Porphyrin as a versatile visible-light-activatable organic/metal hybrid photoremovable protecting group
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35750661
PubMed Central
PMC9232598
DOI
10.1038/s41467-022-31288-2
PII: 10.1038/s41467-022-31288-2
Knihovny.cz E-zdroje
- MeSH
- fotochemie MeSH
- ionty MeSH
- kovy MeSH
- porfyriny * MeSH
- světlo MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ionty MeSH
- kovy MeSH
- porfyriny * MeSH
Photoremovable protecting groups (PPGs) represent one of the main contemporary implementations of photochemistry in diverse fields of research and practical applications. For the past half century, organic and metal-complex PPGs were considered mutually exclusive classes, each of which provided unique sets of physical and chemical properties thanks to their distinctive structures. Here, we introduce the meso-methylporphyrin group as a prototype hybrid-class PPG that unites traditionally exclusive elements of organic and metal-complex PPGs within a single structure. We show that the porphyrin scaffold allows extensive modularity by functional separation of the metal-binding chromophore and up to four sites of leaving group release. The insertion of metal ions can be used to tune their spectroscopic, photochemical, and biological properties. We provide a detailed description of the photoreaction mechanism studied by steady-state and transient absorption spectroscopies and quantum-chemical calculations. Our approach applied herein could facilitate access to a hitherto untapped chemical space of potential PPG scaffolds.
Department of Chemistry Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
RECETOX Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
Zobrazit více v PubMed
Zhao H, Sterner ES, Coughlin EB, Theato P. o-Nitrobenzyl alcohol derivatives: opportunities in polymer and materials science. Macromolecules. 2012;45:1723–1736. doi: 10.1021/ma201924h. DOI
Ellis-Davies GCR. Useful caged compounds for cell physiology. Acc. Chem. Res. 2020;53:1593–1604. doi: 10.1021/acs.accounts.0c00292. PubMed DOI PMC
Ruskowitz ER, DeForest CA. Photoresponsive biomaterials for targeted drug delivery and 4D cell culture. Nat. Rev. Mater. 2018;3:17087. doi: 10.1038/natrevmats.2017.87. DOI
Silva JM, Silva E, Reis RL. Light-triggered release of photocaged therapeutics - Where are we now? J. Controlled Release. 2019;298:154–176. doi: 10.1016/j.jconrel.2019.02.006. PubMed DOI
Barltrop JA, Schofield P. Photosensitive protecting groups. Tetrahedron Lett. 1962;3:697–699. doi: 10.1016/S0040-4039(00)70935-X. DOI
Barton DHR, Chow YL, Cox A, Kirby GW. Photosensitive protection of functional groups. Tetrahedron Lett. 1962;3:1055–1057. doi: 10.1016/S0040-4039(00)70957-9. DOI
Klán P, et al. Photoremovable protecting groups in chemistry and biology: reaction mechanisms and efficacy. Chem. Rev. 2013;113:119–191. doi: 10.1021/cr300177k. PubMed DOI PMC
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-light activated release: from small molecules to nanomaterials. Chem. Rev. 2020;120:13135–13272. doi: 10.1021/acs.chemrev.0c00663. PubMed DOI PMC
Wang X, Wang X, Jin S, Muhammad N, Guo Z. Stimuli-responsive therapeutic metallodrugs. Chem. Rev. 2019;119:1138–1192. doi: 10.1021/acs.chemrev.8b00209. PubMed DOI
Renfrew AK. Transition metal complexes with bioactive ligands: mechanisms for selective ligand release and applications for drug delivery. Metallomics. 2014;6:1324–1335. doi: 10.1039/C4MT00069B. PubMed DOI
Goswami PP, et al. BODIPY-derived photoremovable protecting groups unmasked with green light. J. Am. Chem. Soc. 2015;137:3783–3786. doi: 10.1021/jacs.5b01297. PubMed DOI
Rubinstein N, Liu P, Miller EW, Weinstain R. meso-Methylhydroxy BODIPY: a scaffold for photo-labile protecting groups. Chem. Commun. 2015;51:6369–6372. doi: 10.1039/C5CC00550G. PubMed DOI
Šolomek T, Wirz J, Klán P. Searching for improved photoreleasing abilities of organic molecules. Acc. Chem. Res. 2015;48:3064–3072. doi: 10.1021/acs.accounts.5b00400. PubMed DOI
Arsenault GP, Bullock E, MacDonald SF. Pyrromethanes and porphyrins therefrom1. J. Am. Chem. Soc. 1960;82:4384–4389. doi: 10.1021/ja01501a066. DOI
Littler BJ, Ciringh Y, Lindsey JS. Investigation of conditions giving minimal scrambling in the synthesis of trans-porphyrins from dipyrromethanes and aldehydes. J. Org. Chem. 1999;64:2864–2872. doi: 10.1021/jo982452o. PubMed DOI
Geier Iii GR, Littler BJ, Lindsey JS. Investigation of porphyrin-forming reactions. Part 3.1 The origin of scrambling in dipyrromethane + aldehyde condensations yielding trans-A2B2-tetraarylporphyrins. J. Chem. Soc., Perkin Trans. 2001;2:701–711. doi: 10.1039/b009098k. DOI
Gouterman M, Wagnière GH, Snyder LC. Spectra of porphyrins: Part II. Four orbital model. J. Mol. Spectrosc. 1963;11:108–127. doi: 10.1016/0022-2852(63)90011-0. DOI
Gouterman M. Spectra of porphyrins. J. Mol. Spectrosc. 1961;6:138–163. doi: 10.1016/0022-2852(61)90236-3. DOI
Mandal AK, et al. Photophysical properties and electronic structure of porphyrins bearing zero to four meso-phenyl substituents: new insights into seemingly well understood tetrapyrroles. J. Phys. Chem. A. 2016;120:9719–9731. doi: 10.1021/acs.jpca.6b09483. PubMed DOI
Thomas DW, Martell AE. Absorption spectra of para-substituted tetraphenylporphines1,2. J. Am. Chem. Soc. 1956;78:1338–1343. doi: 10.1021/ja01588a021. DOI
Inokuma Y, Yoon ZS, Kim D, Osuka A. meso-Aryl-substituted subporphyrins: synthesis, structures, and large substituent effects on their electronic properties. J. Am. Chem. Soc. 2007;129:4747–4761. doi: 10.1021/ja069324z. PubMed DOI
Tang X-J, et al. Photorelease of pyridines using a metal-free photoremovable protecting group. Angew. Chem. Int. Ed. 2020;59:18386–18389. doi: 10.1002/anie.202005310. PubMed DOI
Slanina T, et al. In Search of the perfect photocage: structure–reactivity relationships in meso-methyl BODIPY photoremovable protecting groups. J. Am. Chem. Soc. 2017;139:15168–15175. doi: 10.1021/jacs.7b08532. PubMed DOI
Chitose Y, et al. Design and synthesis of a caged carboxylic acid with a donor−π–donor coumarin structure: one-photon and two-photon uncaging reactions using visible and near-infrared lights. Org. Lett. 2017;19:2622–2625. doi: 10.1021/acs.orglett.7b00957. PubMed DOI
Ion, R.-M. Porphyrins and Phthalocyanines: Photosensitizers and Photocatalysts. In: (ed Yusuf, Y.) Phthalocyanines and Some Current Applications 189–221 (IntechOpen, 2017).
Ostapko J, et al. Towards more photostable, brighter, and less phototoxic chromophores: synthesis and properties of porphyrins functionalized with cyclooctatetraene. Chem. Eur. J. 2020;26:16666–16675. doi: 10.1002/chem.202001804. PubMed DOI
Lutkus LV, Rickenbach SS, McCormick TM. Singlet oxygen quantum yields determined by oxygen consumption. J. Photochem. Photobiol. A. 2019;378:131–135. doi: 10.1016/j.jphotochem.2019.04.029. DOI
Wan S, Lu W. Reversible photoactivated phosphorescence of gold(I) arylethynyl complexes in aerated DMSO solutions and gels. Angew. Chem. Int. Ed. 2017;56:1784–1788. doi: 10.1002/anie.201610762. PubMed DOI
Kumar PH, Venkatesh Y, Siva D, Ramakrishna B, Bangal PR. Ultrafast relaxation dynamics of 5,10,15,20-meso-tetrakis pentafluorophenyl porphyrin studied by fluorescence up-conversion and transient absorption spectroscopy. J. Phys. Chem. A. 2015;119:1267–1278. doi: 10.1021/jp512137a. PubMed DOI
Kee HL, et al. Photophysical characterization of imidazolium-substituted Pd(II), In(III), and Zn(II) porphyrins as photosensitizers for photodynamic therapy. J. Photochem. Photobiol., A. 2008;200:346–355. doi: 10.1016/j.jphotochem.2008.08.006. PubMed DOI PMC
Harriman A. Luminescence of porphyrins and metalloporphyrins. Part 3. Heavy-atom effects. J. Chem. Soc., Faraday Trans. 1981;77:1281–1291. doi: 10.1039/F29817701281. DOI
Kim D, Holten D, Gouterman M. Evidence from picosecond transient absorption and kinetic studies of charge-transfer states in copper(II) porphyrins. J. Am. Chem. Soc. 1984;106:2793–2798. doi: 10.1021/ja00322a012. DOI
Kobayashi, T., Straub, K. D. & Rentzepis, P. Energy relaxation mechanism in Ni(II), Pd(II), Pt(II) and Zn(II) porphyrins. Photochem. Photobiol. 29, 925-931 (1979).
Obondi CO, Lim GN, D’Souza F. Triplet–triplet excitation transfer in palladium porphyrin–fullerene and platinum porphyrin–fullerene dyads. J. Phys. Chem. C. 2015;119:176–185. doi: 10.1021/jp511310c. DOI
Ohno O, Kaizu Y, Kobayashi H. Luminescence of some metalloporphins including the complexes of the IIIb metal group. J. Chem. Phys. 1985;82:1779–1787. doi: 10.1063/1.448410. DOI
Jeoung SC, Takeuchi S, Tahara T, Kim D. Ultrafast decay dynamics of photoexcited Cu(II)(TMpy-P4) in water solvent. Chem. Phys. Lett. 1999;309:369–376. doi: 10.1016/S0009-2614(99)00700-9. DOI
Jeong D, Kang D-g, Joo T, Kim SK. Femtosecond-resolved excited state relaxation dynamics of copper (II) tetraphenylporphyrin (CuTPP) after soret band excitation. Sci. Rep. 2017;7:16865. doi: 10.1038/s41598-017-17296-z. PubMed DOI PMC
Asano M, Kaizu Y, Kobayashi H. The lowest excited states of copper porphyrins. J. Chem. Phys. 1988;89:6567–6576. doi: 10.1063/1.455379. DOI
Moroni L, Gellini C, Salvi PR, Marcelli A, Foggi P. Excited states of porphyrin macrocycles. J. Phys. Chem. A. 2008;112:11044–11051. doi: 10.1021/jp803249d. PubMed DOI
Perun S, Tatchen J, Marian CM. Singlet and triplet excited states and intersystem crossing in free-base porphyrin: TDDFT and DFT/MRCI study. ChemPhysChem. 2008;9:282–292. doi: 10.1002/cphc.200700509. PubMed DOI
Magdaong NCM, et al. Photophysical properties and electronic structure of zinc(II) porphyrins bearing 0–4 meso-phenyl substituents: zinc porphine to zinc tetraphenylporphyrin (ZnTPP) J. Phys. Chem. A. 2020;124:7776–7794. doi: 10.1021/acs.jpca.0c06841. PubMed DOI
Chirvony VS, Négrerie M, Martin J-L, Turpin P-Y. Picosecond dynamics and mechanisms of photoexcited Cu(II)−5,10,15,20-meso-tetrakis(4-N-methylpyridyl)porphyrin quenching by oxygen-containing Lewis-base solvents. J. Phys. Chem. A. 2002;106:5760–5767. doi: 10.1021/jp0134998. DOI
Rapp TL, DeForest CA. Visible light-responsive dynamic biomaterials: going deeper and triggering more. Adv. Healthc. Mater. 2020;9:1901553. doi: 10.1002/adhm.201901553. PubMed DOI
Kloxin AM, Kasko AM, Salinas CN, Anseth KS. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science. 2009;324:59–63. doi: 10.1126/science.1169494. PubMed DOI PMC
LeValley PJ, et al. Photolabile linkers: exploiting labile bond chemistry to control mode and rate of hydrogel degradation and protein release. J. Am. Chem. Soc. 2020;142:4671–4679. doi: 10.1021/jacs.9b11564. PubMed DOI PMC
Raman R, et al. Light-degradable hydrogels as dynamic triggers for gastrointestinal applications. Sci. Adv. 2020;6:eaay0065. doi: 10.1126/sciadv.aay0065. PubMed DOI PMC
Huynh CT, et al. Photocleavable hydrogels for light-triggered siRNA release. Adv. Healthc. Mater. 2016;5:305–310. doi: 10.1002/adhm.201500778. PubMed DOI PMC
Hirakawa K, Harada M, Okazaki S, Nosaka Y. Controlled generation of singlet oxygen by a water-soluble meso-pyrenylporphyrin photosensitizer through interaction with DNA. Chem. Commun. 2012;48:4770–4772. doi: 10.1039/c2cc30880k. PubMed DOI
Hirakawa K, Nishimura Y, Arai T, Okazaki S. Singlet oxygen generating activity of an electron donor connecting porphyrin photosensitizer can be controlled by DNA. J. Phys. Chem. B. 2013;117:13490–13496. doi: 10.1021/jp4072444. PubMed DOI
Jeong H-G, Choi M-S. Design and properties of porphyrin-based singlet oxygen generator. Isr. J. Chem. 2016;56:110–118. doi: 10.1002/ijch.201500026. DOI
Mathai S, Smith TA, Ghiggino KP. Singlet oxygen quantum yields of potential porphyrin-based photosensitisers for photodynamic therapy. Photochem. Photobiol. Sci. 2007;6:995–1002. doi: 10.1039/b705853e. PubMed DOI
McCarthy JR, Weissleder R. Model systems for fluorescence and singlet oxygen quenching by metalloporphyrins. ChemMedChem. 2007;2:360–365. doi: 10.1002/cmdc.200600244. PubMed DOI
Bonnet S. Why develop photoactivated chemotherapy? Dalton Trans. 2018;47:10330–10343. doi: 10.1039/C8DT01585F. PubMed DOI
Russo M, Štacko P, Nachtigallová D, Klán P. Mechanisms of orthogonal photodecarbonylation reactions of 3-hydroxyflavone-based acid–base forms. J. Org. Chem. 2020;85:3527–3537. doi: 10.1021/acs.joc.9b03248. PubMed DOI
Wilkinson F, Helman WP, Ross AB. Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution. J. Phys. Chem. Ref. Data. 1993;22:113–262. doi: 10.1063/1.555934. DOI
Hoebeke M, Damoiseau X. Determination of the singlet oxygen quantum yield of bacteriochlorin a: a comparative study in phosphate buffer and aqueous dispersion of dimiristoyl-l-α-phosphatidylcholine liposomes. Photochem. Photobiol. Sci. 2002;1:283–287. doi: 10.1039/b201081j. PubMed DOI
Sheldrick G. A short history of SHELX. Acta Crystallogr. Sect. A. 2008;64:112–122. doi: 10.1107/S0108767307043930. PubMed DOI
Spek A. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003;36:7–13. doi: 10.1107/S0021889802022112. DOI
Rossini E, Knapp E-W. Proton solvation in protic and aprotic solvents. J. Comput. Chem. 2016;37:1082–1091. doi: 10.1002/jcc.24297. PubMed DOI
Frisch, M. J. et al. Gaussian 16 Rev. C.01. (Wallingford, CT, 2016).
Peterson KA, Figgen D, Dolg M, Stoll H. Energy-consistent relativistic pseudopotentials and correlation consistent basis sets for the 4d elements Y–Pd. J. Chem. Phys. 2007;126:124101. doi: 10.1063/1.2647019. PubMed DOI
Neese F. Software update: the ORCA program system, version 4.0. WIREs Comput. Mol. Sci. 2018;8:e1327. doi: 10.1002/wcms.1327. DOI
Stella L, Lorenz CD, Kantorovich L. Generalized Langevin equation: an efficient approach to nonequilibrium molecular dynamics of open systems. Phys. Rev. B. 2014;89:134303. doi: 10.1103/PhysRevB.89.134303. DOI
Suchan J, Janoš J, Slavíček P. Pragmatic Approach to Photodynamics: Mixed Landau–Zener Surface Hopping with Intersystem Crossing. J. Chem. Theory Comput. 2020;16:5809–5820. doi: 10.1021/acs.jctc.0c00512. PubMed DOI
Hollas, D., Suchan, J., Svoboda, O., Ončák, M. & Slavíček, P. PHOTOX/ABIN: Pre-release of version 1.1. Zenodo, 10.5281/zenodo.1228463 (2018).
Thiel, W. Program MNDO. ver. 7.0 ed: (Max-Planck-Institut für Kohlenforschung, 2005).
Neese F. Efficient and accurate approximations to the molecular spin-orbit coupling operator and their use in molecular g-tensor calculations. J. Chem. Phys. 2005;122:034107. doi: 10.1063/1.1829047. PubMed DOI
Selecting Initial Conditions for Trajectory-Based Nonadiabatic Simulations
Visible-Light-Activated Carbon Monoxide Release from Porphyrin-Flavonol Hybrids