys. Chem. C 2019, 123, 10081–10086. 10.1021/acs.jpcc.9b02376. DOI
Riesen H.; Wiebeler C.; Schumacher S. Optical spectroscopy of graphene quantum dots: the case of C132. J. Phys. Chem. A 2014, 118, 5189–5195. 10.1021/jp502753a. PubMed DOI
Frandsen B. N.; Farahani S.; Vogt E.; Lane J. R.; Kjaergaard H. G. Spectroscopy of OSSO and other sulfur compounds thought to be present in the Venus atmosphere. J. Phys. Chem. A 2020, 124, 7047–7059. 10.1021/acs.jpca.0c04388. PubMed DOI
Keane T.; Rees T. W.; Baranoff E.; Curchod B. F. E. Capturing the interplay between spin–orbit coupling and non-Condon effects on the photoabsorption spectra of Ru and Os dyes. J. Mater. Chem. C 2019, 7, 6564–6570. 10.1039/c8tc06403b. DOI
Wiebeler C.; Plasser F.; Hedley G. J.; Ruseckas A.; Samuel I. D. W.; Schumacher S. Ultrafast electronic energy transfer in an orthogonal molecular dyad. J. Phys. Chem. Lett. 2017, 8, 1086–1092. 10.1021/acs.jpclett.7b00089. PubMed DOI
Sršeň Š.; Sita J.; Slavíček P.; Ladányi V.; Heger D. Limits of the nuclear ensemble method for electronic spectra simulations: Temperature dependence of the (E)-azobenzene spectrum. J. Chem. Theory Comput. 2020, 16, 6428–6438. 10.1021/acs.jctc.0c00579. PubMed DOI
Sršeň Š.; Slavíček P. Optimal Representation of the Nuclear Ensemble: Application to Electronic Spectroscopy. J. Chem. Theory Comput. 2021, 17, 6395–6404. 10.1021/acs.jctc.1c00749. PubMed DOI
Barbatti M.; Sen K. Effects of different initial condition samplings on photodynamics and spectrum of pyrrole. Int. J. Quantum Chem. 2016, 116, 762–771. 10.1002/qua.25049. DOI
Markland T. E.; Ceriotti M. Nuclear quantum effects enter the mainstream. Nat. Rev. Chem. 2018, 2, 0109.10.1038/s41570-017-0109. DOI
Ceriotti M.; Bussi G.; Parrinello M. Nuclear quantum effects in solids using a colored-noise thermostat. Phys. Rev. Lett. 2009, 103, 030603.10.1103/PhysRevLett.103.030603. PubMed DOI
Ceriotti M.; Bussi G.; Parrinello M. Colored-noise thermostats à la carte. J. Chem. Theory Comput. 2010, 6, 1170–1180. 10.1021/ct900563s. DOI
Suchan J.; Hollas D.; Curchod B. F. E.; Slavíček P. On the importance of initial conditions for excited-state dynamics. Faraday Discuss. 2018, 212, 307–330. 10.1039/c8fd00088c. PubMed DOI
Ceriotti M.; Manolopoulos D. E.; Parrinello M. Accelerating the convergence of path integral dynamics with a generalized Langevin equation. J. Chem. Phys. 2011, 134, 084104.10.1063/1.3556661. PubMed DOI
Ceriotti M.; Manolopoulos D. E. Efficient first-principles calculation of the quantum kinetic energy and momentum distribution of nuclei. Phys. Rev. Lett. 2012, 109, 100604.10.1103/physrevlett.109.100604. PubMed DOI
Hollas D.; Muchová E.; Slavíček P. Modeling Liquid Photoemission Spectra: Path-Integral Molecular Dynamics Combined with Tuned Range-Separated Hybrid Functionals. J. Chem. Theory Comput. 2016, 12, 5009–5017. 10.1021/acs.jctc.6b00630. PubMed DOI
Prlj A.; Ibele L. M.; Marsili E.; Curchod B. F. E. On the theoretical determination of photolysis properties for atmospheric volatile organic compounds. J. Phys. Chem. Lett. 2020, 11, 5418–5425. 10.1021/acs.jpclett.0c01439. PubMed DOI PMC
Carmona-García J.; Francés-Monerris A.; Cuevas C. A.; Trabelsi T.; Saiz-Lopez A.; Francisco J. S.; Roca-Sanjuán D. Photochemistry and Non-adiabatic Photodynamics of the HOSO Radical. J. Am. Chem. Soc. 2021, 143, 10836–10841. 10.1021/jacs.1c05149. PubMed DOI
McGillen M. R.; Curchod B. F. E.; Chhantyal-Pun R.; Beames J. M.; Watson N.; Khan M. A. H.; McMahon L.; Shallcross D. E.; Orr-Ewing A. J. Criegee intermediate–alcohol reactions, a potential source of functionalized hydroperoxides in the atmosphere. ACS Earth Space Chem. 2017, 1, 664–672. 10.1021/acsearthspacechem.7b00108. DOI
Francés-Monerris A.; Carmona-García J.; Acuña A. U.; Dávalos J. Z.; Cuevas C. A.; Kinnison D. E.; Francisco J. S.; Saiz-Lopez A.; Roca-Sanjuán D. Photodissociation mechanisms of major mercury (II) species in the atmospheric chemical cycle of mercury. Angew. Chem., Int. Ed. 2020, 59, 7605–7610. 10.1002/anie.201915656. PubMed DOI
Adamo C.; Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. 10.1063/1.478522. DOI
Runge E.; Gross E. K. U. Density-Functional Theory for Time-Dependent Systems. Phys. Rev. Lett. 1984, 52, 997–1000. 10.1103/physrevlett.52.997. DOI
Casida M. E.Recent Advances in Density Functional Methods, Part I; World Scientific, 1995; pp 155–192.
Hirata S.; Head-Gordon M. Time-dependent density functional theory within the Tamm–Dancoff approximation. Chem. Phys. Lett. 1999, 314, 291–299. 10.1016/s0009-2614(99)01149-5. DOI
Barbatti M.; Ruckenbauer M.; Plasser F.; Pittner J.; Granucci G.; Persico M.; Lischka H. Newton-X: a surface-hopping program for nonadiabatic molecular dynamics. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2014, 4, 26–33. 10.1002/wcms.1158. DOI
Hollas D.; Suchan J.; Ončák M.; Svoboda O.; Slavíček P.. ABIN: source code available at https://github.com/PHOTOX/ABIN, 2021. https://doi.org/10.5281/zenodo.1228463 (accessed 1 November 2021).
Seritan S.; Bannwarth C.; Fales B. S.; Hohenstein E. G.; Kokkila-Schumacher S. I. L.; Luehr N.; Snyder J. W. Jr.; Song C.; Titov A. V.; Ufimtsev I. S.; Martinez T. J. TeraChem: Accelerating electronic structure and ab initio molecular dynamics with graphical processing units. J. Chem. Phys. 2020, 152, 224110.10.1063/5.0007615. PubMed DOI PMC
Seritan S.; Bannwarth C.; Fales B. S.; Hohenstein E. G.; Isborn C. M.; Kokkila-Schumacher S. I. L.; Li X.; Liu F.; Luehr N.; Snyder J. W. Jr.; Song C.; Titov A. V.; Ufimtsev I. S.; Wang L.-P.; Martínez T. J. TeraChem: A graphical processing unit-accelerated electronic structure package for large-scale ab initio molecular dynamics. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2021, 11, e149410.1002/wcms.1494. DOI
GLE4MD Website, 2021. http://gle4md.org/ (accessed 1 November 2021).
Grosjean E.; Williams E. L. II; Grosjean D. Atmospheric chemistry of acrolein. Sci. Total Environ. 1994, 153, 195–202. 10.1016/0048-9697(94)90198-8. DOI
Becker R. S.; Inuzuka K.; King J. Acrolein: Spectroscopy, Photoisomerization, and Theoretical Considerations. J. Chem. Phys. 1970, 52, 5164–5170. 10.1063/1.1672755. DOI
Walsh A. D. The absorption spectra of acrolein, crotonaldehyde and mesityl oxide in the vacuum ultra-violet. Trans. Faraday Soc. 1945, 41, 498–505. 10.1039/tf9454100498. DOI
Paulisse K. W.; Friday T. O.; Graske M. L.; Polik W. F. Vibronic Spectroscopy and lifetime of S1 Acrolein. J. Chem. Phys. 2000, 113, 184–191. 10.1063/1.481785. DOI
Magneron I.; Thévenet R.; Mellouki A.; Le Bras G.; Moortgat G. K.; Wirtz K. A study of the photolysis and OH-initiated oxidation of acrolein and trans-crotonaldehyde. J. Phys. Chem. A 2002, 106, 2526–2537. 10.1021/jp013413a. DOI
Aquilante F.; Barone V.; Roos B. O. A theoretical investigation of valence and Rydberg electronic states of acrolein. J. Chem. Phys. 2003, 119, 12323–12334. 10.1063/1.1625363. DOI
Saha B.; Ehara M.; Nakatsuji H. Singly and doubly excited states of butadiene, acrolein, and glyoxal: Geometries and electronic spectra. J. Chem. Phys. 2006, 125, 014316.10.1063/1.2200344. PubMed DOI
Barone V.; Biczysko M.; Brancato G. Extending the range of computational spectroscopy by QM/MM approaches: Time-dependent and time-independent routes. Adv. Quantum Chem. 2010, 59, 17–57. 10.1016/s0065-3276(10)59002-6. DOI
Kimber P.; Plasser F. Toward an understanding of electronic excitation energies beyond the molecular orbital picture. Phys. Chem. Chem. Phys. 2020, 22, 6058–6080. 10.1039/d0cp00369g. PubMed DOI
Wang Z.; Herbinet O.; Hansen N.; Battin-Leclerc F. Exploring hydroperoxides in combustion: History, recent advances and perspectives. Prog. Energy Combust. Sci. 2019, 73, 132–181. 10.1016/j.pecs.2019.02.003. DOI
Hallquist M.; et al. The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos. Chem. Phys. 2009, 9, 5155–5236. 10.5194/acp-9-5155-2009. DOI
Vaghjiani G. L.; Ravishankara A. R. Photodissociation of H2O2 and CH3OOH at 248 nm and 298 K: Quantum yields for OH, O(3P) and H(2S). J. Chem. Phys. 1990, 92, 996–1003. 10.1063/1.458081. DOI
Matthews J.; Sinha A.; Francisco J. S. The importance of weak absorption features in promoting tropospheric radical production. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 7449–7452. 10.1073/pnas.0502687102. PubMed DOI PMC
Vaghjiani G. L.; Ravishankara A. R. Absorption cross sections of CH3OOH, H2O2, and D2O2 vapors between 210 and 365 nm at 297 K. J. Geophys. Res.: Atmos. 1989, 94, 3487–3492. 10.1029/jd094id03p03487. DOI
McCoy A. B. The role of electrical anharmonicity in the association band in the water spectrum. J. Phys. Chem. B 2014, 118, 8286–8294. 10.1021/jp501647e. PubMed DOI
Persico M.; Granucci G. An overview of nonadiabatic dynamics simulations methods, with focus on the direct approach versus the fitting of potential energy surfaces. Theor. Chem. Acc. 2014, 133, 1526.10.1007/s00214-014-1526-1. DOI
Mai S.; Gattuso H.; Monari A.; González L. Novel molecular-dynamics-based protocols for phase space sampling in complex systems. Front. Chem. 2018, 6, 495.10.3389/fchem.2018.00495. PubMed DOI PMC
Ban L.; et al. Molecules in confinement in liquid solvents: general discussion. Faraday Discuss. 2018, 212, 383–397. 10.1039/c8fd90051e. PubMed DOI
Wolfe G. M.; Crounse J. D.; Parrish J. D.; St. Clair J. M.; Beaver M. R.; Paulot F.; Yoon T. P.; Wennberg P. O.; Keutsch F. N. Photolysis, OH reactivity and ozone reactivity of a proxy for isoprene-derived hydroperoxyenals (HPALDs). Phys. Chem. Chem. Phys. 2012, 14, 7276–7286. 10.1039/c2cp40388a. PubMed DOI
Müller J.-F.; Peeters J.; Stavrakou T. Fast photolysis of carbonyl nitrates from isoprene. Atmos. Chem. Phys. 2014, 14, 2497–2508. 10.5194/acp-14-2497-2014. DOI
Liu Z.; Nguyen V. S.; Harvey J.; Müller J.-F.; Peeters J. The photolysis of α-hydroperoxycarbonyls. Phys. Chem. Chem. Phys. 2018, 20, 6970–6979. 10.1039/c7cp08421h. PubMed DOI
Griffith E. C.; Carpenter B. K.; Shoemaker R. K.; Vaida V. Photochemistry of aqueous pyruvic acid. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 11714–11719. 10.1073/pnas.1303206110. PubMed DOI PMC
Shemesh D.; Luo M.; Grassian V. H.; Gerber R. B. Absorption spectra of pyruvic acid in water: insights from calculations for small hydrates and comparison to experiment. Phys. Chem. Chem. Phys. 2020, 22, 12658–12670. 10.1039/d0cp01810d. PubMed DOI
Blair S. L.; Reed Harris A. E.; Frandsen B. N.; Kjaergaard H. G.; Pangui E.; Cazaunau M.; Doussin J.-F.; Vaida V. Conformer-specific photolysis of pyruvic acid and the effect of water. J. Phys. Chem. A 2020, 124, 1240–1252. 10.1021/acs.jpca.9b10613. PubMed DOI
Chang X.-P.; Fang Q.; Cui G. Mechanistic photodecarboxylation of pyruvic acid: Excited-state proton transfer and three-state intersection. J. Chem. Phys. 2014, 141, 154311.10.1063/1.4898085. PubMed DOI
Reed Harris A. E.; Pajunoja A.; Cazaunau M.; Gratien A.; Pangui E.; Monod A.; Griffith E. C.; Virtanen A.; Doussin J.-F.; Vaida V. Multiphase photochemistry of pyruvic acid under atmospheric conditions. J. Phys. Chem. A 2017, 121, 3327–3339. 10.1021/acs.jpca.7b01107. PubMed DOI
Yamamoto S.; Back R. A. The photolysis and thermal decomposition of pyruvic acid in the gas phase. Can. J. Chem. 1985, 63, 549–554. 10.1139/v85-089. DOI
Reed Harris A. E.; Cazaunau M.; Gratien A.; Pangui E.; Doussin J.-F.; Vaida V. Atmospheric simulation chamber studies of the gas-phase photolysis of pyruvic acid. J. Phys. Chem. A 2017, 121, 8348–8358. 10.1021/acs.jpca.7b05139. PubMed DOI
Horowitz A.; Meller R.; Moortgat G. K. The UV–VIS absorption cross sections of the α-dicarbonyl compounds: pyruvic acid, biacetyl and glyoxal. J. Photochem. Photobiol., A 2001, 146, 19–27. 10.1016/s1010-6030(01)00601-3. DOI
Zuehlsdorff T. J.; Isborn C. M. Modeling absorption spectra of molecules in solution. Int. J. Quantum Chem. 2019, 119, e2571910.1002/qua.25719. DOI
Svoboda O.; Ončák M.; Slavíček P. Simulations of light induced processes in water based on ab initio path integrals molecular dynamics. I. Photoabsorption. J. Chem. Phys. 2011, 135, 154301.10.1063/1.3649942. PubMed DOI
Favero L.; Granucci G.; Persico M. Dynamics of acetone photodissociation: a surface hopping study. Phys. Chem. Chem. Phys. 2013, 15, 20651–20661. 10.1039/c3cp54016b. PubMed DOI
Selecting Initial Conditions for Trajectory-Based Nonadiabatic Simulations
Resonant Inner-Shell Photofragmentation of Adamantane (C10H16)