• This record comes from PubMed

Resonant Inner-Shell Photofragmentation of Adamantane (C10H16)

. 2023 Jul 19 ; 28 (14) : . [epub] 20230719

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
730872 CALIPSOplus
CA18212 European Cooperation in Science and Technology
VR2020-0520 Swedish Research Council
HIRS-0018 Helmholtz Foundation
PID2019-110091GB-I00 Spanish Ministry of Science and Innovation
CEX2018-000805-M Spanish Ministry of Science and Innovation
21-26601X Czech Science Foundation

Adamantane, the smallest diamondoid molecule with a symmetrical cage, contains two distinct carbon sites, CH and CH2. The ionization/excitation of the molecule leads to the cage opening and strong structural reorganization. While theoretical predictions suggest that the carbon site CH primarily causes the cage opening, the role of the other CH2 site remains unclear. In this study, we used advanced experimental Auger electron-ion coincidence techniques and theoretical calculations to investigate the fragmentation dynamics of adamantane after resonant inner-shell photoexcitation. Our results demonstrate that some fragmentation channels exhibit site-sensitivity of the initial core-hole location, indicating that different carbon site excitations could lead to unique cage opening mechanisms.

See more in PubMed

Eberhardt W., Sham T., Carr R., Krummacher S., Strongin M., Weng S., Wesner D. Site-specific fragmentation of small molecules following soft-X-ray excitation. Phys. Rev. Lett. 1983;50:1038. doi: 10.1103/PhysRevLett.50.1038. DOI

Nenner I., Reynaud C., Schmelz H., Ferrand-Tanaka L., Simon M., Morin P. Site selective fragmentation with soft X-rays: From gaseous polyatomic molecules, free clusters, polymers, adsorbates to biological macromolecules. Z. Phys. Chem. 1996;195:43–63. doi: 10.1524/zpch.1996.195.Part_1_2.043. DOI

Hatherly P., Codling K., Stankiewicz M., Roper M. Symmetry effects in site-specific fragmentation of carbon dioxide. J. Electron Spectrosc. Relat. Phenom. 1996;79:407–410. doi: 10.1016/0368-2048(96)02882-4. DOI

Hitchcock A.P., Neville J.J., Ju A., Cavell R.G. Ionic fragmentation of inner-shell excited molecules. J. Electron Spectrosc. Relat. Phenom. 1998;88:71–75. doi: 10.1016/S0368-2048(97)00120-5. DOI

Ibuki T., Okada K., Saito K., Gejo T. Molecular size effect on the site-specific fragmentation of N and OK shell excited CH3OCOCN and CH3OCOCH2CN molecules. J. Electron Spectrosc. Relat. Phenom. 2000;107:39–47. doi: 10.1016/S0368-2048(99)00098-5. DOI

Liu X., Prümper G., Kukk E., Sankari R., Hoshino M., Makochekanwa C., Kitajima M., Tanaka H., Yoshida H., Tamenori Y., et al. Site-selective ion production of the core-excited CH3 F molecule probed by auger-electron–ion coincidence measurements. Phys. Rev. A. 2005;72:042704. doi: 10.1103/PhysRevA.72.042704. DOI

Erben M.F., Geronés M., Romano R.M., Della Védova C.O. Dissociative photoionization of methoxycarbonylsulfenyl chloride, CH3OC(O)SCl, following sulfur 2p, chlorine 2p, and oxygen 1s excitations. J. Phys. Chem. A. 2007;111:8062–8071. doi: 10.1021/jp0709961. PubMed DOI

Salén P., Kamińska M., Squibb R.J., Richter R., Alagia M., Stranges S., van der Meulen P., Eland J.H., Feifel R., Zhaunerchyk V. Selectivity in fragmentation of N-methylacetamide after resonant K-shell excitation. Phys. Chem. Chem. Phys. 2014;16:15231–15240. doi: 10.1039/c4cp01067a. PubMed DOI

de Castilho R., Nunez C., Lago A.F., Santos A.C.F., Coutinho L.H., Lucas C.A., Pilling S., Silva-Moraes M., de Souza G. Excitation and ionic fragmentation of the carvone molecule (C10H14O) around the O 1s edge. J. Electron Spectrosc. Relat. Phenom. 2014;192:61–68. doi: 10.1016/j.elspec.2014.01.015. DOI

Chagas G.R., Satyanarayana V.S.V., Kessler F., Belmonte G.K., Gonsalves K.E., Weibel D.E. Selective fragmentation of radiation-sensitive novel polymeric resist materials by inner-shell irradiation. ACS Appl. Mater. Interfaces. 2015;7:16348–16356. doi: 10.1021/acsami.5b03378. PubMed DOI

Habenicht W., Baiter H., Mueller-Dethlefs K., Schlag E.W. Memory effects in molecular fragmentation induced by site-specific core excitation using a reflection time-of-flight mass spectrometer. J. Phys. Chem. 1991;95:6774–6780. doi: 10.1021/j100171a008. DOI

Nagaoka S.i., Fujibuchi T., Ohshita J., Ishikawa M., Koyano I. Fragmentation of F3SiCH2CH2Si(CH3)3 vapour following Si: 2p core-level photoexcitation. A search for a site-specific process in complex molecules. Int. J. Mass Spectrom. Ion Process. 1997;171:95–103. doi: 10.1016/S0168-1176(97)00144-4. DOI

Schmelz H., Reynaud C., Simon M., Nenner I. Site-selective fragmentation in core-excited bromo-chloro-alkanes [Br(CH2)nCl] J. Chem. Phys. 1994;101:3742–3749. doi: 10.1063/1.467558. DOI

Bolognesi P., Kettunen J., Cartoni A., Richter R., Tosic S., Maclot S., Rousseau P., Delaunay R., Avaldi L. Site-and state-selected photofragmentation of 2Br-pyrimidine. Phys. Chem. Chem. Phys. 2015;17:24063–24069. doi: 10.1039/C5CP02601F. PubMed DOI

Gerlach M., Fantuzzi F., Wohlfart L., Kopp K., Engels B., Bozek J., Nicolas C., Mayer D., Gühr M., Holzmeier F., et al. Fragmentation of isocyanic acid, HNCO, following core excitation and ionization. J. Chem. Phys. 2021;154:114302. doi: 10.1063/5.0044506. PubMed DOI

Oghbaiee S., Gisselbrecht M., Walsh N., Oostenrijk B., Laksman J., Månsson E.P., Sankari A., Eland J.H., Sorensen S.L. Site-dependent nuclear dynamics in core-excited butadiene. Phys. Chem. Chem. Physics. 2022;24:28825–28830. doi: 10.1039/D2CP03411E. PubMed DOI

Levola H., Itälä E., Schlesier K., Kooser K., Laine S., Laksman J., Ha D.T., Rachlew E., Tarkanovskaja M., Tanzer K., et al. Ionization-site effects on the photofragmentation of chloro-and bromoacetic acid molecules. Phys. Rev. A. 2015;92:063409. doi: 10.1103/PhysRevA.92.063409. DOI

Candian A., Bouwman J., Hemberger P., Bodi A., Tielens A.G. Dissociative ionisation of adamantane: A combined theoretical and experimental study. Phys. Chem. Chem. Phys. 2018;20:5399–5406. doi: 10.1039/C7CP05957D. PubMed DOI

Boyer A., Hervé M., Scognamiglio A., Loriot V., Lépine F. Time-resolved relaxation and cage opening in diamondoids following XUV ultrafast ionization. Phys. Chem. Chem. Phys. 2021;23:27477–27483. doi: 10.1039/D1CP03502A. PubMed DOI

Maclot S., Lahl J., Peschel J., Wikmark H., Rudawski P., Brunner F., Coudert-Alteirac H., Indrajith S., Huber B.A., Díaz-Tendero S., et al. Dissociation dynamics of the diamondoid adamantane upon photoionization by XUV femtosecond pulses. Sci. Rep. 2020;10:2884. doi: 10.1038/s41598-020-59649-1. PubMed DOI PMC

Bouwman J., Horst S., Oomens J. Spectroscopic characterization of the product ions formed by electron ionization of adamantane. ChemPhysChem. 2018;19:3211–3218. doi: 10.1002/cphc.201800846. PubMed DOI PMC

Waltman R.J., Ling A.C. Mass spectrometry of diamantane and some adamantane derivatives. Can. J. Chem. 1980;58:2189–2195. doi: 10.1139/v80-351. DOI

Crandall P.B., Müller D., Leroux J., Förstel M., Dopfer O. Optical spectrum of the adamantane radical cation. Astrophys. J. Lett. 2020;900:L20. doi: 10.3847/2041-8213/abafbd. DOI

Richter R., Wolter D., Zimmermann T., Landt L., Knecht A., Heidrich C., Merli A., Dopfer O., Reiß P., Ehresmann A., et al. Size and shape dependent photoluminescence and excited state decay rates of diamondoids. Phys. Chem. Chem. Phys. 2014;16:3070–3076. doi: 10.1039/C3CP54570A. PubMed DOI

Ganguly S., Gisselbrecht M., Eng-Johnsson P., Feifel R., Hervieux P.A., Alfaytarouni Z., Fink R.F., Díaz-Tendero S., Milosavljević A.R., Rousseau P., et al. Coincidence study of core-ionized adamantane: Site-sensitivity within a carbon cage? Phys. Chem. Chem. Phys. 2022;24:28994–29003. doi: 10.1039/D2CP04426A. PubMed DOI

Willey T., Bostedt C., Van Buuren T., Dahl J., Liu S., Carlson R., Terminello L., Möller T. Molecular limits to the quantum confinement model in diamond clusters. Phys. Rev. Lett. 2005;95:113401. doi: 10.1103/PhysRevLett.95.113401. PubMed DOI

Willey T.M., Lee J.R., Brehmer D., Paredes Mellone O.A., Landt L., Schreiner P.R., Fokin A.A., Tkachenko B.A., de Meijere A., Kozhushkov S., et al. X-ray spectroscopic identification of strain and structure-based resonances in a series of saturated carbon-cage molecules: Adamantane, twistane, octahedrane, and cubane. J. Vac. Sci. Technol. A Vacuum Surf. Film. 2021;39:053208. doi: 10.1116/6.0001150. DOI

Kryzhevoi N.V., Dobrodey N.V., Cederbaum L.S. Equivalent core model: Extended theory and applications. J. Chem. Phys. 2003;118:2081–2091. doi: 10.1063/1.1533031. DOI

Morini F., Watanabe N., Kojima M., Deleuze M.S., Takahashi M. Influence of molecular vibrations on the valence electron momentum distributions of adamantane. J. Chem. Phys. 2017;146:094307. doi: 10.1063/1.4977060. DOI

Boschi R., Schmidt W., Suffolk R., Wilkins B., Lempka H., Ridyard J. Complete valence shell electronic structure of adamantane from He I and He II photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 1973;2:377–380. doi: 10.1016/0368-2048(73)80029-5. DOI

Sałek P., Fink R., Gel’mukhanov F., Piancastelli M., Feifer R., Bässler M., Sorensen S., Miron C., Wang H., Hjelte I., et al. Resonant X-ray Raman Scattering involving avoided crossings in the final-state potential-energy curves. Phys. Rev. A. 2000;62:062506. doi: 10.1103/PhysRevA.62.062506. DOI

Piancastelli M., Fink R., Feifel R., Bässler M., Sorensen S., Miron C., Wang H., Hjelte I., Björneholm O., Ausmees A., et al. Bond-distance-dependent decay probability of the N 1s→ π* core-excited state in N2. J. Phys. B At. Mol. Opt. Phys. 2000;33:1819. doi: 10.1088/0953-4075/33/9/311. DOI

Feifel R., Piancastelli M.N. Core-level spectroscopy and dynamics of free molecules. J. Electron Spectrosc. Relat. Phenom. 2011;183:10–28. doi: 10.1016/j.elspec.2010.04.011. DOI

Patzer A., Schütz M., Möller T., Dopfer O. Infrared spectrum and structure of the adamantane cation: Direct evidence for Jahn–Teller distortion. Angew. Chem. 2012;124:5009–5013. doi: 10.1002/ange.201108937. PubMed DOI

Miron C., Simon M., Morin P., Nanbu S., Kosugi N., Sorensen S., Naves de Brito A., Piancastelli M., Björneholm O., Feifel R., et al. Nuclear motion driven by the Renner–Teller effect as observed in the resonant Auger decay to the X2Π electronic ground state of N2O+ J. Chem. Phys. 2001;115:864–869. doi: 10.1063/1.1377890. DOI

Antonsson E., Patanen M., Nicolas C., Benkoula S., Neville J., Sukhorukov V., Bozek J., Demekhin P.V., Miron C. Dynamics of the C 1 s→ π* excitation and decay in CO 2 probed by vibrationally and angularly resolved Auger spectroscopy. Phys. Rev. A. 2015;92:042506. doi: 10.1103/PhysRevA.92.042506. DOI

Travnikova O., Miron C., Bässler M., Feifel R., Piancastelli M., Sorensen S., Svensson S. Resonant Auger decay study of C1s→ π* core-excited OCS. J. Electron Spectrosc. Relat. Phenom. 2009;174:100–106. doi: 10.1016/j.elspec.2009.08.003. DOI

PLEIADES Beamline Website. 2019. [(accessed on 1 June 2021)]. Available online: https://www.synchrotron-soleil.fr/fr/lignes-de-lumiere/pleiades.

Adachi J.i., Kosugi N., Shigemasa E., Yagishita A. Vibronic Couplings in the C 1s→ n sσg Rydberg Excited States of CO2. J. Phys. Chem. 1996;100:19783–19788. doi: 10.1021/jp962025j. DOI

Danilovic D., Bozanic D.K., Dojcilovic R., Vukmirovic N., Sapkota P., Vukasinovic I., Djokovic V., Bozek J., Nicolas C., Ptasinska S., et al. Aerosol Synthesis and Gas-Phase Photoelectron Spectroscopy of Ag-Bi-I Nanosystems. J. Phys. Chem. C. 2020;124:23930–23937. doi: 10.1021/acs.jpcc.0c06819. DOI

Moddeman W., Carlson T.A., Krause M.O., Pullen B., Bull W., Schweitzer G. Determination of the K—LL auger spectra of N2, O2, CO, NO, H2O, and CO2. J. Chem. Phys. 1971;55:2317–2336. doi: 10.1063/1.1676411. DOI

Liu X.J., Nicolas C., Robert E., Miron C. EPICEA: Probing high-energy electron emission in the molecular frame. J. Phys. Conf. Ser. 2014;488:142005. doi: 10.1088/1742-6596/488/14/142005. DOI

Miron C., Simon M., Leclercq N., Morin P. New high luminosity “double toroidal” electron spectrometer. Rev. Sci. Instruments. 1997;68:3728–3737. doi: 10.1063/1.1148017. DOI

Liu X.J., Nicolas C., Miron C. Design of a lens table for a double toroidal electron spectrometer. Rev. Sci. Instruments. 2013;84:033105. doi: 10.1063/1.4794440. PubMed DOI

Prümper G., Ueda K. Electron–ion–ion coincidence experiments for photofragmentation of polyatomic molecules using pulsed electric fields: Treatment of random coincidences. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007;574:350–362. doi: 10.1016/j.nima.2007.02.071. DOI

Skomorowski W., Krylov A.I. Feshbach-Fano approach for calculation of Auger decay rates using equation-of-motion coupled-cluster wave functions. I. Theory and implementation. J. Chem. Phys. 2021;154:084124. doi: 10.1063/5.0036976. PubMed DOI

Skomorowski W., Krylov A.I. Feshbach–Fano approach for calculation of Auger decay rates using equation-of-motion coupled-cluster wave functions. II. Numerical examples and benchmarks. J. Chem. Phys. 2021;154:084125. doi: 10.1063/5.0036977. PubMed DOI

Epifanovsky E., Gilbert A.T., Feng X., Lee J., Mao Y., Mardirossian N., Pokhilko P., White A.F., Coons M.P., Dempwolff A.L., et al. Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. J. Chem. Phys. 2021;155:084801. doi: 10.1063/5.0055522. PubMed DOI PMC

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., et al. Gaussian~16 Revision C.01. Gaussian Inc.; Wallingford, CT, USA: 2016.

Frisch M., Trucks G., Schlegel H., Scuseria G., Robb M., Cheeseman J., Scalmani G., Barone V., Petersson G., Nakatsuji H., et al. Gaussian 09, revision a.02. Gaussian Inc.; Wallingford, CT, USA: 2016.

Ceriotti M., Bussi G., Parrinello M. Nuclear quantum effects in solids using a colorednoise thermostat. Phys. Rev. Lett. 2009;103:030603. doi: 10.1103/PhysRevLett.103.030603. PubMed DOI

Ceriotti M., Bussi G., Parrinello M. Colored-noise thermostats à la carte. J. Chem. Theory Comput. 2010;6:1170. doi: 10.1021/ct900563s. DOI

Crespo-Otero R., Barbatti M. Spectrum simulation and decomposition with nuclear ensemble: Formal derivation and application to benzene, furan and 2-phenylfuran. Theor. Chem. Accounts. 2012;131:1. doi: 10.1007/s00214-012-1237-4. DOI

Prlj A., Marsili E., Hutton L., Hollas D., Shchepanovska D., Glowacki D.R., Slavıcek P., Curchod B.F. Calculating photoabsorption cross-sections for atmospheric volatile organic compounds. ACS Earth Space Chem. 2022;6:207. doi: 10.1021/acsearthspacechem.1c00355. PubMed DOI PMC

Sala F.D., Rousseau R., Görling A., Marx D. Quantum and thermal fluctuation effects on the photoabsorption spectra of clusters. Phys. Rev. Lett. 2004;92:183401. doi: 10.1103/PhysRevLett.92.183401. PubMed DOI

Lee S.Y., Brown R.C., Heller E.J. Multidimensional reflection approximation: Application to the photodissociation of polyatomics. J. Phys. Chem. 1983;87:2045. doi: 10.1021/j100235a006. DOI

Lee S.Y. Semiclassical theory of radiation interacting with a molecule. J. Chem. Phys. 1998;76:3064. doi: 10.1063/1.443346. DOI

Couto P.C.D., Hollas D., Slavıcek P. On the performance of optimally tuned rangeseparated hybrid functionals for X-ray absorption modeling. J. Chem. Theory Comput. 2015;11:3234. doi: 10.1021/acs.jctc.5b00066. PubMed DOI

Zeng W., Gong S., Zhong C., Yang C. Prediction of oscillator strength and transition dipole moments with the nuclear ensemble approach for thermally activated delayed fluorescence emitters. J. Phys. Chem. 2019;123:10081. doi: 10.1021/acs.jpcc.9b02376. DOI

Oncak M., Sistık L., Slavıcek P. Can theory quantitatively model stratospheric photolysis? ab initio estimate of absolute absorption cross sections of cloocl. J. Chem. Phys. 2010;133:174303. doi: 10.1063/1.3499599. PubMed DOI

Slavıcek P., Oncak M., Hollas D., Svoboda O. Abin, version 1.0. [(accessed on 16 July 2023)]. Available online: https://github.com/PHOTOX/ABIN.

Seritan S., Bannwarth C., Fales B.S., Hohenstein E.G., Isborn C.M., Kokkila- Schumacher S.I., Li X., Liu F., Luehr N., Snyder J.W., et al. Terachem: A graphical processing unit-accelerated electronic structure package for large-scale ab initio molecular dynamics. Wiley Interdiscip. Comput. Mol. Sci. 2021;11:e1494. doi: 10.1002/wcms.1494. DOI

Ufimtsev I.S., Mart´ınez T.J. Quantum chemistry on graphical processing units. 1. strategies for two-electron integral evaluation. J. Chem. Theory Comput. 2008;4:222. doi: 10.1021/ct700268q. PubMed DOI

Ufimtsev I.S., Martinez T.J. Quantum chemistry on graphical processing units. 3. analytical energy gradients, geometry optimization, and first principles molecular dynamics. J. Chem. Theory Comput. 2009;5:2619. doi: 10.1021/ct9003004. PubMed DOI

Ufimtsev I.S., Martinez T.J. Quantum chemistry on graphical processing units. 2. direct self-consistent-field implementation. J. Chem. Theory Comput. 2009;5:1004. doi: 10.1021/ct800526s. PubMed DOI

George S.D., Petrenko T., Neese F. Time-dependent density functional calculations of ligand K-edge X-ray absorption spectra. Inorganica Chim. Acta. 2008;361:965. doi: 10.1016/j.ica.2007.05.046. DOI

Stener M., Fronzoni G., de Simone M. Time dependent density functional theory of core electrons excitations. Chem. Phys. Lett. 2003;373:115. doi: 10.1016/S0009-2614(03)00543-8. DOI

Krylov A.I. Equation-of-motion coupled-cluster methods for open-shell and electronically excited species: The hitchhiker’s guide to fock space. Annu. Rev. Phys. Chem. 2008;59:433. doi: 10.1146/annurev.physchem.59.032607.093602. PubMed DOI

Fransson T., Brumboiu I.E., Vidal M.L., Norman P., Coriani S., Dreuw A. Xaboom: An X-ray absorption benchmark of organic molecules based on carbon, nitrogen, and oxygen 1s → π* transitions. J. Chem. Theory Comput. 2021;17:1618. doi: 10.1021/acs.jctc.0c01082. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...