Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33125209
PubMed Central
PMC7833475
DOI
10.1021/acs.chemrev.0c00663
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Zobrazit více v PubMed
Barltrop J. A.; Schofield P. Photosensitive Protecting Groups. Tetrahedron Lett. 1962, 16, 697–699. 10.1016/S0040-4039(00)70935-X. DOI
Barton D. H. R.; Chow Y. L.; Cox A.; Kirby G. W. Photosensitive Protection of Functional Groups. Tetrahedron Lett. 1962, 23, 1055–1057. 10.1016/S0040-4039(00)70957-9. DOI
Barton D. H. R.; Chow Y. L.; Cox A.; Kirby G. W. Photochemical Transformations. 19. Some Photosensitive Protecting Groups. J. Chem. Soc. 1965, 3571–3578. 10.1039/jr9650003571. DOI
Patchornik A.; Amit B.; Woodward R. B. Photosensitive Protecting Groups. J. Am. Chem. Soc. 1970, 92, 6333–6335. 10.1021/ja00724a041. DOI
Sheehan J. C.; Wilson R. M. Photolysis of Desyl Compounds. A New Photolytic Cyclization. J. Am. Chem. Soc. 1964, 86, 5277–5281. 10.1021/ja01077a046. DOI
Engels J.; Schlaeger E. J. Synthesis, Structure, and Reactivity of Adenosine Cyclic 3′,5′-Phosphate-Benzyltriesters. J. Med. Chem. 1977, 20, 907–911. 10.1021/jm00217a008. PubMed DOI
Kaplan J. H.; Forbush B. III; Hoffman J. F. Rapid Photolytic Release of Adenosine 5′-Triphosphate From a Protected Analog: Utilization by the Sodium/Potassium Pump of Human Red Blood Cell Ghosts. Biochemistry 1978, 17, 1929–1935. 10.1021/bi00603a020. PubMed DOI
Yang Y. M.; Mu J.; Xing B. G. Photoactivated Drug Delivery and Bioimaging. Wiley Interdiscip. Rev.-Nanomed. Nanobiotechnol. 2017, 9, e140810.1002/wnan.1408. PubMed DOI
Zhou Y.; Ye H.; Chen Y. B.; Zhu R. Y.; Yin L. C. Photoresponsive Drug/Gene Delivery Systems. Biomacromolecules 2018, 19, 1840–1857. 10.1021/acs.biomac.8b00422. PubMed DOI
Klán P.; Šolomek T.; Bochet C. G.; Blanc A.; Givens R.; Rubina M.; Popik V.; Kostikov A.; Wirz J. Photoremovable Protecting Groups in Chemistry and Biology: Reaction Mechanisms and Efficacy. Chem. Rev. 2013, 113, 119–191. 10.1021/cr300177k. PubMed DOI PMC
Šolomek T.; Wirz J.; Klán P. Searching for Improved Photoreleasing Abilities of Organic Molecules. Acc. Chem. Res. 2015, 48, 3064–3072. 10.1021/acs.accounts.5b00400. PubMed DOI
Bort G.; Gallavardin T.; Ogden D.; Dalko P. I. From One-Photon to Two-Photon Probes: “Caged” Compounds, Actuators, and Photoswitches. Angew. Chem., Int. Ed. 2013, 52, 4526–4537. 10.1002/anie.201204203. PubMed DOI
Aubert S.; Bezagu M.; Spivey A. C.; Arseniyadis S. Spatial and Temporal Control of Chemical Processes. Nat. Rev. Chem. 2019, 3, 706–722. 10.1038/s41570-019-0139-6. DOI
Beauté L.; McClenaghan N.; Lecommandoux S. Photo-Triggered Polymer Nanomedicines: From Molecular Mechanisms to Therapeutic Applications. Adv. Drug Delivery Rev. 2019, 138, 148–166. 10.1016/j.addr.2018.12.010. PubMed DOI
Wang Y.; Kohane D. S. External Triggering and Triggered Targeting Strategies for Drug Delivery. Nat. Rev. Mater. 2017, 2, 17020.10.1038/natrevmats.2017.20. DOI
Hansen M. J.; Velema W. A.; Lerch M. M.; Szymanski W.; Feringa B. L. Wavelength-Selective Cleavage of Photoprotecting Groups: Strategies and Applications in Dynamic Systems. Chem. Soc. Rev. 2015, 44, 3358–3377. 10.1039/C5CS00118H. PubMed DOI
So W. H.; Wong C. T. T.; Xia J. Peptide Photocaging: A Brief Account of the Chemistry and Biological Applications. Chin. Chem. Lett. 2018, 29, 1058–1062. 10.1016/j.cclet.2018.05.015. DOI
Spicer C. D.; Pashuck E. T.; Stevens M. M. Achieving Controlled Biomolecule–Biomaterial Conjugation. Chem. Rev. 2018, 118, 7702–7743. 10.1021/acs.chemrev.8b00253. PubMed DOI PMC
Brieke C.; Rohrbach F.; Gottschalk A.; Mayer G.; Heckel A. Light-Controlled Tools. Angew. Chem., Int. Ed. 2012, 51, 8446–8476. 10.1002/anie.201202134. PubMed DOI
Silva J. M.; Silva E.; Reis R. L. Light-Triggered Release of Photocaged Therapeutics - Where Are We Now?. J. Controlled Release 2019, 298, 154–176. 10.1016/j.jconrel.2019.02.006. PubMed DOI
Ankenbruck N.; Courtney T.; Naro Y.; Deiters A. Optochemical Control of Biological Processes in Cells and Animals. Angew. Chem., Int. Ed. 2018, 57, 2768–2798. 10.1002/anie.201700171. PubMed DOI PMC
Givens R. S.; Rubina M.; Wirz J. Applications of p-Hydroxyphenacyl (pHP) and Coumarin-4-ylmethyl Photoremovable Protecting Groups. Photochem. Photobiol. Sci. 2012, 11, 472–488. 10.1039/c2pp05399c. PubMed DOI PMC
Zhao H.; Sterner E. S.; Coughlin E. B.; Theato P. o-Nitrobenzyl Alcohol Derivatives: Opportunities in Polymer and Materials Science. Macromolecules 2012, 45, 1723–1736. 10.1021/ma201924h. DOI
Ellis-Davies G. C. R. Caged Compounds: Photorelease Technology for Control of Cellular Chemistry and Physiology. Nat. Methods 2007, 4, 619–628. 10.1038/nmeth1072. PubMed DOI PMC
Shao Q.; Xing B. Photoactive Molecules for Applications in Molecular Imaging and Cell Biology. Chem. Soc. Rev. 2010, 39, 2835–2846. 10.1039/b915574k. PubMed DOI
Bardhan A.; Deiters A. Development of Photolabile Protecting Groups and their Application to the Optochemical Control of Cell Signaling. Curr. Opin. Struct. Biol. 2019, 57, 164–175. 10.1016/j.sbi.2019.03.028. PubMed DOI PMC
Ellis-Davies G. C. R. Neurobiology with Caged Calcium. Chem. Rev. 2008, 108, 1603–1613. 10.1021/cr078210i. PubMed DOI
Choi S. K.Photocleavable Linkers: Design and Applications in Nanotechnology. Photonanotechnology for Therapeutics and Imaging; Choi S. k., Ed.; Elsevier, 2020.
Amatrudo J. M.; Olson J. P.; Agarwal H. K.; Ellis-Davies G. C. R. Caged Compounds for Multichromic Optical Interrogation of Neural Systems. Eur. J. Neurosci. 2015, 41, 5–16. 10.1111/ejn.12785. PubMed DOI PMC
Jakkampudi S.; Abe M.. Caged Compounds for Two-Photon Uncaging. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier, 2018.
Piant S.; Bolze F.; Specht A. Two-Photon Uncaging, from Neuroscience to Materials. Opt. Mater. Express 2016, 6, 1679–1691. 10.1364/OME.6.001679. DOI
Sankaranarayanan J.; Muthukrishnan S.; Gudmundsdottir A. D. Photoremovable Protecting Groups Based on Photoenolization. Adv. Phys. Org. Chem. 2009, 43, 39–77. 10.1016/S0065-3160(08)00002-6. DOI
Bochet C. G.; Blanc A.. Photolabile Protecting Groups in Organic Synthesis. Handbook of Synthetic Photochemistry, Ch. 13; Albini A., Fagnoni M., Eds.; Wiley: Weinheim, 2010.
Kramer R. H.; Chambers J. J.; Trauner D. Photochemical Tools for Remote Control of Ion Channels in Excitable Cells. Nat. Chem. Biol. 2005, 1, 360–365. 10.1038/nchembio750. PubMed DOI
Xiangming M.; Xiaoyun C.; Yao F.; Qingxiang G. Photolysis of Caged Compounds and Its Applications to Chemical Biology. Progr. Chem. 2008, 20, 2034–2044.
Sjulson L.; Miesenböck G. Photocontrol of Neural Activity: Biophysical Mechanisms and Performance. Chem. Rev. 2008, 108, 1588–1602. 10.1021/cr078221b. PubMed DOI
Lee H. M.; Larson D. R.; Lawrence D. S. Illuminating the Chemistry of Life: Design, Synthesis, and Applications of “Caged” and Related Photoresponsive Compounds. ACS Chem. Biol. 2009, 4, 409–427. 10.1021/cb900036s. PubMed DOI PMC
Yu H.; Li J.; Wu D.; Qiu Z.; Zhang Y. Chemistry and Biological Applications of Photo-Labile Organic Molecules. Chem. Soc. Rev. 2010, 39, 464–473. 10.1039/B901255A. PubMed DOI
Specht A.; Bolze F.; Omran Z.; Nicoud J.-F.; Goeldner M. Photochemical Tools to Study Dynamic Biological Processes. HFSP J. 2009, 3, 255–264. 10.2976/1.3132954. PubMed DOI PMC
Ciesienski K. L.; Franz K. J. Keys for Unlocking Photolabile Metal-Containing Cages. Angew. Chem., Int. Ed. 2011, 50, 814–824. 10.1002/anie.201002542. PubMed DOI
Lovell J. F.; Liu T. W. B.; Chen J.; Zheng G. Activatable Photosensitizers for Imaging and Therapy. Chem. Rev. 2010, 110, 2839–2857. 10.1021/cr900236h. PubMed DOI
Herrmann A. Controlled Release of Volatiles Under Mild Reaction Conditions: From Nature to Everyday Products. Angew. Chem., Int. Ed. 2007, 46, 5836–5863. 10.1002/anie.200700264. PubMed DOI
Herrmann A. Using Photolabile Protecting Groups for the Controlled Release of Bioactive Volatiles. Photochem. Photobiol. Sci. 2012, 11, 446–459. 10.1039/C1PP05231D. PubMed DOI
Suyama K.; Shirai M. Photobase Generators: Recent Progress and Application Trend in Polymer Systems. Prog. Polym. Sci. 2009, 34, 194–209. 10.1016/j.progpolymsci.2008.08.005. DOI
Puliti D.; Warther D.; Orange C.; Specht A.; Goeldner M. Small Photoactivatable Molecules for Controlled Fluorescence Activation in Living Cells. Bioorg. Med. Chem. 2011, 19, 1023–1029. 10.1016/j.bmc.2010.07.011. PubMed DOI
Li W.-H.; Zheng G. Photoactivatable Fluorophores and Techniques for Biological Imaging Applications. Photochem. Photobiol. Sci. 2012, 11, 460–471. 10.1039/c2pp05342j. PubMed DOI PMC
Fukaminato T. Single-Molecule Fluorescence Photoswitching: Design and Synthesis of Photoswitchable Fluorescent Molecules. J. Photochem. Photobiol., C 2011, 12, 177–208. 10.1016/j.jphotochemrev.2011.08.006. DOI
A Special Issue of Photochem. Photobiol. Sci. on Photoremovable Protecting Groups: Developments and Applications; Wirz J., Ed.; Royal Society of Chemistry: Cambridge, 2012; Vol. 11, pp 433–600. PubMed
Alabugin A. Near-IR Photochemistry for Biology: Exploiting the Optical Window of Tissue. Photochem. Photobiol. 2019, 95, 722–732. 10.1111/php.13068. PubMed DOI
Olejniczak J.; Carling C. J.; Almutairi A. Photocontrolled Release Using One-Photon Absorption of Visible or NIR Light. J. Controlled Release 2015, 219, 18–30. 10.1016/j.jconrel.2015.09.030. PubMed DOI
Martin C. J.; Rapenne G.; Nakashima T.; Kawai T. Recent Progress in Development of Photoacid Generators. J. Photochem. Photobiol., C 2018, 34, 41–51. 10.1016/j.jphotochemrev.2018.01.003. DOI
Deiters A. Principles and Applications of the Photochemical Control of Cellular Processes. ChemBioChem 2010, 11, 47–53. 10.1002/cbic.200900529. PubMed DOI PMC
Ellis-Davies G. C. R. Useful Caged Compounds for Cell Physiology. Acc. Chem. Res. 2020, 53, 1593–1604. 10.1021/acs.accounts.0c00292. PubMed DOI PMC
Lee M.; Rizzo R.; Surman F.; Zenobi-Wong M. Guiding Lights: Tissue Bioprinting Using Photoactivated Materials. Chem. Rev. 2020, 120, 10950–11027. 10.1021/acs.chemrev.0c00077. PubMed DOI
Dcona M. M.; Mitra K.; Hartman M. C. T. Photocontrolled Activation of Small Molecule Cancer Therapeutics. RSC Med. Chem. 2020, 11, 982–1002. 10.1039/D0MD00107D. PubMed DOI PMC
Zayat L.; Filevich O.; Baraldo L. M.; Etchenique R. Ruthenium Polypyridyl Phototriggers: From Beginnings to Perspectives. Philos. Trans. R. Soc., A 2013, 371, 20120330.10.1098/rsta.2012.0330. PubMed DOI
Mari C.; Pierroz V.; Ferrari S.; Gasser G. Combination of Ru(II) Complexes and Light: New Frontiers in Cancer Therapy. Chem. Sci. 2015, 6, 2660–2686. 10.1039/C4SC03759F. PubMed DOI PMC
Wang X. H.; Wang X. Y.; Jin S. X.; Muhammad N.; Guo Z. J. Stimuli-Responsive Therapeutic Metallodrugs. Chem. Rev. 2019, 119, 1138–1192. 10.1021/acs.chemrev.8b00209. PubMed DOI
Banerjee S.; Chakravarty A. R. Metal Complexes of Curcumin for Cellular Imaging, Targeting, and Photoinduced Anticancer Activity. Acc. Chem. Res. 2015, 48, 2075–2083. 10.1021/acs.accounts.5b00127. PubMed DOI
Chemaly S. M. New Light on Vitamin B-12: The Adenosylcobalamin-Dependent Photoreceptor Protein CarH. S. Afr. J. Sci. 2016, 112, 39–47. 10.17159/sajs.2016/20160106. DOI
Jones A. R. The Photochemistry and Photobiology of Vitamin B-12. Photochem. Photobiol. Sci. 2017, 16, 820–834. 10.1039/C7PP00054E. PubMed DOI
Kumar M.; Kozlowski P. M. Electronic and Structural Properties of Cobalamin: Ramifications for B-12-Dependent Processes. Coord. Chem. Rev. 2017, 333, 71–81. 10.1016/j.ccr.2016.11.010. DOI
Heilman B.; Mascharak P. K. Light-Triggered Nitric Oxide Delivery to Malignant Sites and Infection. Philos. Trans. R. Soc., A 2013, 371, 20120368.10.1098/rsta.2012.0368. PubMed DOI
Padmanabhan S.; Jost M.; Drennan C. L.; Elias-Arnanz M.. A New Facet of Vitamin B-12: Gene Regulation by Cobalamin-Based Photoreceptors. Annu. Rev. Biochem.; Kornberg R. D., Ed.; Annual Reviews: Palo Alto, 2017; Vol. 86. PubMed PMC
Renfrew A. K. Transition Metal Complexes With Bioactive Ligands: Mechanisms for Selective Ligand Release and Applications for Drug Delivery. Metallomics 2014, 6, 1324–1335. 10.1039/C4MT00069B. PubMed DOI
Smith N. A.; Sadler P. J. Photoactivatable Metal Complexes: From Theory to Applications in Biotechnology and Medicine. Philos. Trans. R. Soc., A 2013, 371, 20120519.10.1098/rsta.2012.0519. PubMed DOI PMC
Rury A. S.; Wiley T. E.; Sension R. J. Energy Cascades, Excited State Dynamics, and Photochemistry in Cob(III)alamins and Ferric Porphyrins. Acc. Chem. Res. 2015, 48, 860–867. 10.1021/ar5004016. PubMed DOI
Crespy D.; Landfester K.; Schubert U. S.; Schiller A. Potential Photoactivated Metallopharmaceuticals: From Active Molecules to Supported Drugs. Chem. Commun. 2010, 46, 6651–6662. 10.1039/c0cc01887b. PubMed DOI
Szacilowski K.; Macyk W.; Drzewiecka-Matuszek A.; Brindell M.; Stochel G. Bioinorganic Photochemistry: Frontiers and Mechanisms. Chem. Rev. 2005, 105, 2647–2694. 10.1021/cr030707e. PubMed DOI
Knoll J. D.; Albani B. A.; Turro C. New Ru(II) Complexes for Dual Photoreactivity: Ligand Exchange and O-1(2) Generation. Acc. Chem. Res. 2015, 48, 2280–2287. 10.1021/acs.accounts.5b00227. PubMed DOI PMC
Knoll J. D.; Turro C. Control and Utilization of Ruthenium and Rhodium Metal Complex Excited States for Photoactivated Cancer Therapy. Coord. Chem. Rev. 2015, 282, 110–126. 10.1016/j.ccr.2014.05.018. PubMed DOI PMC
Li A.; Turro C.; Kodanko J. J. Ru(II) Polypyridyl Polypyridyl Complexes Derived from Tetradentate Ancillary Ligands for Effective Photocaging. Acc. Chem. Res. 2018, 51, 1415–1421. 10.1021/acs.accounts.8b00066. PubMed DOI PMC
Poynton F. E.; Bright S. A.; Blasco S.; Williams D. C.; Kelly J. M.; Gunnlaugsson T. The Development of Ruthenium(ii) Polypyridyl Complexes and Conjugates for in Vitro Cellular and in Vivo Applications. Chem. Soc. Rev. 2017, 46, 7706–7756. 10.1039/C7CS00680B. PubMed DOI
Knör G. The Concept of Photochemical Enzyme Models – State of the Art. Coord. Chem. Rev. 2016, 325, 102–115. 10.1016/j.ccr.2016.06.006. DOI
Priestman M. A.; Lawrence D. S. Light-Mediated Remote Control of Signaling Pathways. Biochim. Biophys. Acta, Proteins Proteomics 2010, 1804, 547–558. 10.1016/j.bbapap.2009.09.005. PubMed DOI PMC
Bonnet S. Shifting the Light Activation of Metallodrugs to the Red and Near-Infrared Region in Anticancer Phototherapy. Comments Inorg. Chem. 2015, 35, 179–213. 10.1080/02603594.2014.979286. DOI
Ford P. C.; Bourassa J.; Miranda K.; Lee B.; Lorkovic I.; Boggs S.; Kudo S.; Laverman L. Photochemistry of Metal Nitrosyl Complexes. Delivery of Nitric Oxide to Biological Targets. Coord. Chem. Rev. 1998, 171, 185–202. 10.1016/S0010-8545(98)90031-5. DOI
Ford P. C. Polychromophoric Metal Complexes for Generating the Bioregulatory Agent Nitric Oxide by Single- and Two-Photon Excitation. Acc. Chem. Res. 2008, 41, 190–200. 10.1021/ar700128y. PubMed DOI
Ostrowski A. D.; Ford P. C. Metal Complexes as Photochemical Nitric Oxide Precursors: Potential Applications in the Treatment of Tumors. Dalton Trans. 2009, 10660–10669. 10.1039/b912898k. PubMed DOI
Slanina T.; Sebej P. Visible-Light-Activated photoCORMs: Rational Design of CO-Releasing Organic Molecules Absorbing in the Tissue-Transparent Window. Photochem. Photobiol. Sci. 2018, 17, 692–710. 10.1039/C8PP00096D. PubMed DOI
Garcia-Gallego S.; Bernardes G. J. L. Carbon-Monoxide-Releasing Molecules for the Delivery of Therapeutic CO In Vivo. Angew. Chem., Int. Ed. 2014, 53, 9712–9721. 10.1002/anie.201311225. PubMed DOI
Wright M. A.; Wright J. A. PhotoCORMs: CO Release Moves into the Visible. Dalton Trans. 2016, 45, 6801–6811. 10.1039/C5DT04849D. PubMed DOI
Marhenke J.; Trevino K.; Works C. The Chemistry, Biology and Design of Photochemical CO Releasing Molecules and the Efforts to Detect CO for Biological Applications. Coord. Chem. Rev. 2016, 306, 533–543. 10.1016/j.ccr.2015.02.017. DOI
Kautz A. C.; Kunz P. C.; Janiak C. CO-Releasing Molecule (CORM) Conjugate Systems. Dalton Trans. 2016, 45, 18045–18063. 10.1039/C6DT03515A. PubMed DOI
Schatzschneider U. Novel Lead Structures and Activation Mechanisms for CO-Releasing Molecules (CORMs). Br. J. Pharmacol. 2015, 172, 1638–1650. 10.1111/bph.12688. PubMed DOI PMC
Gonzales M. A.; Mascharak P. K. Photoactive Metal Carbonyl Complexes as Potential Agents for Targeted CO Delivery. J. Inorg. Biochem. 2014, 133, 127–135. 10.1016/j.jinorgbio.2013.10.015. PubMed DOI
Steiger C.; Hermann C.; Meinel L. Localized Delivery of Carbon Monoxide. Eur. J. Pharm. Biopharm. 2017, 118, 3–12. 10.1016/j.ejpb.2016.11.002. PubMed DOI
Ismailova A.; Kuter D.; Bohle D. S.; Butler I. S. An Overview of the Potential Therapeutic Applications of CO-Releasing Molecules. Bioinorg. Chem. Appl. 2018, 2018, 8547364.10.1155/2018/8547364. PubMed DOI PMC
Faizan M.; Muhammad N.; Niazi K. U. K.; Hu Y.; Wang Y.; Wu Y.; Sun H.; Liu R.; Dong W.; Zhang W.; Gao Z. CO-Releasing Materials: An Emphasis on Therapeutic Implications, as Release and Subsequent Cytotoxicity Are the Part of Therapy. Materials 2019, 12, 1643.10.3390/ma12101643. PubMed DOI PMC
Yang X.; de Caestecker M.; Otterbein L. E.; Wang B. Carbon Monoxide: An Emerging Therapy for Acute Kidney Injury. Med. Res. Rev. 2020, 40, 1–31. 10.1002/med.21650. PubMed DOI PMC
Pinto M. N.; Mascharak P. K. Light-Assisted and Remote Delivery of Carbon Monoxide to Malignant Cells and Tissues: Photochemotherapy in the Spotlight. J. Photochem. Photobiol., C 2020, 42, 100341.10.1016/j.jphotochemrev.2020.100341. DOI
Soboleva T.; Berreau L. M. 3-Hydroxyflavones and 3-Hydroxy-4-oxoquinolines as Carbon Monoxide-Releasing Molecules. Molecules 2019, 24, 1252.10.3390/molecules24071252. PubMed DOI PMC
Rimmer R. D.; Pierri A. E.; Ford P. C. Photochemically Activated Carbon Monoxide Release for Biological Targets. Toward Developing Air-Stable PhotoCORMs Labilized by Visible Light. Coord. Chem. Rev. 2012, 256, 1509–1519. 10.1016/j.ccr.2011.12.009. DOI
Schatzschneider U. PhotoCORMs: Light-Triggered Release of Carbon Monoxide From the Coordination Sphere of Transition Metal Complexes for Biological Applications. Inorg. Chim. Acta 2011, 374, 19–23. 10.1016/j.ica.2011.02.068. DOI
Kottelat E.; Zobi F. Visible Light-Activated PhotoCORMs. Inorganics 2017, 5, 24.10.3390/inorganics5020024. DOI
Ling K.; Men F.; Wang W. C.; Zhou Y. Q.; Zhang H. W.; Ye D. W. Carbon Monoxide and Its Controlled Release: Therapeutic Application, Detection, and Development of Carbon Monoxide Releasing Molecules (CORMs). J. Med. Chem. 2018, 61, 2611–2635. 10.1021/acs.jmedchem.6b01153. PubMed DOI
Adach W.; Olas B. Carbon Monoxide and Its Donors – Their Implications for Medicine. Future Med. Chem. 2019, 11, 61–73. 10.4155/fmc-2018-0215. PubMed DOI
Ford P. C. Metal Complex Strategies for Photo-Uncaging the Small Molecule Bioregulators Nitric Oxide and Carbon Monoxide. Coord. Chem. Rev. 2018, 376, 548–564. 10.1016/j.ccr.2018.07.018. DOI
Dichiarante V.; Bergamaschi G.. Photochemistry of Transition Metal Complexes (2017–2018). Photochemistry; The Royal Society of Chemistry, 2020; Vol. 47.
Nguyen D.; Boyer C. Macromolecular and Inorganic Nanomaterials Scaffolds for Carbon Monoxide Delivery: Recent Developments and Future Trends. ACS Biomater. Sci. Eng. 2015, 1, 895–913. 10.1021/acsbiomaterials.5b00230. PubMed DOI
Lee L. C.-C.; Leung K.-K.; Lo K. K.-W. Recent Development of Luminescent Rhenium(I) Tricarbonyl Polypyridine Complexes as Cellular Imaging Reagents, Anticancer Drugs, and Antibacterial Agents. Dalton Trans. 2017, 46, 16357–16380. 10.1039/C7DT03465B. PubMed DOI
Soboleva T.; Berreau L. M. Tracking CO Release in Cells via the Luminescence of Donor Molecules and/or their By-Products. Isr. J. Chem. 2019, 59, 339–350. 10.1002/ijch.201800172. PubMed DOI PMC
Vorobev A. Y.; Moskalensky A. E. Long-Wavelength Photoremovable Protecting Groups: On the Way to in Vivo Application. Comput. Struct. Biotechnol. J. 2020, 18, 27–34. 10.1016/j.csbj.2019.11.007. PubMed DOI PMC
Rong F.; Tang Y.; Wang T.; Feng T.; Song J.; Li P.; Huang W. Nitric Oxide-Releasing Polymeric Materials for Antimicrobial Applications: A Review. Antioxidants 2019, 8, 556.10.3390/antiox8110556. PubMed DOI PMC
Hotta Y.; Kataoka T.; Mori T.; Kimura K. Review of a Potential Novel Approach for Erectile Dysfunction: Light-Controllable Nitric Oxide Donors and Nanoformulations. Sex. Med. Rev. 2020, 8, 297–302. 10.1016/j.sxmr.2019.05.006. PubMed DOI
Midgley A. C.; Wei Y.; Li Z.; Kong D.; Zhao Q. Nitric-Oxide-Releasing Biomaterial Regulation of the Stem Cell Microenvironment in Regenerative Medicine. Adv. Mater. 2020, 32, 1805818.10.1002/adma.201805818. PubMed DOI
Pierri A. E.; Muizzi D. A.; Ostrowski A. D.; Ford P. C.. Photo-Controlled Release of NO and CO with Inorganic and Organometallic Complexes. Luminescent and Photoactive Transition Metal Complexes as Biomolecular Probes and Cellular Reagents; Lo K. K. W., Ed.; Springer-Verlag Berlin: Berlin, 2015; Vol. 165.
Mir J. M.; Malik B. A.; Maurya R. C. Nitric Oxide-Releasing Molecules at the Interface of Inorganic Chemistry and Biology: a Concise Overview. Rev. Inorg. Chem. 2019, 39, 91–112. 10.1515/revic-2018-0017. DOI
Xiao P.; Zhang J.; Zhao J.; Stenzel M. H. Light-Induced Release of Molecules From Polymers. Prog. Polym. Sci. 2017, 74, 1–33. 10.1016/j.progpolymsci.2017.06.002. DOI
Nakagawa H. Photo-Controlled Release of Small Signaling Molecules to Induce Biological Responses. Chem. Rec. 2018, 18, 1708–1716. 10.1002/tcr.201800035. PubMed DOI
Powell C. R.; Dillon K. M.; Matson J. B. A Review of Hydrogen Sulfide (H2S) Donors: Chemistry and Potential Therapeutic Applications. Biochem. Pharmacol. 2018, 149, 110–123. 10.1016/j.bcp.2017.11.014. PubMed DOI PMC
Zheng Y.; Ji X.; Ji K.; Wang B. Hydrogen Sulfide Prodrugs—A Review. Acta Pharm. Sin. B 2015, 5, 367–377. 10.1016/j.apsb.2015.06.004. PubMed DOI PMC
Schatzschneider U. Photoactivated Biological Activity of Transition-Metal Complexes. Eur. J. Inorg. Chem. 2010, 2010, 1451–1467. 10.1002/ejic.201000003. DOI
Katz J. S.; Burdick J. A. Light-Responsive Biomaterials: Development and Applications. Macromol. Biosci. 2010, 10, 339–348. 10.1002/mabi.200900297. PubMed DOI
Givens R. S.; Conrad P. G. I.; Yousef A. L.; Lee J.-I.. Photoremovable Protecting Groups; In CRC Handbook of Organic Photochemistry and Photobiology, 2nd ed.; CRC Press: Boca Raton, 2004.
Goeldner M.; Givens R. S.. Dynamic Studies in Biology; Wiley-VCH: Weinheim, Germany, 2006.
Mayer G.; Heckel A. Biologically Active Molecules with a “Light Switch. Angew. Chem., Int. Ed. 2006, 45, 4900–4921. 10.1002/anie.200600387. PubMed DOI
Pelliccioli A. P.; Wirz J. Photoremovable Protecting Groups: Reaction Mechanisms and Applications. Photochem. Photobiol. Sci. 2002, 1, 441–458. 10.1039/b200777k. PubMed DOI
Cheong W. F.; Prahl S. A.; Welch A. J. A Review of the Optical Properties of Biological Tissues. IEEE J. Quantum Electron. 1990, 26, 2166–2185. 10.1109/3.64354. DOI
Tuchin V. V. Light Scattering Study of Tissues. Phys.-Usp. 1997, 40, 495–515. 10.1070/PU1997v040n05ABEH000236. DOI
Tuchin V. V.Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics; SPIE Press: Bellingham, 2015.
Mang R.; Stege H.; Krutmann J.. Mechanisms of Phototoxic and Photoallergic Reactions; In Contact Dermatitis; Frosch P. J., Menné T., Lepoittevin J. P., Eds.; Springer: Berlin, Heidelberg, 2006.
Kim K.; Park H.; Lim K.-M. Phototoxicity: Its Mechanism and Animal Alternative Test Methods. Toxicol. Res. 2015, 31, 97–104. 10.5487/TR.2015.31.2.097. PubMed DOI PMC
Glickman R. D. Ultraviolet Phototoxicity to the Retina. Eye Contact Lens 2011, 37, 196–205. 10.1097/ICL.0b013e31821e45a9. PubMed DOI
Lim Y. T.; Kim S.; Nakayama A.; Stott N. E.; Bawendi M. G.; Frangioni J. V. Selection of Quantum Dot Wavelengths for Biomedical Assays and Imaging. Mol. Imaging 2003, 2, 50–64. 10.1162/153535003765276282. PubMed DOI
Weissleder R. A Clearer Vision for in Vivo Imaging. Nat. Biotechnol. 2001, 19, 316–317. 10.1038/86684. PubMed DOI
Juzenas P.; Juzeniene A.; Kaalhus O.; Iani V.; Moan J. Noninvasive Fluorescence Excitation Spectroscopy during Application of 5-Aminolevulinic Acid in Vivo. Photochem. Photobiol. Sci. 2002, 1, 745–748. 10.1039/b203459j. PubMed DOI
Bashkatov A. N.; Genina E. A.; Kochubey V. I.; Tuchin V. V. Optical Properties of Human Skin, Subcutaneous and Mucous Tissues in the Wavelength Range from 400 to 2000nm. J. Phys. D: Appl. Phys. 2005, 38, 2543–2555. 10.1088/0022-3727/38/15/004. DOI
Ruskowitz E. R.; DeForest C. A. Photoresponsive Biomaterials for Targeted Drug Delivery and 4D Cell Culture. Nat. Rev. Mater. 2018, 3, 17087.10.1038/natrevmats.2017.87. DOI
Rwei A. Y.; Wang W.; Kohane D. S. Photoresponsive Nanoparticles for Drug Delivery. Nano Today 2015, 10, 451–467. 10.1016/j.nantod.2015.06.004. PubMed DOI PMC
van Straten D.; Mashayekhi V.; de Bruijn H. S.; Oliveira S.; Robinson D. J. Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions. Cancers 2017, 9, 19.10.3390/cancers9020019. PubMed DOI PMC
dos Santos A. F.; de Almeida D. R. Q.; Terra L. F.; Baptista M. S.; Labriola L. Photodynamic Therapy in Cancer Treatment - An Update Review. J. Cancer Metastasis Treat. 2019, 5, 25.10.20517/2394-4722.2018.83. DOI
Baskaran R.; Lee J.; Yang S.-G. Clinical Development of Photodynamic Agents and Therapeutic Applications. Biomater. Res. 2018, 22, 25.10.1186/s40824-018-0140-z. PubMed DOI PMC
Gursoy H.; Ozcakir-Tomruk C.; Tanalp J.; Yılmaz S. Photodynamic Therapy in Dentistry: A Literature Review. Clin. Oral Investig. 2013, 17, 1113–1125. 10.1007/s00784-012-0845-7. PubMed DOI
Maisch T.; Szeimies R.-M.; Jori G.; Abels C. Antibacterial Photodynamic Therapy in Dermatology. Photochem. Photobiol. Sci. 2004, 3, 907–917. 10.1039/b407622b. PubMed DOI
Klán P.; Wirz J.. Photochemistry of Organic Compounds: From Concepts to Practice, 1st ed.; John Wiley & Sons Ltd.: Chichester, 2009.
Bochet C. G. Wavelength-Selective Cleavage of Photolabile Protecting Groups. Tetrahedron Lett. 2000, 41, 6341–6346. 10.1016/S0040-4039(00)01050-9. DOI
Bochet C. G. Orthogonal Photolysis of Protecting Groups. Angew. Chem., Int. Ed. 2001, 40, 2071–2073. 10.1002/1521-3773(20010601)40:11<2071::AID-ANIE2071>3.0.CO;2-9. PubMed DOI
Kammari L.; Šolomek T.; Ngoy B. P.; Heger D.; Klán P. Orthogonal Photocleavage of a Monochromophoric Linker. J. Am. Chem. Soc. 2010, 132, 11431–11433. 10.1021/ja1047736. PubMed DOI
Olson J. P.; Banghart M. R.; Sabatini B. L.; Ellis-Davies G. C. R. Spectral Evolution of a Photochemical Protecting Group for Orthogonal Two-Color Uncaging with Visible Light. J. Am. Chem. Soc. 2013, 135, 15948–15954. 10.1021/ja408225k. PubMed DOI PMC
Stanton-Humphreys M. N.; Taylor R. D. T.; McDougall C.; Hart M. L.; Brown C. T. A.; Emptage N. J.; Conway S. J. Wavelength-Orthogonal Photolysis of Neurotransmitters in Vitro. Chem. Commun. 2012, 48, 657–659. 10.1039/C1CC15135E. PubMed DOI
Rodrigues-Correia A.; Weyel X. M. M.; Heckel A. Four Levels of Wavelength-Selective Uncaging for Oligonucleotides. Org. Lett. 2013, 15, 5500–5503. 10.1021/ol402657j. PubMed DOI
Menge C.; Heckel A. Coumarin-Caged dG for Improved Wavelength-Selective Uncaging of DNA. Org. Lett. 2011, 13, 4620–4623. 10.1021/ol201842x. PubMed DOI
Morihiro K.; Kodama T.; Mori S.; Tsunoda S.; Obika S. Wavelength-Selective Light-Triggered Strand Exchange Reaction. Org. Biomol. Chem. 2016, 14, 1555–1558. 10.1039/C5OB02369F. PubMed DOI
Hoorens M. W. H.; Szymanski W. Reversible, Spatial and Temporal Control over Protein Activity Using Light. Trends Biochem. Sci. 2018, 43, 567–575. 10.1016/j.tibs.2018.05.004. PubMed DOI
Li J.; Kong H.; Zhu C.; Zhang Y. Photo-Controllable Bioorthogonal Chemistry for Spatiotemporal Control of Bio-Targets in Living Systems. Chem. Sci. 2020, 11, 3390–3396. 10.1039/C9SC06540G. PubMed DOI PMC
Protti S.; Ravelli D.; Fagnoni M. Wavelength Dependence and Wavelength Selectivity in Photochemical Reactions. Photochem. Photobiol. Sci. 2019, 18, 2094–2101. 10.1039/C8PP00512E. PubMed DOI
Warther D.; Gug S.; Specht A.; Bolze F.; Nicoud J. F.; Mourot A.; Goeldner M. Two-Photon Uncaging: New Prospects in Neuroscience and Cellular Biology. Bioorg. Med. Chem. 2010, 18, 7753–7758. 10.1016/j.bmc.2010.04.084. PubMed DOI
Milburn T.; Matsubara N.; Billington A. P.; Udgaonkar J. B.; Walker J. W.; Carpenter B. K.; Webb W. W.; Marque J.; Denk W. Synthesis, Photochemistry, and Biological Activity of a Caged Photolabile Acetylcholine Receptor Ligand. Biochemistry 1989, 28, 49–55. 10.1021/bi00427a008. PubMed DOI
Berroy P.; Viriot M. L.; Carré M. C. Photolabile Group for 5′-OH Protection of Nucleosides: Synthesis and Photodeprotection Rate. Sens. Actuators, B 2001, 74, 186–189. 10.1016/S0925-4005(00)00731-0. DOI
Bader T. K.; Xu F.; Hodny M. H.; Blank D. A.; Distefano M. D. Methoxy-Substituted Nitrodibenzofuran-Based Protecting Group with an Improved Two-Photon Action Cross-Section for Thiol Protection in Solid Phase Peptide Synthesis. J. Org. Chem. 2020, 85, 1614–1625. 10.1021/acs.joc.9b02751. PubMed DOI PMC
Donato L.; Mourot A.; Davenport C. M.; Herbivo C.; Warther D.; Léonard J.; Bolze F.; Nicoud J.-F.; Kramer R. H.; Goeldner M.; Specht A. Water-Soluble, Donor-Acceptor Biphenyl Derivatives in the 2-(o-Nitrophenyl)propyl Series: Highly Efficient Two-Photon Uncaging of the Neurotransmitter γ-Aminobutyric Acid at λ = 800 nm. Angew. Chem., Int. Ed. 2012, 51, 1840–1843. 10.1002/anie.201106559. PubMed DOI PMC
Boinapally S.; Huang B.; Abe M.; Katan C.; Noguchi J.; Watanabe S.; Kasai H.; Xue B.; Kobayashi T. Caged Glutamates with π-Extended 1,2-Dihydronaphthalene Chromophore: Design, Synthesis, Two-Photon Absorption Property, and Photochemical Reactivity. J. Org. Chem. 2014, 79, 7822–7830. 10.1021/jo501425p. PubMed DOI
Barltrop J.; Plant P.; Schofield P. Photosensitive Protective Groups. Chem. Commun. 1966, 822–823. 10.1039/c19660000822. DOI
Corrie J. E. T.; Barth A.; Munasinghe V. R. N.; Trentham D. R.; Hutter M. C. Photolytic Cleavage of 1-(2-Nitrophenyl)ethyl Ethers Involves Two Parallel Pathways and Product Release Is Rate-Limited by Decomposition of a Common Hemiacetal Intermediate. J. Am. Chem. Soc. 2003, 125, 8546–8554. 10.1021/ja034354c. PubMed DOI
Dunkin I. R.; Gebicki J.; Kiszka M.; Sanín-Leira D. Phototautomerism of o-Nitrobenzyl Compounds: o-Quinonoid Aci-Nitro Species Studied by Matrix Isolation and DFT Calculations. J. Chem. Soc. Perk. T. 2001, 2, 1414–1425. 10.1039/b009630j. DOI
Dunkin I. R.; Gebicki J.; Kiszka M.; Sanín-Leira D. The Matrix-Isolation IR Spectrum of the o-Quinonoid Intermediate in the Photolysis of 2-Nitrobenzyl Methyl Ether. Spectrochim. Acta, Part A 1997, 53, 2553–2557. 10.1016/S1386-1425(97)00186-8. DOI
Il’ichev Y. V.; Schwörer M. A.; Wirz J. Photochemical Reaction Mechanisms of 2-Nitrobenzyl Compounds: Methyl Ethers and Caged ATP. J. Am. Chem. Soc. 2004, 126, 4581–4595. 10.1021/ja039071z. PubMed DOI
Il’ichev Y. V.; Wirz J. Rearrangements of 2-Nitrobenzyl Compounds. 1. Potential Energy Surface of 2-Nitrotoluene and Its Isomers Explored with ab Initio and Density Functional Theory Methods. J. Phys. Chem. A 2000, 104, 7856–7870. 10.1021/jp000261v. DOI
Walker J. W.; Reid G. P.; McCray J. A.; Trentham D. R. Photolabile 1-(2-Nitrophenyl)ethyl Phosphate Esters of Adenine Nucleotide Analogs. Synthesis and Mechanism of Photolysis. J. Am. Chem. Soc. 1988, 110, 7170–7177. 10.1021/ja00229a036. DOI
Engels J.; Schlaeger E. J. Synthesis, Structure, and Reactivity of Adenosine Cyclic 3′,5′-Phosphate Benzyl Triesters. J. Med. Chem. 1977, 20, 907–911. 10.1021/jm00217a008. PubMed DOI
Bayley H.; Chang C.-Y.; Todd Miller W.; Niblack B.; Pan P.. Caged Peptides and Proteins by Targeted Chemical Modification. Methods Enzymol.; Academic Press, 1998; Vol. 291. PubMed
Aujard I.; Benbrahim C.; Gouget M.; Ruel O.; Baudin J.-B.; Neveu P.; Jullien L. o-Nitrobenzyl Photolabile Protecting Groups with Red-Shifted Absorption: Syntheses and Uncaging Cross-Sections for One- and Two-Photon Excitation. Chem. - Eur. J. 2006, 12, 6865–6879. 10.1002/chem.200501393. PubMed DOI
Kaplan J. H.; Ellis-Davies G. C. Photolabile Chelators for the Rapid Photorelease of Divalent Cations. Proc. Natl. Acad. Sci. U. S. A. 1988, 85, 6571–6575. 10.1073/pnas.85.17.6571. PubMed DOI PMC
Furuta T.; Wang S. S.; Dantzker J. L.; Dore T. M.; Bybee W. J.; Callaway E. M.; Denk W.; Tsien R. Y. Brominated 7-Hydroxycoumarin-4-ylmethyls: Photolabile Protecting Groups with Biologically Useful Cross-Sections for Two Photon Photolysis. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 1193–1200. 10.1073/pnas.96.4.1193. PubMed DOI PMC
Reichmanis E.; Gooden R.; Wilkins C. W. Jr.; Schonhorn H. A Study of the Photochemical Response of o-Nitrobenzyl Cholate Derivatives in P(MMA-MAA) Matrices. J. Polym. Sci., Polym. Chem. Ed. 1983, 21, 1075–1083. 10.1002/pol.1983.170210415. DOI
Reichmanis E.; Smith B. C.; Gooden R. o-Nitrobenzyl Photochemistry: Solution vs. Solid-State Behavior. J. Polym. Sci., Polym. Chem. Ed. 1985, 23, 1–8. 10.1002/pol.1985.170230101. DOI
Adams S. R.; Kao J. P. Y.; Grynkiewicz G.; Minta A.; Tsien R. Y. Biologically Useful Chelators That Release Ca2+ Upon Illumination. J. Am. Chem. Soc. 1988, 110, 3212–3220. 10.1021/ja00218a034. DOI
Pease A. C.; Solas D.; Sullivan E. J.; Cronin M. T.; Holmes C. P.; Fodor S. P. Light-Generated Oligonucleotide Arrays for Rapid DNA Sequence Analysis. Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 5022–5026. 10.1073/pnas.91.11.5022. PubMed DOI PMC
Hasan A.; Stengele K.-P.; Giegrich H.; Cornwell P.; Isham K. R.; Sachleben R. A.; Pfleiderer W.; Foote R. S. Photolabile Protecting Groups for Nucleosides: Synthesis and Photodeprotection Rates. Tetrahedron 1997, 53, 4247–4264. 10.1016/S0040-4020(97)00154-3. DOI
Wöll D.; Walbert S.; Stengele K.-P.; Albert T. J.; Richmond T.; Norton J.; Singer M.; Green R. D.; Pfleiderer W.; Steiner U. E. Triplet-Sensitized Photodeprotection of Oligonucleotides in Solution and on Microarray Chips. Helv. Chim. Acta 2004, 87, 28–45. 10.1002/hlca.200490015. DOI
Momotake A.; Lindegger N.; Niggli E.; Barsotti R. J.; Ellis-Davies G. C. R. The Nitrodibenzofuran Chromophore: A New Caging Group for Ultra-Efficient Photolysis in Living Cells. Nat. Methods 2006, 3, 35–40. 10.1038/nmeth821. PubMed DOI
Kantevari S.; Buskila Y.; Ellis-Davies G. C. R. Synthesis and Characterization of Cell-Permeant 6-Nitrodibenzofuranyl-Caged IP3. Photochem. Photobiol. Sci. 2012, 11, 508–513. 10.1039/C1PP05155E. PubMed DOI PMC
Becker Y.; Unger E.; Fichte M. A. H.; Gacek D. A.; Dreuw A.; Wachtveitl J.; Walla P. J.; Heckel A. A Red-Shifted Two-Photon-Only Caging Group for Three-Dimensional Photorelease. Chem. Sci. 2018, 9, 2797–2802. 10.1039/C7SC05182D. PubMed DOI PMC
Schäfer F.; Joshi K. B.; Fichte M. A. H.; Mack T.; Wachtveitl J.; Heckel A. Wavelength-Selective Uncaging of dA and dC Residues. Org. Lett. 2011, 13, 1450–1453. 10.1021/ol200141v. PubMed DOI
Kennedy D. P.; Brown D. C.; Burdette S. C. Probing Nitrobenzhydrol Uncaging Mechanisms Using FerriCast. Org. Lett. 2010, 12, 4486–4489. 10.1021/ol101726a. PubMed DOI
Mahmoodi M. M.; Abate-Pella D.; Pundsack T. J.; Palsuledesai C. C.; Goff P. C.; Blank D. A.; Distefano M. D. Nitrodibenzofuran: A One- and Two-Photon Sensitive Protecting Group That Is Superior to Brominated Hydroxycoumarin for Thiol Caging in Peptides. J. Am. Chem. Soc. 2016, 138, 5848–5859. 10.1021/jacs.5b11759. PubMed DOI PMC
Sõrmus T.; Lavogina D.; Enkvist E.; Uri A.; Viht K. Efficient Photocaging of a Tight-Binding Bisubstrate Inhibitor of cAMP-Dependent Protein Kinase. Chem. Commun. 2019, 55, 11147–11150. 10.1039/C9CC04978A. PubMed DOI
Riguet E.; Bochet C. G. New Safety-Catch Photolabile Protecting Group. Org. Lett. 2007, 9, 5453–5456. 10.1021/ol702327c. PubMed DOI
Mangubat-Medina A. E.; Trial H. O.; Vargas R. D.; Setegne M. T.; Bader T.; Distefano M. D.; Ball Z. T. Red-Shifted Backbone N–H Photocaging Agents. Org. Biomol. Chem. 2020, 18, 5110–5114. 10.1039/D0OB00923G. PubMed DOI
Bühler S.; Lagoja I.; Giegrich H.; Stengele K.-P.; Pfleiderer W. New Types of Very Efficient Photolabile Protecting Groups Based upon the [2-(2-Nitrophenyl)propoxy]carbonyl (NPPOC) Moiety. Helv. Chim. Acta 2004, 87, 620–659. 10.1002/hlca.200490060. DOI
Singh A. K.; Khade P. K. Synthesis and Photochemical Properties of Nitro-Naphthyl Chromophore and the Corresponding Immunoglobulin Bioconjugate. Bioconjugate Chem. 2002, 13, 1286–1291. 10.1021/bc020021d. PubMed DOI
Singh A. K.; Khade P. K. 7-Methoxy-3-nitro-2-naphthalenemethanol—A New Phototrigger for Caging Applications. Tetrahedron Lett. 2011, 52, 4899–4902. 10.1016/j.tetlet.2011.07.043. DOI
Takaoka K.; Tatsu Y.; Yumoto N.; Nakajima T.; Shimamoto K. Synthesis and Photoreactivity of Caged Blockers for Glutamate Transporters. Bioorg. Med. Chem. Lett. 2003, 13, 965–970. 10.1016/S0960-894X(02)01042-9. PubMed DOI
Anstaett P.; Pierroz V.; Ferrari S.; Gasser G. Two-Photon Uncageable Enzyme Inhibitors Bearing Targeting Vectors. Photochem. Photobiol. Sci. 2015, 14, 1821–1825. 10.1039/C5PP00245A. PubMed DOI
Liu W.; Liang L.; Lo P. K.; Gou X. J.; Sun X. H. A Double Branched Photosensitive Prodrug: Synthesis and Characterization of Light Triggered Drug Release. Tetrahedron Lett. 2016, 57, 959–963. 10.1016/j.tetlet.2016.01.064. DOI
Abou Nakad E.; Bolze F.; Specht A. o-Nitrobenzyl Photoremovable Groups with Fluorescence Uncaging Reporting Properties. Org. Biomol. Chem. 2018, 16, 6115–6122. 10.1039/C8OB01330F. PubMed DOI
Jakkampudi S.; Abe M.; Komori N.; Takagi R.; Furukawa K.; Katan C.; Sawada W.; Takahashi N.; Kasai H. Design and Synthesis of a 4-Nitrobromobenzene Derivative Bearing an Ethylene Glycol Tetraacetic Acid Unit for a New Generation of Caged Calcium Compounds with Two-Photon Absorption Properties in the Near-IR Region and Their Application in Vivo. ACS Omega 2016, 1, 193–201. 10.1021/acsomega.6b00119. PubMed DOI PMC
Bao C.; Jin M.; Li B.; Xu Y.; Jin J.; Zhu L. Long Conjugated 2-Nitrobenzyl Derivative Caged Anticancer Prodrugs with Visible Light Regulated Release: Preparation and Functionalizations. Org. Biomol. Chem. 2012, 10, 5238–5244. 10.1039/c2ob25701g. PubMed DOI
Jin M.; Xu H.; Hong H.; Bao C.; Pu H.; Wan D.; Zhu L. Micropatterning of Polymethacrylates by Single- or Two-Photon Irradiation Using π-Conjugated o-Nitrobenzyl Ester Phototrigger as Side Chains. J. Appl. Polym. Sci. 2013, 130, 4099–4106. 10.1002/app.39683. DOI
Thapaliya E. R.; Mazza M. M. A.; Cusido J.; Baker J. D.; Raymo F. M. A Synthetic Strategy for the Structural Modification of Photoactivatable BODIPY-Oxazine Dyads. ChemPhotoChem. 2020, 4, 332–337. 10.1002/cptc.201900276. DOI
Dyck R. H.; McClure D. S. Ultraviolet Spectra of Stilbene, p-Monohalogen Stilbenes, and Azobenzene and the trans to cis Photoisomerization Process. J. Chem. Phys. 1962, 36, 2326–2345. 10.1063/1.1732885. DOI
Malkin S.; Fischer E. Temperature Dependence of Photoisomerization. Part II. Quantum Yields of cis ⇆ trans Isomerization in Azo-Compounds. J. Phys. Chem. 1962, 66, 2482–2486. 10.1021/j100818a038. DOI
Waldeck D. H. Photoisomerization Dynamics of Stilbenes. Chem. Rev. 1991, 91, 415–436. 10.1021/cr00003a007. DOI
Komori N.; Jakkampudi S.; Motoishi R.; Abe M.; Kamada K.; Furukawa K.; Katan C.; Sawada W.; Takahashi N.; Kasai H.; Xue B.; Kobayashi T. Design and Synthesis of a New Chromophore, 2-(4-Nitrophenyl)benzofuran, for Two-Photon Uncaging Using Near-IR Light. Chem. Commun. 2016, 52, 331–334. 10.1039/C5CC07664A. PubMed DOI
Maurits E.; van de Graaff M. J.; Maiorana S.; Wander D. P. A.; Dekker P. M.; van der Zanden S. Y.; Florea B. I.; Neefjes J. J. C.; Overkleeft H. S.; van Kasteren S. I. Immunoproteasome Inhibitor–Doxorubicin Conjugates Target Multiple Myeloma Cells and Release Doxorubicin upon Low-Dose Photon Irradiation. J. Am. Chem. Soc. 2020, 142, 7250–7253. 10.1021/jacs.9b11969. PubMed DOI PMC
Paul A.; Jana A.; Karthik S.; Bera M.; Zhao Y.; Singh N. D. P. Photoresponsive Real Time Monitoring Silicon Quantum Dots for Regulated Delivery of Anticancer Drugs. J. Mater. Chem. B 2016, 4, 521–528. 10.1039/C5TB02045J. PubMed DOI
Wang W.; Liu Q.; Zhan C.; Barhoumi A.; Yang T.; Wylie R. G.; Armstrong P. A.; Kohane D. S. Efficient Triplet–Triplet Annihilation-Based Upconversion for Nanoparticle Phototargeting. Nano Lett. 2015, 15, 6332–6338. 10.1021/acs.nanolett.5b01325. PubMed DOI
Yan B.; Boyer J.-C.; Branda N. R.; Zhao Y. Near-Infrared Light-Triggered Dissociation of Block Copolymer Micelles Using Upconverting Nanoparticles. J. Am. Chem. Soc. 2011, 133, 19714–19717. 10.1021/ja209793b. PubMed DOI
Yan B.; Boyer J.-C.; Habault D.; Branda N. R.; Zhao Y. Near Infrared Light Triggered Release of Biomacromolecules from Hydrogels Loaded with Upconversion Nanoparticles. J. Am. Chem. Soc. 2012, 134, 16558–16561. 10.1021/ja308876j. PubMed DOI
Zhang Y.; Lu G.; Yu Y.; Zhang H.; Gao J.; Sun Z.; Lu Y.; Zou H. NIR-Responsive Copolymer Upconversion Nanocomposites for Triggered Drug Release in Vitro and in Vivo. ACS Applied Bio Materials 2019, 2, 495–503. 10.1021/acsabm.8b00681. PubMed DOI
Yang Y.; Liu F.; Liu X.; Xing B. NIR Light Controlled Photorelease of SiRNA and Its Targeted Intracellular Delivery Based on Upconversion Nanoparticles. Nanoscale 2013, 5, 231–238. 10.1039/C2NR32835F. PubMed DOI
Yang Y.; Velmurugan B.; Liu X.; Xing B. NIR Photoresponsive Crosslinked Upconverting Nanocarriers Toward Selective Intracellular Drug Release. Small 2013, 9, 2937–2944. 10.1002/smll.201201765. PubMed DOI
Ballister E. R.; Aonbangkhen C.; Mayo A. M.; Lampson M. A.; Chenoweth D. M. Localized Light-Induced Protein Dimerization in Living Cells Using a Photocaged Dimerizer. Nat. Commun. 2014, 5, 5475.10.1038/ncomms6475. PubMed DOI PMC
Koehler M.; Lo Giudice C.; Vogl P.; Ebner A.; Hinterdorfer P.; Gruber H. J.; Alsteens D. Control of Ligand-Binding Specificity Using Photocleavable Linkers in AFM Force Spectroscopy. Nano Lett. 2020, 20, 4038–4042. 10.1021/acs.nanolett.0c01426. PubMed DOI PMC
Yu C.; Schimelman J.; Wang P.; Miller K. L.; Ma X.; You S.; Guan J.; Sun B.; Zhu W.; Chen S. Photopolymerizable Biomaterials and Light-Based 3D Printing Strategies for Biomedical Applications. Chem. Rev. 2020, 120, 10695–10743. 10.1021/acs.chemrev.9b00810. PubMed DOI PMC
Hentzen N. B.; Mogaki R.; Otake S.; Okuro K.; Aida T. Intracellular Photoactivation of Caspase-3 by Molecular Glues for Spatiotemporal Apoptosis Induction. J. Am. Chem. Soc. 2020, 142, 8080–8084. 10.1021/jacs.0c01823. PubMed DOI
Jedlitzke B.; Yilmaz Z.; Dörner W.; Mootz H. D. Photobodies: Light-Activatable Single-Domain Antibody Fragments. Angew. Chem., Int. Ed. 2020, 59, 1506–1510. 10.1002/anie.201912286. PubMed DOI PMC
Wexler S.; Schayek H.; Rajendar K.; Tal I.; Shani E.; Meroz Y.; Dobrovetsky R.; Weinstain R. Characterizing Gibberellin Flow in Planta Using Photocaged Gibberellins. Chem. Sci. 2019, 10, 1500–1505. 10.1039/C8SC04528C. PubMed DOI PMC
Raccuglia D.; Mueller U. Focal Uncaging of GABA Reveals a Temporally Defined Role for Gabaergic Inhibition During Appetitive Associative Olfactory Conditioning in Honeybees. Learn. Mem. 2013, 20, 410–416. 10.1101/lm.030205.112. PubMed DOI
Shao Q.; Jiang T.; Ren G.; Cheng Z.; Xing B. Photoactivable Bioluminescent Probes for Imaging Luciferase Activity. Chem. Commun. 2009, 4028–4030. 10.1039/b908346d. PubMed DOI
Shestopalov I. A.; Sinha S.; Chen J. K. Light-Controlled Gene Silencing in Zebrafish Embryos. Nat. Chem. Biol. 2007, 3, 650–651. 10.1038/nchembio.2007.30. PubMed DOI
Warmutha R.; Grell E.; Lehn J.-M.; Bats J. W.; Quinkert G. Photo-Cleavable Cryptands: Synthesis and Structure. Helv. Chim. Acta 1991, 74, 671–681. 10.1002/hlca.19910740402. DOI
Kolarski D.; Sugiyama A.; Breton G.; Rakers C.; Ono D.; Schulte A.; Tama F.; Itami K.; Szymanski W.; Hirota T.; Feringa B. L. Controlling the Circadian Clock with High Temporal Resolution through Photodosing. J. Am. Chem. Soc. 2019, 141, 15784–15791. 10.1021/jacs.9b05445. PubMed DOI PMC
Zhou W.; Brown W.; Bardhan A.; Delaney M.; Ilk A. S.; Rauen R. R.; Kahn S. I.; Tsang M.; Deiters A. Spatiotemporal Control of CRISPR/Cas9 Function in Cells and Zebrafish using Light-Activated Guide RNA. Angew. Chem., Int. Ed. 2020, 59, 8998–9003. 10.1002/anie.201914575. PubMed DOI PMC
Baker A. S.; Deiters A. Optical Control of Protein Function through Unnatural Amino Acid Mutagenesis and Other Optogenetic Approaches. ACS Chem. Biol. 2014, 9, 1398–1407. 10.1021/cb500176x. PubMed DOI
Courtney T.; Deiters A. Recent Advances in the Optical Control of Protein Function through Genetic Code Expansion. Curr. Opin. Chem. Biol. 2018, 46, 99–107. 10.1016/j.cbpa.2018.07.011. PubMed DOI PMC
Nödling A. R.; Spear L. A.; Williams T. L.; Luk L. Y. P.; Tsai Y.-H. Using Genetically Incorporated Unnatural Amino Acids to Control Protein Functions in Mammalian Cells. Essays Biochem. 2019, 63, 237–266. 10.1042/EBC20180042. PubMed DOI PMC
Agarwal H. K.; Janicek R.; Chi S.-H.; Perry J. W.; Niggli E.; Ellis-Davies G. C. R. Calcium Uncaging with Visible Light. J. Am. Chem. Soc. 2016, 138, 3687–3693. 10.1021/jacs.5b11606. PubMed DOI PMC
Basa P. N.; Antala S.; Dempski R. E.; Burdette S. C. A Zinc(II) Photocage Based on a Decarboxylation Metal Ion Release Mechanism for Investigating Homeostasis and Biological Signaling. Angew. Chem., Int. Ed. 2015, 54, 13027–13031. 10.1002/anie.201505778. PubMed DOI PMC
Ciesienski K. L.; Haas K. L.; Dickens M. G.; Tesema Y. T.; Franz K. J. A Photolabile Ligand for Light-Activated Release of Caged Copper. J. Am. Chem. Soc. 2008, 130, 12246–12247. 10.1021/ja8047442. PubMed DOI
Richers M. T.; Passlick S.; Agarwal H.; Ellis-Davies G. C. R. Dendrimer Conjugation Enables Multiphoton Chemical Neurophysiology Studies with an Extended π-Electron Caging Chromophore. Angew. Chem., Int. Ed. 2019, 58, 12086–12090. 10.1002/anie.201906067. PubMed DOI PMC
Shigenaga A.; Yamamoto J.; Sumikawa Y.; Furuta T.; Otaka A. Development and Photo-Responsive Peptide Bond Cleavage Reaction of Two-Photon Near-Infrared Excitation-Responsive Peptide. Tetrahedron Lett. 2010, 51, 2868–2871. 10.1016/j.tetlet.2010.03.079. DOI
Kantevari S.; Hoang C. J.; Ogrodnik J.; Egger M.; Niggli E.; Ellis-Davies G. C. R. Synthesis and Two-photon Photolysis of 6-(ortho-Nitroveratryl)-Caged IP3 in Living Cells. ChemBioChem 2006, 7, 174–180. 10.1002/cbic.200500345. PubMed DOI
Neveu P.; Aujard I.; Benbrahim C.; Le Saux T.; Allemand J.-F.; Vriz S.; Bensimon D.; Jullien L. A Caged Retinoic Acid for One- and Two-Photon Excitation in Zebrafish Embryos. Angew. Chem., Int. Ed. 2008, 47, 3744–3746. 10.1002/anie.200800037. PubMed DOI
Shi D. D.; Trigo F. F.; Semmelhack M. F.; Wang S. S. H. Synthesis and Biological Evaluation of Bis-CNB-GABA, a Photoactivatable Neurotransmitter with Low Receptor Interference and Chemical Two-Photon Uncaging Properties. J. Am. Chem. Soc. 2014, 136, 1976–1981. 10.1021/ja411082f. PubMed DOI PMC
Cueto Díaz E. J.; Picard S.; Chevasson V.; Daniel J.; Hugues V.; Mongin O.; Genin E.; Blanchard-Desce M. Cooperative Dyads for Two-Photon Uncaging. Org. Lett. 2015, 17, 102–105. 10.1021/ol5033046. PubMed DOI
Cueto Diaz E.; Picard S.; Klausen M.; Hugues V.; Pagano P.; Genin E.; Blanchard-Desce M. Cooperative Veratryle and Nitroindoline Cages for Two-Photon Uncaging in the NIR. Chem. - Eur. J. 2016, 22, 10848–10859. 10.1002/chem.201601109. PubMed DOI
Giegrich H.; Eisele-Bühler S.; Hermann C.; Kvasyuk E.; Charubala R.; Pfleiderer W. New Photolabile Protecting Groups in Nucleoside and Nucleotide Chemistry—Synthesis, Cleavage Mechanisms and Applications. Nucleosides Nucleotides 1998, 17, 1987–1996. 10.1080/07328319808004738. DOI
Tseng S.-S.; Ullman E. F. Elimination Reactions Induced by Photoenolization of o-Alkylbenzophenones. J. Am. Chem. Soc. 1976, 98, 541–544. 10.1021/ja00418a037. DOI
Atemnkeng W. N.; Louisiana L. D.; Yong P. K.; Vottero B.; Banerjee A. 1-[2-(2-Hydroxyalkyl)phenyl]ethanone: A New Photoremovable Protecting Group for Carboxylic Acids. Org. Lett. 2003, 5, 4469–4471. 10.1021/ol035782q. PubMed DOI
Kamdzhilov Y.; Wirz J. Synthesis and Reaction Mechanism of a Photoremovable Protecting Group Based on 1,4-Naphthoquinone. Photochem. Photobiol. Sci. 2007, 6, 865–872. 10.1039/b706318k. PubMed DOI
Pirrung M. C.; Dore T. M.; Zhu Y.; Rana V. S. Sensitized Two-Photon Photochemical Deprotection. Chem. Commun. 2010, 46, 5313–5315. 10.1039/c0cc00782j. PubMed DOI
Sobczak M.; Wagner P. J. Light-Induced Decarboxylation of (o-Acylphenyl)acetic Acids. Org. Lett. 2002, 4, 379–382. 10.1021/ol0170758. PubMed DOI
Klán P.; Pelliccioli A. P.; Pospíšil T.; Wirz J. 2, 5-Dimethylphenacyl Esters: A Photoremovable Protecting Group for Phosphates and Sulfonic Acids. Photochem. Photobiol. Sci. 2002, 1, 920–923. 10.1039/B208171G. PubMed DOI
Beier M.; Hoheisel J. D. Production by Quantitative Photolithographic Synthesis of Individually Quality Checked DNA Microarrays. Nucleic Acids Res. 2000, 28, e1110.1093/nar/28.4.e11. PubMed DOI PMC
Pirrung M. C.; Wang L.; Montague-Smith M. P. 3’-Nitrophenylpropyloxycarbonyl (NPPOC) Protecting Groups for High-Fidelity Automated 5’ → 3’ Photochemical DNA Synthesis. Org. Lett. 2001, 3, 1105–1108. 10.1021/ol0069150. PubMed DOI
Forsström B.; Axnäs B. B.; Stengele K.-P.; Bühler J.; Albert T. J.; Richmond T. A.; Hu F. J.; Nilsson P.; Hudson E. P.; Rockberg J.; Uhlen M. Proteome-Wide Epitope Mapping of Antibodies Using Ultra-dense Peptide Arrays. Mol. Cell. Proteomics 2014, 13, 1585–1597. 10.1074/mcp.M113.033308. PubMed DOI PMC
Hansen L. B.; Buus S.; Schafer-Nielsen C. Identification and Mapping of Linear Antibody Epitopes in Human Serum Albumin Using High-Density Peptide Arrays. PLoS One 2013, 8, e6890210.1371/journal.pone.0068902. PubMed DOI PMC
Bhushan K. R.; DeLisi C.; Laursen R. A. Synthesis of Photolabile 2-(2-Nitrophenyl)propyloxycarbonyl Protected Amino Acids. Tetrahedron Lett. 2003, 44, 8585–8588. 10.1016/j.tetlet.2003.09.155. DOI
Lackey J. G.; Mitra D.; Somoza M. M.; Cerrina F.; Damha M. J. Acetal Levulinyl Ester (ALE) Groups for 2′-Hydroxyl Protection of Ribonucleosides in the Synthesis of Oligoribonucleotides on Glass and Microarrays. J. Am. Chem. Soc. 2009, 131, 8496–8502. 10.1021/ja9002074. PubMed DOI
Wu C.-H.; Holden M. T.; Smith L. M. Enzymatic Fabrication of High-Density RNA Arrays. Angew. Chem., Int. Ed. 2014, 53, 13514–13517. 10.1002/anie.201408747. PubMed DOI PMC
Franssen-Van Hal N. L. W.; van der Putte P.; Hellmuth K.; Matysiak S.; Kretschy N.; Somoza M. M. Optimized Light-Directed Synthesis of Aptamer Microarrays. Anal. Chem. 2013, 85, 5950–5957. 10.1021/ac400746j. PubMed DOI PMC
Yi H.; Maisonneuve S.; Xie J. Synthesis, Glycosylation and Photolysis of Photolabile 2-(2-Nitrophenyl)propyloxycarbonyl (NPPOC) Protected Glycopyranosides. Org. Biomol. Chem. 2009, 7, 3847–3854. 10.1039/b908404e. PubMed DOI
Wu C.-H.; Lockett M. R.; Smith L. M. RNA-Mediated Gene Assembly from DNA Arrays. Angew. Chem., Int. Ed. 2012, 51, 4628–4632. 10.1002/anie.201109058. PubMed DOI PMC
Specht A.; Thomann J.-S.; Alarcon K.; Wittayanan W.; Ogden D.; Furuta T.; Kurakawa Y.; Goeldner M. New Photoremovable Protecting Groups for Carboxylic Acids with High Photolytic Efficiencies at Near-UV Irradiation. Application to the Photocontrolled Release of L-Glutamate. ChemBioChem 2006, 7, 1690–1695. 10.1002/cbic.200600111. PubMed DOI
Salierno M. J.; García A. J.; del Campo A. Photo-Activatable Surfaces for Cell Migration Assays. Adv. Funct. Mater. 2013, 23, 5974–5980. 10.1002/adfm.201300902. DOI
Lunzer M.; Shi L.; Andriotis O. G.; Gruber P.; Markovic M.; Thurner P. J.; Ossipov D.; Liska R.; Ovsianikov A. A Modular Approach to Sensitized Two-Photon Patterning of Photodegradable Hydrogels. Angew. Chem., Int. Ed. 2018, 57, 15122–15127. 10.1002/anie.201808908. PubMed DOI PMC
Zhang X.; Xi W.; Gao G.; Wang X.; Stansbury J. W.; Bowman C. N. o-Nitrobenzyl-Based Photobase Generators: Efficient Photoinitiators for Visible-Light Induced Thiol-Michael Addition Photopolymerization. ACS Macro Lett. 2018, 7, 852–857. 10.1021/acsmacrolett.8b00435. PubMed DOI
Kretschy N.; Holik A.-K.; Somoza V.; Stengele K.-P.; Somoza M. M. Next-Generation o-Nitrobenzyl Photolabile Groups for Light-Directed Chemistry and Microarray Synthesis. Angew. Chem., Int. Ed. 2015, 54, 8555–8559. 10.1002/anie.201502125. PubMed DOI PMC
Sack M.; Hölz K.; Holik A.-K.; Kretschy N.; Somoza V.; Stengele K.-P.; Somoza M. M. Express Photolithographic DNA Microarray Synthesis with Optimized Chemistry and High-Efficiency Photolabile Groups. J. Nanobiotechnol. 2016, 14, 14.10.1186/s12951-016-0166-0. PubMed DOI PMC
Wöll D.; Smirnova J.; Galetskaya M.; Prykota T.; Bühler J.; Stengele K.-P.; Pfleiderer W.; Steiner U. E. Intramolecular Sensitization of Photocleavage of the Photolabile 2-(2-Nitrophenyl)propoxycarbonyl (NPPOC) Protecting Group: Photoproducts and Photokinetics of the Release of Nucleosides. Chem. - Eur. J. 2008, 14, 6490–6497. 10.1002/chem.200800613. PubMed DOI
Wöll D.; Smirnova J.; Pfleiderer W.; Steiner U. E. Highly Efficient Photolabile Protecting Groups with Intramolecular Energy Transfer. Angew. Chem., Int. Ed. 2006, 45, 2975–2978. 10.1002/anie.200504091. PubMed DOI
Gug S.; Charon S.; Specht A.; Alarcon K.; Ogden D.; Zietz B.; Léonard J.; Haacke S.; Bolze F.; Nicoud J.-F.; Goeldner M. Photolabile Glutamate Protecting Group with High One- and Two-Photon Uncaging Efficiencies. ChemBioChem 2008, 9, 1303–1307. 10.1002/cbic.200700651. PubMed DOI
Specht A.; Bolze F.; Donato L.; Herbivo C.; Charon S.; Warther D.; Gug S.; Nicoud J.-F.; Goeldner M. The Donor–Acceptor Biphenyl Platform: A Versatile Chromophore for the Engineering of Highly Efficient Two-Photon Sensitive Photoremovable Protecting Groups. Photochem. Photobiol. Sci. 2012, 11, 578–586. 10.1039/c2pp05360h. PubMed DOI
Warther D.; Bolze F.; Léonard J.; Gug S.; Specht A.; Puliti D.; Sun X.-H.; Kessler P.; Lutz Y.; Vonesch J.-L.; Winsor B.; Nicoud J.-F.; Goeldner M. Live-Cell One- and Two-Photon Uncaging of a Far-Red Emitting Acridinone Fluorophore. J. Am. Chem. Soc. 2010, 132, 2585–2590. 10.1021/ja9074562. PubMed DOI
Schelkle K. M.; Becht S.; Faraji S.; Petzoldt M.; Müllen K.; Buckup T.; Dreuw A.; Motzkus M.; Hamburger M. Emission Turn-On and Solubility Turn-Off in Conjugated Polymers: One- and Two-Photon-Induced Removal of Fluorescence-Quenching Solubilizing Groups. Macromol. Rapid Commun. 2015, 36, 31–37. 10.1002/marc.201400562. PubMed DOI
Leonidova A.; Anstaett P.; Pierroz V.; Mari C.; Spingler B.; Ferrari S.; Gasser G. Induction of Cytotoxicity through Photorelease of Aminoferrocene. Inorg. Chem. 2015, 54, 9740–9748. 10.1021/acs.inorgchem.5b01332. PubMed DOI
Farrukh A.; Paez J. I.; del Campo A. 4D Biomaterials for Light-Guided Angiogenesis. Adv. Funct. Mater. 2019, 29, 1807734.10.1002/adfm.201807734. DOI
García-Fernández L.; Herbivo C.; Arranz V. S. M.; Warther D.; Donato L.; Specht A.; del Campo A. Dual Photosensitive Polymers with Wavelength-Selective Photoresponse. Adv. Mater. 2014, 26, 5012–5017. 10.1002/adma.201401290. PubMed DOI
Carling C.-J.; Viger M. L.; Nguyen Huu V. A.; Garcia A. V.; Almutairi A. In Vivo Visible Light-Triggered Drug Release From an Implanted Depot. Chem. Sci. 2015, 6, 335–341. 10.1039/C4SC02651A. PubMed DOI PMC
Farrukh A.; Fan W.; Zhao S.; Salierno M.; Paez J. I.; del Campo A. Photoactivatable Adhesive Ligands for Light-Guided Neuronal Growth. ChemBioChem 2018, 19, 1271–1279. 10.1002/cbic.201800118. PubMed DOI
Goegan B.; Terzi F.; Bolze F.; Cambridge S.; Specht A. Synthesis and Characterization of Photoactivatable Doxycycline Analogues Bearing Two-Photon-Sensitive Photoremovable Groups Suitable for Light-Induced Gene Expression. ChemBioChem 2018, 19, 1341–1348. 10.1002/cbic.201700628. PubMed DOI
Farrukh A.; Zhao S.; Paez J. I.; Kavyanifar A.; Salierno M.; Cavalié A.; del Campo A. In Situ, Light-Guided Axon Growth on Biomaterials via Photoactivatable Laminin Peptidomimetic IK(HANBP)VAV. ACS Appl. Mater. Interfaces 2018, 10, 41129–41137. 10.1021/acsami.8b15517. PubMed DOI
Fichte M. A. H.; Weyel X. M. M.; Junek S.; Schäfer F.; Herbivo C.; Goeldner M.; Specht A.; Wachtveitl J.; Heckel A. Three-Dimensional Control of DNA Hybridization by Orthogonal Two-Color Two-Photon Uncaging. Angew. Chem., Int. Ed. 2016, 55, 8948–8952. 10.1002/anie.201603281. PubMed DOI
Herbivo C.; Omran Z.; Revol J.; Javot H.; Specht A. Synthesis and Characterization of Cell-Permeable Caged Phosphates that Can Be Photolyzed by Visible Light or 800 nm Two-Photon Photolysis. ChemBioChem 2013, 14, 2277–2283. 10.1002/cbic.201300425. PubMed DOI
Gug S.; Bolze F.; Specht A.; Bourgogne C.; Goeldner M.; Nicoud J.-F. Molecular Engineering of Photoremovable Protecting Groups for Two-Photon Uncaging. Angew. Chem., Int. Ed. 2008, 47, 9525–9529. 10.1002/anie.200803964. PubMed DOI
Schelkle K. M.; Griesbaum T.; Ollech D.; Becht S.; Buckup T.; Hamburger M.; Wombacher R. Light-Induced Protein Dimerization by One- and Two-Photon Activation of Gibberellic Acid Derivatives in Living Cells. Angew. Chem., Int. Ed. 2015, 54, 2825–2829. 10.1002/anie.201409196. PubMed DOI
Lin Y.-C.; Nihongaki Y.; Liu T.-Y.; Razavi S.; Sato M.; Inoue T. Rapidly Reversible Manipulation of Molecular Activity with Dual Chemical Dimerizers. Angew. Chem., Int. Ed. 2013, 52, 6450–6454. 10.1002/anie.201301219. PubMed DOI PMC
Miyamoto T.; DeRose R.; Suarez A.; Ueno T.; Chen M.; Sun T.-p.; Wolfgang M. J.; Mukherjee C.; Meyers D. J.; Inoue T. Rapid and Orthogonal Logic Gating with a Gibberellin-Induced Dimerization System. Nat. Chem. Biol. 2012, 8, 465–470. 10.1038/nchembio.922. PubMed DOI PMC
Olejniczak J.; Sankaranarayanan J.; Viger M. L.; Almutairi A. Highest Efficiency Two-Photon Degradable Copolymer for Remote Controlled Release. ACS Macro Lett. 2013, 2, 683–687. 10.1021/mz400256x. PubMed DOI PMC
Guibourt N. J.-B. G.Histoire Abrégée Des Drogues Simples; Colas L., Ed.; Méquignon-Marvis: Paris, 1820.
Guibort N.; Jean B.; Planchon G.. Histoire Naturelle des Drogues Simples ou Cours D’Histoire Naturelle; L’éCole de Pharmacie de Paris, 1869.
Harborne J. B. The Natural Coumarins: Occurrence, Chemistry and Biochemistry. Plant, Cell Environ. 1982, 5, 435–436. 10.1111/1365-3040.ep11611630. DOI
Givens R. S.; Matuszewski B. Photochemistry of Phosphate Esters: An Efficient Method for the Generation of Electrophiles. J. Am. Chem. Soc. 1984, 106, 6860–6861. 10.1021/ja00334a075. DOI
Schade B.; Hagen V.; Schmidt R.; Herbrich R.; Krause E.; Eckardt T.; Bendig J. Deactivation Behavior and Excited-State Properties of (Coumarin-4-yl)methyl Derivatives. 1. Photocleavage of (7-Methoxycoumarin-4-yl)methyl-Caged Acids with Fluorescence Enhancement. J. Org. Chem. 1999, 64, 9109–9117. 10.1021/jo9910233. PubMed DOI
Schmidt R.; Geissler D.; Hagen V.; Bendig J. Kinetics Study of the Photocleavage of (Coumarin-4-yl)methyl Esters. J. Phys. Chem. A 2005, 109, 5000–5004. 10.1021/jp050581k. PubMed DOI
Schmidt R.; Geissler D.; Hagen V.; Bendig J. Mechanism of Photocleavage of (Coumarin-4-yl)methyl Esters. J. Phys. Chem. A 2007, 111, 5768–5774. 10.1021/jp071521c. PubMed DOI
Givens R.; Kotala M. B.; Lee J.-I.. Mechanistic Overview of Phototriggers and Cage Release. Dynamic Studies in Biology; Goeldner M., Givens R., Eds., 2005.
van Wilderen L. J. G. W.; Neumann C.; Rodrigues-Correia A.; Kern-Michler D.; Mielke N.; Reinfelds M.; Heckel A.; Bredenbeck J. Picosecond Activation of the DEACM Photocage Unravelled by Vis-Pump-IR-Probe Spectroscopy. Phys. Chem. Chem. Phys. 2017, 19, 6487–6496. 10.1039/C6CP07022A. PubMed DOI
Sarker A. M.; Kaneko Y.; Neckers D. C. Photochemistry and Photophysics of Novel Photoinitiators: N,N,N-Tributyl-N-(4-methylene-7-methoxycoumarin) Ammonium Borates. J. Photochem. Photobiol., A 1998, 117, 67–74. 10.1016/S1010-6030(98)00315-3. DOI
Takano H.; Narumi T.; Nomura W.; Furuta T.; Tamamura H. Utilization of the Heavy Atom Effect for the Development of a Photosensitive 8-Azacoumarin-Type Photolabile Protecting Group. Org. Lett. 2015, 17, 5372–5375. 10.1021/acs.orglett.5b02720. PubMed DOI
Senda N.; Momotake A.; Nishimura Y.; Arai T. Synthesis and Photochemical Properties of a New Water-Soluble Coumarin, Designed as a Chromophore for Highly Water-Soluble and Photolabile Protecting Group. Bull. Chem. Soc. Jpn. 2006, 79, 1753–1757. 10.1246/bcsj.79.1753. DOI
Offenbartl-Stiegert D.; Clarke T. M.; Bronstein H.; Nguyen H. P.; Howorka S. Solvent-Dependent Photophysics of a Red-Shifted, Biocompatible Coumarin Photocage. Org. Biomol. Chem. 2019, 17, 6178–6183. 10.1039/C9OB00632J. PubMed DOI
Corrie J. E. T.; Furuta T.; Givens R.; Yousef A. L.; Goeldner M.. Photoremovable Protecting Groups Used for the Caging of Biomolecules. Dynamic Studies in Biology; Goeldner M., Givens R., Eds., 2005.
Dore M. T.Multiphoton Phototriggers for Exploring Cell Physiology; In Dynamic Studies in Biology; Goeldner M., Givens R., Eds., 2005.
Hagen V.; Benndorf K.; Kaupp U. B.; Pavlos M. C.; Xu H.; Toscano P. J.; Hess G. P.; Gillespie C. D.; Kim G.; Kandler K.. Control of Cellular Activity. Dynamic Studies in Biology; Goeldner M., Givens R., Eds., 2005.
Loudwig S.; Bayley H.; Peng L.; Goeldner M.; Condeelis S. J.; Lawrence D. S.. Photoregulation of Proteins. Dynamic Studies in Biology; Goeldner M., Givens R., Eds., 2005.
Tatsu Y.; Shigeri Y.; Yumoto N.. Caged Compounds and Solid-Phase Synthesis. Dynamic Studies in Biology; Goeldner M., Givens R., Eds., 2005.
Eckardt T.; Hagen V.; Schade B.; Schmidt R.; Schweitzer C.; Bendig J. Deactivation Behavior and Excited-State Properties of (Coumarin-4-yl)methyl Derivatives. 2. Photocleavage of Selected (Coumarin-4-yl)methyl-Caged Adenosine Cyclic 3′,5′-Monophosphates with Fluorescence Enhancement. J. Org. Chem. 2002, 67, 703–710. 10.1021/jo010692p. PubMed DOI
Fournier L.; Aujard I.; Le Saux T.; Maurin S.; Beaupierre S.; Baudin J.-B.; Jullien L. Coumarinylmethyl Caging Groups with Redshifted Absorption. Chem. - Eur. J. 2013, 19, 17494–17507. 10.1002/chem.201302630. PubMed DOI
Olson J. P.; Kwon H.-B.; Takasaki K. T.; Chiu C. Q.; Higley M. J.; Sabatini B. L.; Ellis-Davies G. C. R. Optically Selective Two-Photon Uncaging of Glutamate at 900 nm. J. Am. Chem. Soc. 2013, 135, 5954–5957. 10.1021/ja4019379. PubMed DOI PMC
Bao C.; Fan G.; Lin Q.; Li B.; Cheng S.; Huang Q.; Zhu L. Styryl Conjugated Coumarin Caged Alcohol: Efficient Photorelease by Either One-Photon Long Wavelength or Two-Photon NIR Excitation. Org. Lett. 2012, 14, 572–575. 10.1021/ol203188h. PubMed DOI
Lin Q.; Yang L.; Wang Z.; Hua Y.; Zhang D.; Bao B.; Bao C.; Gong X.; Zhu L. Coumarin Photocaging Groups Modified with an Electron-Rich Styryl Moiety at the 3-Position: Long-Wavelength Excitation, Rapid Photolysis, and Photobleaching. Angew. Chem., Int. Ed. 2018, 57, 3722–3726. 10.1002/anie.201800713. PubMed DOI
Bojtár M.; Kormos A.; Kis-Petik K.; Kellermayer M.; Kele P. Green-Light Activatable, Water-Soluble Red-Shifted Coumarin Photocages. Org. Lett. 2019, 21, 9410–9414. 10.1021/acs.orglett.9b03624. PubMed DOI
Ito K.; Maruyama J. Studies on Stable Diazoalkanes as Potential Fluorogenic Reagents. I. 7-Substituted 4-Diazomethylcoumarins. Chem. Pharm. Bull. 1983, 31, 3014–3023. 10.1248/cpb.31.3014. DOI
Lopez Arbeloa T.; Lopez Arbeloa F.; Tapia M. J.; Lopez Arbeloa I. Hydrogen-Bonding Effect on the Photophysical Properties of 7-Aminocoumarin Derivatives. J. Phys. Chem. 1993, 97, 4704–4707. 10.1021/j100120a024. DOI
Rechthaler K.; Köhler G. Excited State Properties and Deactivation Pathways of 7-Aminocoumarins. Chem. Phys. 1994, 189, 99–116. 10.1016/0301-0104(94)80010-3. DOI
Fabian W. M. F.; Niederreiter K. S.; Uray G.; Stadlbauer W. Substituent Effects on Absorption and Fluorescence Spectra of Carbostyrils. J. Mol. Struct. 1999, 477, 209–220. 10.1016/S0022-2860(98)00616-4. DOI
Seixas de Melo J. S.; Becker R. S.; Macanita A. L. Photophysical Behavior of Coumarins as a Function of Substitution and Solvent: Experimental Evidence for the Existence of a Lowest Lying 1π,π* State. J. Phys. Chem. 1994, 98, 6054–6058. 10.1021/j100075a002. DOI
Hagen V.; Bendig J.; Frings S.; Eckardt T.; Helm S.; Reuter D.; Kaupp U. B. Highly Efficient and Ultrafast Phototriggers for cAMP and cGMP by Using Long-Wavelength UV/Vis-Activation. Angew. Chem., Int. Ed. 2001, 40, 1045–1048. 10.1002/1521-3773(20010316)40:6<1045::AID-ANIE10450>3.0.CO;2-F. PubMed DOI
Donovalová J.; Cigán M.; Stankovičová H.; Gašpar J.; Danko M.; Gáplovský A.; Hrdlovič P. Spectral Properties of Substituted Coumarins in Solution and Polymer Matrices. Molecules 2012, 17, 3259–3276. 10.3390/molecules17033259. PubMed DOI PMC
Fonseca A. S.; Goncalves M. S.; Costa S. P. Light-Induced Cleavage of Model Phenylalanine Conjugates Based on Coumarins and Quinolones. Amino Acids 2010, 39, 699–712. 10.1007/s00726-010-0492-8. PubMed DOI
Fonseca A. S. C.; Soares A. M. S.; Gonçalves M. S. T.; Costa S. P. G. Thionated Coumarins and Quinolones in the Light Triggered Release of a Model Amino Acid: Synthesis and Photolysis Studies. Tetrahedron 2012, 68, 7892–7900. 10.1016/j.tet.2012.07.021. DOI
Takaoka K.; Tatsu Y.; Yumoto N.; Nakajima T.; Shimamoto K. Synthesis of Carbamate-Type Caged Derivatives of a Novel Glutamate Transporter Blocker. Bioorg. Med. Chem. 2004, 12, 3687–3694. 10.1016/j.bmc.2004.04.011. PubMed DOI
Velema W. A.; van der Berg J. P.; Szymanski W.; Driessen A. J. M.; Feringa B. L. Orthogonal Control of Antibacterial Activity with Light. ACS Chem. Biol. 2014, 9, 1969–1974. 10.1021/cb500313f. PubMed DOI
Velema W. A.; van der Berg J. P.; Szymanski W.; Driessen A. J. M.; Feringa B. L. Bacterial Patterning Controlled by Light Exposure. Org. Biomol. Chem. 2015, 13, 1639–1642. 10.1039/C4OB02483D. PubMed DOI
Atta S.; Jana A.; Ananthakirshnan R.; Narayana Dhuleep P. S. Fluorescent Caged Compounds of 2,4-Dichlorophenoxyacetic Acid (2,4-D): Photorelease Technology for Controlled Release of 2,4-D. J. Agric. Food Chem. 2010, 58, 11844–11851. 10.1021/jf1027763. PubMed DOI
Furuta T.; Iwamura M.. New Caged Groups: 7-Substituted Coumarinylmethyl Phosphate Esters. Methods Enzymol.; Academic Press, 1998; Vol. 291. PubMed
Furuta T.; Momotake A.; Sugimoto M.; Hatayama M.; Torigai H.; Iwamura M. Acyloxycoumarinylmethyl-Caged cAMP, the Photolabile and Membrane-Permeable Derivative of cAMP That Effectively Stimulates Pigment-Dispersion Response of Melanophores. Biochem. Biophys. Res. Commun. 1996, 228, 193–198. 10.1006/bbrc.1996.1638. PubMed DOI
Yu P.-L.; Zhang Z.-H.; Hao B.-X.; Zhao Y.-J.; Zhang L.-H.; Lee H.-C.; Zhang L.; Yue J. A Novel Fluorescent Cell Membrane-permeable Caged Cyclic ADP-ribose Analogue. J. Biol. Chem. 2012, 287, 24774–24783. 10.1074/jbc.M111.329854. PubMed DOI PMC
Luo J.; Kong M.; Liu L.; Samanta S.; Van Houten B.; Deiters A. Optical Control of DNA Helicase Function through Genetic Code Expansion. ChemBioChem 2017, 18, 466–469. 10.1002/cbic.201600624. PubMed DOI PMC
Liu J.; Hemphill J.; Samanta S.; Tsang M.; Deiters A. Genetic Code Expansion in Zebrafish Embryos and Its Application to Optical Control of Cell Signaling. J. Am. Chem. Soc. 2017, 139, 9100–9103. 10.1021/jacs.7b02145. PubMed DOI PMC
Zhou W.; Hankinson C. P.; Deiters A. Optical Control of Cellular ATP Levels with a Photocaged Adenylate Kinase. ChemBioChem 2020, 21, 1832–1836. 10.1002/cbic.201900757. PubMed DOI
Brown W.; Liu J.; Tsang M.; Deiters A. Cell-Lineage Tracing in Zebrafish Embryos with an Expanded Genetic Code. ChemBioChem 2018, 19, 1244–1249. 10.1002/cbic.201800040. PubMed DOI PMC
Courtney T. M.; Deiters A. Controlling Phosphate Removal with Light: The Development of Optochemical Tools to Probe Protein Phosphatase Function. SLAS Discovery 2020, 25, 957–960. 10.1177/2472555220918519. PubMed DOI
Furuta T.; Torigai H.; Sugimoto M.; Iwamura M. Photochemical Properties of New Photolabile cAMP Derivatives in a Physiological Saline Solution. J. Org. Chem. 1995, 60, 3953–3956. 10.1021/jo00118a008. DOI
Hagen V.; Bendig J.; Frings S.; Wiesner B.; Schade B.; Helm S.; Lorenz D.; Benjamin Kaupp U. Synthesis, Photochemistry and Application of (7-Methoxycoumarin-4-yl)methyl-Caged 8-Bromoadenosine Cyclic 3′,5′-Monophosphate and 8-Bromoguanosine Cyclic 3′,5′-Monophosphate Photolyzed in the Nanosecond Time Region. J. Photochem. Photobiol., B 1999, 53, 91–102. 10.1016/S1011-1344(99)00131-1. PubMed DOI
Fonseca A. S. C.; Gonçalves M. S. T.; Costa S. P. G. Photocleavage Studies of Fluorescent Amino Acid Conjugates Bearing Different Types of Linkages. Tetrahedron 2007, 63, 1353–1359. 10.1016/j.tet.2006.11.082. DOI
Fernandes M. J. G.; Gonçalves M. S. T.; Costa S. P. G. Comparative Study of Polyaromatic and Polyheteroaromatic Fluorescent Photocleavable Protecting Groups. Tetrahedron 2008, 64, 3032–3038. 10.1016/j.tet.2008.01.032. DOI
Suzuki A. Z.; Watanabe T.; Kawamoto M.; Nishiyama K.; Yamashita H.; Ishii M.; Iwamura M.; Furuta T. Coumarin-4-ylmethoxycarbonyls as Phototriggers for Alcohols and Phenols. Org. Lett. 2003, 5, 4867–4870. 10.1021/ol0359362. PubMed DOI
Furuta T.; Hirayama Y.; Iwamura M. Anthraquinon-2-ylmethoxycarbonyl (Aqmoc): A New Photochemically Removable Protecting Group for Alcohols. Org. Lett. 2001, 3, 1809–1812. 10.1021/ol015787s. PubMed DOI
Atta S.; Ikbal M.; Boda N.; Gauri S. S.; Singh N. D. P. Photoremovable Protecting Groups as Controlled-Release Device for Sex Pheromone. Photochem. Photobiol. Sci. 2013, 12, 393–403. 10.1039/C2PP25118C. PubMed DOI
Cürten B.; Kullmann P. H. M.; Bier M. E.; Kandler K.; Schmidt B. F. Synthesis, Photophysical, Photochemical and Biological Properties of Caged GABA, 4-[[(2H-1-Benzopyran-2-one-7-amino-4-methoxy) carbonyl] amino] Butanoic Acid. Photochem. Photobiol. 2005, 81, 641–648. 10.1562/2004-07-08-RA-226.1. PubMed DOI
Luo J.; Uprety R.; Naro Y.; Chou C.; Nguyen D. P.; Chin J. W.; Deiters A. Genetically Encoded Optochemical Probes for Simultaneous Fluorescence Reporting and Light Activation of Protein Function with Two-Photon Excitation. J. Am. Chem. Soc. 2014, 136, 15551–15558. 10.1021/ja5055862. PubMed DOI PMC
Guardado-Alvarez T. M.; Sudha Devi L.; Russell M. M.; Schwartz B. J.; Zink J. I. Activation of Snap-Top Capped Mesoporous Silica Nanocontainers Using Two Near-Infrared Photons. J. Am. Chem. Soc. 2013, 135, 14000–14003. 10.1021/ja407331n. PubMed DOI PMC
Pocker Y.; Davison B. L.; Deits T. L. Decarboxylation of Monosubstituted Derivatives of Carbonic Acid. Comparative Studies of Water- and Acid-Catalyzed Decarboxylation of Sodium Alkyl Carbonates in Water and Water-d2. J. Am. Chem. Soc. 1978, 100, 3564–3567. 10.1021/ja00479a045. DOI
Rossi F. M.; Margulis M.; Tang C.-M.; Kao J. P. Y. N-Nmoc-L-Glutamate, a New Caged Glutamate with High Chemical Stability and Low Pre-photolysis Activity. J. Biol. Chem. 1997, 272, 32933–32939. 10.1074/jbc.272.52.32933. PubMed DOI
Papageorgiou G.; Barth A.; Corrie J. E. T. Flash Photolytic Release of Alcohols From Photolabile Carbamates or Carbonates Is Rate-Limited by Decarboxylation of the Photoproduct. Photochem. Photobiol. Sci. 2005, 4, 216–220. 10.1039/b417153e. PubMed DOI
Johnson S. L.; Morrison D. L. Kinetics and Mechanism of Decarboxylation of N-Arylcarbamates. Evidence for Kinetically Important Zwitterionic Carbamic Acid Species of Short Lifetime. J. Am. Chem. Soc. 1972, 94, 1323–1334. 10.1021/ja00759a045. PubMed DOI
Schoenleber R. O.; Giese B. Photochemical Release of Amines by C, N-Bond Cleavage. Synlett 2003, 2003, 0501–0504. 10.1055/s-2003-37507. DOI
Shembekar V. R.; Chen Y.; Carpenter B. K.; Hess G. P. A Protecting Group for Carboxylic Acids That Can Be Photolyzed by Visible Light. Biochemistry 2005, 44, 7107–7114. 10.1021/bi047665o. PubMed DOI
Shembekar V. R.; Chen Y.; Carpenter B. K.; Hess G. P. Coumarin-Caged Glycine that Can Be Photolyzed within 3 μs by Visible Light. Biochemistry 2007, 46, 5479–5484. 10.1021/bi700280e. PubMed DOI
Hagen V.; Frings S.; Wiesner B.; Helm S.; Kaupp U. B.; Bendig J. [7-(Dialkylamino)coumarin-4-yl]methyl-Caged Compounds as Ultrafast and Effective Long-Wavelength Phototriggers of 8Bromo-Substituted Cyclic Nucleotides. ChemBioChem 2003, 4, 434–442. 10.1002/cbic.200300561. PubMed DOI
Piloto A. M.; Costa S. P. G.; Gonçalves M. S. T. Wavelength-Selective Cleavage of o-Nitrobenzyl and Polyheteroaromatic Benzyl Protecting Groups. Tetrahedron 2014, 70, 650–657. 10.1016/j.tet.2013.11.100. DOI
Piloto A. M.; Hungerford G.; Costa S. P. G.; Gonçalves M. S. T. Photoinduced Release of Neurotransmitter Amino Acids from Coumarin-Fused Julolidine Ester Cages. Eur. J. Org. Chem. 2013, 2013, 7715–7723. 10.1002/ejoc.201300730. DOI
Bassolino G.; Nançoz C.; Thiel Z.; Bois E.; Vauthey E.; Rivera-Fuentes P. Photolabile Coumarins with Improved Efficiency Through Azetidinyl Substitution. Chem. Sci. 2018, 9, 387–391. 10.1039/C7SC03627B. PubMed DOI PMC
Chaudhuri A.; Venkatesh Y.; Das J.; Behara K. K.; Mandal S.; Maiti T. K.; Singh N. D. P. Squaric Acid-Coumarin-Chlorambucil: Photoresponsive Single-Component Fluorescent Organic Nanoconjugates for Self-Monitored Therapeutics. ACS Appl. Nano Mater. 2018, 1, 6312–6319. 10.1021/acsanm.8b01533. DOI
Conceição R.; Hungerford G.; Costa S. P. G.; Gonçalves M. S. T. Photolytic Release of Bioactive Carboxylic Acids From Fused Pyran Conjugates. Dyes Pigm. 2018, 148, 368–379. 10.1016/j.dyepig.2017.09.023. DOI
Atta S.; Ikbal M.; Kumar A.; Pradeep Singh N. D. Application of Photoremovable Protecting Group for Controlled Release of Plant Growth Regulators by Sunlight. J. Photochem. Photobiol., B 2012, 111, 39–49. 10.1016/j.jphotobiol.2012.03.008. PubMed DOI
Geißler D.; Kresse W.; Wiesner B.; Bendig J.; Kettenmann H.; Hagen V. DMACM-Caged Adenosine Nucleotides: Ultrafast Phototriggers for ATP, ADP, and AMP Activated by Long-Wavelength Irradiation. ChemBioChem 2003, 4, 162–170. 10.1002/cbic.200390027. PubMed DOI
Bourbon P.; Peng Q.; Ferraudi G.; Stauffacher C.; Wiest O.; Helquist P. Development of Carbamate-Tethered Coumarins as Phototriggers for Caged Nicotinamide. Bioorg. Med. Chem. Lett. 2013, 23, 6321–6324. 10.1016/j.bmcl.2013.09.067. PubMed DOI
Herzig L. M.; Elamri I.; Schwalbe H.; Wachtveitl J. Light-Induced Antibiotic Release From a Coumarin-Caged Compound on the Ultrafast Timescale. Phys. Chem. Chem. Phys. 2017, 19, 14835–14844. 10.1039/C7CP02030A. PubMed DOI
Nguyen H. P.; Stewart S.; Kukwikila M. N.; Jones S. F.; Offenbartl-Stiegert D.; Mao S.; Balasubramanian S.; Beck S.; Howorka S. A Photo-responsive Small-Molecule Approach for the Opto-epigenetic Modulation of DNA Methylation. Angew. Chem., Int. Ed. 2019, 58, 6620–6624. 10.1002/anie.201901139. PubMed DOI PMC
Wong P. T.; Roberts E. W.; Tang S.; Mukherjee J.; Cannon J.; Nip A. J.; Corbin K.; Krummel M. F.; Choi S. K. Control of an Unusual Photo-Claisen Rearrangement in Coumarin Caged Tamoxifen through an Extended Spacer. ACS Chem. Biol. 2017, 12, 1001–1010. 10.1021/acschembio.6b00999. PubMed DOI PMC
Zhang X.; Xi W.; Wang C.; Podgórski M.; Bowman C. N. Visible-Light-Initiated Thiol-Michael Addition Polymerizations with Coumarin-Based Photobase Generators: Another Photoclick Reaction Strategy. ACS Macro Lett. 2016, 5, 229–233. 10.1021/acsmacrolett.5b00923. PubMed DOI PMC
Bourbon P.; Peng Q.; Ferraudi G.; Stauffacher C.; Wiest O.; Helquist P. Synthesis and Photochemical Behavior of Coumarin-Caged Cholesterol. Bioorg. Med. Chem. Lett. 2013, 23, 2162–2165. 10.1016/j.bmcl.2013.01.095. PubMed DOI
Franceschini C.; Scrimin P.; Prins L. J. Light-Triggered Thiol-Exchange on Gold Nanoparticles at Low Micromolar Concentrations in Water. Langmuir 2014, 30, 13831–13836. 10.1021/la5034965. PubMed DOI
Liu Z.; Liu T.; Lin Q.; Bao C.; Zhu L. Photoreleasable Thiol Chemistry for Facile and Efficient Bioconjugation. Chem. Commun. 2014, 50, 1256–1258. 10.1039/C3CC48263D. PubMed DOI
San Miguel V.; Bochet C. G.; del Campo A. Wavelength-Selective Caged Surfaces: How Many Functional Levels Are Possible?. J. Am. Chem. Soc. 2011, 133, 5380–5388. 10.1021/ja110572j. PubMed DOI
Lin W.; Long L.; Tan W.; Chen B.; Yuan L. Coumarin-Caged Rosamine Probes Based on a Unique Intramolecular Carbon–Carbon Spirocyclization. Chem. - Eur. J. 2010, 16, 3914–3917. 10.1002/chem.201000015. PubMed DOI
Tang S.; Cannon J.; Yang K.; Krummel M. F.; Baker J. R.; Choi S. K. Spacer-Mediated Control of Coumarin Uncaging for Photocaged Thymidine. J. Org. Chem. 2020, 85, 2945–2955. 10.1021/acs.joc.9b02617. PubMed DOI PMC
Schaal J.; Kotzur N.; Dekowski B.; Quilitz J.; Klimakow M.; Wessig P.; Hagen V. A Novel Photorearrangement of (Coumarin-4-yl)methylphenyl Ethers. J. Photochem. Photobiol., A 2009, 208, 171–179. 10.1016/j.jphotochem.2009.09.012. DOI
Weis S.; Shafiq Z.; Gropeanu R. A.; del Campo A. Ethyl Substituted Coumarin-4-yl Derivatives as Photoremovable Protecting Groups for Amino Acids with Improved Stability for SPSS. J. Photochem. Photobiol., A 2012, 241, 52–57. 10.1016/j.jphotochem.2012.05.014. DOI
Fan L.; Lewis R. W.; Hess G. P.; Ganem B. A New Synthesis of Caged GABA Compounds for Studying GABAA Receptors. Bioorg. Med. Chem. Lett. 2009, 19, 3932–3933. 10.1016/j.bmcl.2009.03.065. PubMed DOI
Yamazoe S.; Liu Q.; McQuade L. E.; Deiters A.; Chen J. K. Sequential Gene Silencing Using Wavelength-Selective Caged Morpholino Oligonucleotides. Angew. Chem., Int. Ed. 2014, 53, 10114–10118. 10.1002/anie.201405355. PubMed DOI PMC
Seyfried P.; Eiden L.; Grebenovsky N.; Mayer G.; Heckel A. Photo-Tethers for the (Multi-)Cyclic, Conformational Caging of Long Oligonucleotides. Angew. Chem., Int. Ed. 2017, 56, 359–363. 10.1002/anie.201610025. PubMed DOI
Seyfried P.; Heinz M.; Pintér G.; Klötzner D.-P.; Becker Y.; Bolte M.; Jonker H. R. A.; Stelzl L. S.; Hummer G.; Schwalbe H.; Heckel A. Optimal Destabilization of DNA Double Strands by Single-Nucleobase Caging. Chem. - Eur. J. 2018, 24, 17568–17576. 10.1002/chem.201804040. PubMed DOI
Kahlstatt J.; Reiß P.; Halbritter T.; Essen L. O.; Koert U.; Heckel A. A Light-Triggered Transmembrane Porin. Chem. Commun. 2018, 54, 9623–9626. 10.1039/C8CC05221B. PubMed DOI
Zhang D.; Jin S.; Piao X.; Devaraj N. K. Multiplexed Photoactivation of mRNA with Single-Cell Resolution. ACS Chem. Biol. 2020, 15, 1773–1779. 10.1021/acschembio.0c00205. PubMed DOI PMC
Lin Q.; Bao C.; Fan G.; Cheng S.; Liu H.; Liu Z.; Zhu L. 7-Amino Coumarin Based Fluorescent Phototriggers Coupled with Nano/Bio-Conjugated Bonds: Synthesis, Labeling and Photorelease. J. Mater. Chem. 2012, 22, 6680–6688. 10.1039/c2jm30357d. DOI
Dong J.; Xun Z.; Zeng Y.; Yu T.; Han Y.; Chen J.; Li Y.-Y.; Yang G.; Li Y. A Versatile and Robust Vesicle Based on a Photocleavable Surfactant for Two-Photon-Tuned Release. Chem. - Eur. J. 2013, 19, 7931–7936. 10.1002/chem.201300526. PubMed DOI
Ji W.; Li N.; Chen D.; Jiao Y.; Xu Q.; Lu J. A Hollow Porous Magnetic Nanocarrier for Efficient Near-Infrared Light- and pH-Controlled Drug Release. RSC Adv. 2014, 4, 51055–51061. 10.1039/C4RA07573K. DOI
Ji W.; Li N.; Chen D.; Qi X.; Sha W.; Jiao Y.; Xu Q.; Lu J. Coumarin-Containing Photo-Responsive Nanocomposites for NIR Light-Triggered Controlled Drug Release via a Two-Photon Process. J. Mater. Chem. B 2013, 1, 5942–5949. 10.1039/c3tb21206h. PubMed DOI
Zhao L.; Peng J.; Huang Q.; Li C.; Chen M.; Sun Y.; Lin Q.; Zhu L.; Li F. Near-Infrared Photoregulated Drug Release in Living Tumor Tissue via Yolk-Shell Upconversion Nanocages. Adv. Funct. Mater. 2014, 24, 363–371. 10.1002/adfm.201302133. DOI
Ming Z.; Ruan X.; Bao C.; Lin Q.; Yang Y.; Zhu L. Micropatterned Protein for Cell Adhesion through Phototriggered Charge Change in a Polyvinylpyrrolidone Hydrogel. Adv. Funct. Mater. 2017, 27, 1606258.10.1002/adfm.201606258. DOI
Kotzur N.; Briand B.; Beyermann M.; Hagen V. Wavelength-Selective Photoactivatable Protecting Groups for Thiols. J. Am. Chem. Soc. 2009, 131, 16927–16931. 10.1021/ja907287n. PubMed DOI
Hagen V.; Dekowski B.; Kotzur N.; Lechler R.; Wiesner B.; Briand B.; Beyermann M. {7-[Bis(carboxymethyl)amino]coumarin-4-yl}methoxycarbonyl Derivatives for Photorelease of Carboxylic Acids, Alcohols/Phenols, Thioalcohols/Thiophenols, and Amines. Chem. - Eur. J. 2008, 14, 1621–1627. 10.1002/chem.200701142. PubMed DOI
Hagen V.; Dekowski B.; Nache V.; Schmidt R.; Geißler D.; Lorenz D.; Eichhorst J.; Keller S.; Kaneko H.; Benndorf K.; Wiesner B. Coumarinylmethyl Esters for Ultrafast Release of High Concentrations of Cyclic Nucleotides upon One- and Two-Photon Photolysis. Angew. Chem., Int. Ed. 2005, 44, 7887–7891. 10.1002/anie.200502411. PubMed DOI
Senda N.; Momotake A.; Arai T. Synthesis and Photocleavage of 7-[{Bis(carboxymethyl)amino}coumarin-4-yl]methyl-Caged Neurotransmitters. Bull. Chem. Soc. Jpn. 2007, 80, 2384–2388. 10.1246/bcsj.80.2384. DOI
Gilbert D.; Funk K.; Dekowski B.; Lechler R.; Keller S.; Möhrlen F.; Frings S.; Hagen V. Caged Capsaicins: New Tools for the Examination of TRPV1 Channels in Somatosensory Neurons. ChemBioChem 2007, 8, 89–97. 10.1002/cbic.200600437. PubMed DOI
Taniguchi A.; Skwarczynski M.; Sohma Y.; Okada T.; Ikeda K.; Prakash H.; Mukai H.; Hayashi Y.; Kimura T.; Hirota S.; Matsuzaki K.; Kiso Y. Controlled Production of Amyloid β Peptide from a Photo-Triggered, Water-Soluble Precursor “Click Peptide. ChemBioChem 2008, 9, 3055–3065. 10.1002/cbic.200800503. PubMed DOI
Priestman M. A.; Sun L.; Lawrence D. S. Dual Wavelength Photoactivation of cAMP- and cGMP-Dependent Protein Kinase Signaling Pathways. ACS Chem. Biol. 2011, 6, 377–384. 10.1021/cb100398e. PubMed DOI PMC
Peyret A.; Ibarboure E.; Tron A.; Beauté L.; Rust R.; Sandre O.; McClenaghan N. D.; Lecommandoux S. Polymersome Popping by Light-Induced Osmotic Shock under Temporal, Spatial, and Spectral Control. Angew. Chem., Int. Ed. 2017, 56, 1566–1570. 10.1002/anie.201609231. PubMed DOI
Banala S.; Arvin M. C.; Bannon N. M.; Jin X.-T.; Macklin J. J.; Wang Y.; Peng C.; Zhao G.; Marshall J. J.; Gee K. R.; Wokosin D. L.; Kim V. J.; McIntosh J. M.; Contractor A.; Lester H. A.; Kozorovitskiy Y.; Drenan R. M.; Lavis L. D. Photoactivatable Drugs for Nicotinic Optopharmacology. Nat. Methods 2018, 15, 347–350. 10.1038/nmeth.4637. PubMed DOI PMC
Noguchi M.; Skwarczynski M.; Prakash H.; Hirota S.; Kimura T.; Hayashi Y.; Kiso Y. Development of Novel Water-Soluble Photocleavable Protective Group and Its Application for Design of Photoresponsive Paclitaxel Prodrugs. Bioorg. Med. Chem. 2008, 16, 5389–5397. 10.1016/j.bmc.2008.04.022. PubMed DOI
Nadler A.; Yushchenko D. A.; Müller R.; Stein F.; Feng S.; Mulle C.; Carta M.; Schultz C. Exclusive Photorelease of Signalling Lipids at the Plasma Membrane. Nat. Commun. 2015, 6, 10056.10.1038/ncomms10056. PubMed DOI PMC
Schuhmacher M.; Grasskamp A. T.; Barahtjan P.; Wagner N.; Lombardot B.; Schuhmacher J. S.; Sala P.; Lohmann A.; Henry I.; Shevchenko A.; Coskun Ü.; Walter A. M.; Nadler A. Live-Cell Lipid Biochemistry Reveals a Role of Diacylglycerol Side-Chain Composition for Cellular Lipid Dynamics and Protein Affinities. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 7729.10.1073/pnas.1912684117. PubMed DOI PMC
Feng S.; Harayama T.; Chang D.; Hannich J. T.; Winssinger N.; Riezman H. Lysosome-Targeted Photoactivation Reveals Local Sphingosine Metabolism Signatures. Chem. Sci. 2019, 10, 2253–2258. 10.1039/C8SC03614D. PubMed DOI PMC
Wagner N.; Stephan M.; Höglinger D.; Nadler A. A Click Cage: Organelle-Specific Uncaging of Lipid Messengers. Angew. Chem., Int. Ed. 2018, 57, 13339–13343. 10.1002/anie.201807497. PubMed DOI PMC
Feng S.; Harayama T.; Montessuit S.; David F. P. A.; Winssinger N.; Martinou J.-C.; Riezman H. Mitochondria-Specific Photoactivation to Monitor Local Sphingosine Metabolism and Function. eLife 2018, 7, e3455510.7554/eLife.34555. PubMed DOI PMC
Sarode B. R.; Kover K.; Friedman S. H. Visible-Light-Activated High-Density Materials for Controlled in Vivo Insulin Release. Mol. Pharmaceutics 2019, 16, 4677–4687. 10.1021/acs.molpharmaceut.9b00806. PubMed DOI PMC
Lin Q.; Bao C.; Yang Y.; Liang Q.; Zhang D.; Cheng S.; Zhu L. Highly Discriminating Photorelease of Anticancer Drugs Based on Hypoxia Activatable Phototrigger Conjugated Chitosan Nanoparticles. Adv. Mater. 2013, 25, 1981–1986. 10.1002/adma.201204455. PubMed DOI
Lin Q.; Huang Q.; Li C.; Bao C.; Liu Z.; Li F.; Zhu L. Anticancer Drug Release from a Mesoporous Silica Based Nanophotocage Regulated by Either a One- or Two-Photon Process. J. Am. Chem. Soc. 2010, 132, 10645–10647. 10.1021/ja103415t. PubMed DOI
Liu Z.; Lin Q.; Sun Y.; Liu T.; Bao C.; Li F.; Zhu L. Spatiotemporally Controllable and Cytocompatible Approach Builds 3D Cell Culture Matrix by Photo-Uncaged-Thiol Michael Addition Reaction. Adv. Mater. 2014, 26, 3912–3917. 10.1002/adma.201306061. PubMed DOI
Pahattuge T. N.; Jackson J. M.; Digamber R.; Wijerathne H.; Brown V.; Witek M. A.; Perera C.; Givens R. S.; Peterson B. R.; Soper S. A. Visible Photorelease of Liquid Biopsy Markers Following Microfluidic Affinity-Enrichment. Chem. Commun. 2020, 56, 4098.10.1039/C9CC09598E. PubMed DOI PMC
Vuilleumier J.; Gaulier G.; De Matos R.; Ortiz D.; Menin L.; Campargue G.; Mas C.; Constant S.; Le Dantec R.; Mugnier Y.; Bonacina L.; Gerber-Lemaire S. Two-Photon-Triggered Photorelease of Caged Compounds from Multifunctional Harmonic Nanoparticles. ACS Appl. Mater. Interfaces 2019, 11, 27443–27452. 10.1021/acsami.9b07954. PubMed DOI
Vuilleumier J.; Gaulier G.; De Matos R.; Mugnier Y.; Campargue G.; Wolf J.-P.; Bonacina L.; Gerber-Lemaire S. Photocontrolled Release of the Anticancer Drug Chlorambucil with Caged Harmonic Nanoparticles. Helv. Chim. Acta 2020, 103, e190025110.1002/hlca.201900251. DOI
Gangopadhyay M.; Singh T.; Behara K. K.; Karwa S.; Ghosh S. K.; Singh N. D. P. Coumarin-Containing-Star-Shaped 4-Arm-Polyethylene Glycol: Targeted Fluorescent Organic Nanoparticles for Dual Treatment of Photodynamic Therapy and Chemotherapy. Photochem. Photobiol. Sci. 2015, 14, 1329–1336. 10.1039/C5PP00057B. PubMed DOI
Huang Q.; Bao C.; Ji W.; Wang Q.; Zhu L. Photocleavable Coumarin Crosslinkers Based Polystyrene Microgels: Phototriggered Swelling and Release. J. Mater. Chem. 2012, 22, 18275–18282. 10.1039/c2jm33789d. DOI
Lin Q.; Bao C.; Cheng S.; Yang Y.; Ji W.; Zhu L. Target-Activated Coumarin Phototriggers Specifically Switch on Fluorescence and Photocleavage upon Bonding to Thiol-Bearing Protein. J. Am. Chem. Soc. 2012, 134, 5052–5055. 10.1021/ja300475k. PubMed DOI
Lin Q.; Du Z.; Yang Y.; Fang Q.; Bao C.; Yang Y.; Zhu L. Intracellular Thiols and Photo-Illumination Sequentially Activate Doubly Locked Molecular Probes for Long-Term Cell Highlighting and Tracking with Precise Spatial Accuracy. Chem. - Eur. J. 2014, 20, 16314–16319. 10.1002/chem.201403905. PubMed DOI
Coe B. J.; Foxon S. P.; Harper E. C.; Harris J. A.; Helliwell M.; Raftery J.; Asselberghs I.; Clays K.; Franz E.; Brunschwig B. S.; Fitch A. G. The Syntheses, Structures and Nonlinear Optical and Related Properties of Salts with Julolidinyl Electron Donor Groups. Dyes Pigm. 2009, 82, 171–186. 10.1016/j.dyepig.2008.12.010. DOI
Reynolds G. A.; Drexhage K. H. New Coumarin Dyes with Rigidized Structure for Flashlamp-Pumped Dye Lasers. Opt. Commun. 1975, 13, 222–225. 10.1016/0030-4018(75)90085-1. DOI
Grabowski Z. R.; Rotkiewicz K.; Rettig W. Structural Changes Accompanying Intramolecular Electron Transfer: Focus on Twisted Intramolecular Charge-Transfer States and Structures. Chem. Rev. 2003, 103, 3899–4032. 10.1021/cr940745l. PubMed DOI
Grimm J. B.; English B. P.; Chen J.; Slaughter J. P.; Zhang Z.; Revyakin A.; Patel R.; Macklin J. J.; Normanno D.; Singer R. H.; Lionnet T.; Lavis L. D. A General Method to Improve Fluorophores for Live-Cell and Single-Molecule Microscopy. Nat. Methods 2015, 12, 244–250. 10.1038/nmeth.3256. PubMed DOI PMC
Dereka B.; Vauthey E. Direct Local Solvent Probing by Transient Infrared Spectroscopy Reveals the Mechanism of Hydrogen-Bond Induced Nonradiative Deactivation. Chem. Sci. 2017, 8, 5057–5066. 10.1039/C7SC00437K. PubMed DOI PMC
Fita P.; Fedoseeva M.; Vauthey E. Ultrafast Excited-State Dynamics of Eosin B: A Potential Probe of the Hydrogen-Bonding Properties of the Environment. J. Phys. Chem. A 2011, 115, 2465–2470. 10.1021/jp110849x. PubMed DOI
Richert S.; Mosquera Vazquez S.; Grzybowski M.; Gryko D. T.; Kyrychenko A.; Vauthey E. Excited-State Dynamics of an Environment-Sensitive Push–Pull Diketopyrrolopyrrole: Major Differences between the Bulk Solution Phase and the Dodecane/Water Interface. J. Phys. Chem. B 2014, 118, 9952–9963. 10.1021/jp506062j. PubMed DOI
Ramaiah D.; Joy A.; Chandrasekhar N.; Eldho N. V.; Das S.; George M. V. Halogenated Squaraine Dyes as Potential Photochemotherapeutic Agents. Synthesis and Study of Photophysical Properties and Quantum Efficiencies of Singlet Oxygen Generation. Photochem. Photobiol. 1997, 65, 783–790. 10.1111/j.1751-1097.1997.tb01925.x. DOI
Salice P.; Arnbjerg J.; Pedersen B. W.; Toftegaard R.; Beverina L.; Pagani G. A.; Ogilby P. R. Photophysics of Squaraine Dyes: Role of Charge-Transfer in Singlet Oxygen Production and Removal. J. Phys. Chem. A 2010, 114, 2518–2525. 10.1021/jp911180n. PubMed DOI
Avirah R. R.; Jayaram D. T.; Adarsh N.; Ramaiah D. Squaraine Dyes in PDT: From Basic Design to in Vivo Demonstration. Org. Biomol. Chem. 2012, 10, 911–920. 10.1039/C1OB06588B. PubMed DOI
Furuta T.; Takeuchi H.; Isozaki M.; Takahashi Y.; Kanehara M.; Sugimoto M.; Watanabe T.; Noguchi K.; Dore T. M.; Kurahashi T.; Iwamura M.; Tsien R. Y. Bhc-cNMPs as either Water-Soluble or Membrane-Permeant Photoreleasable Cyclic Nucleotides for both One- and Two-Photon Excitation. ChemBioChem 2004, 5, 1119–1128. 10.1002/cbic.200300814. PubMed DOI
Furuta T.; Watanabe T.; Tanabe S.; Sakyo J.; Matsuba C. Phototriggers for Nucleobases with Improved Photochemical Properties. Org. Lett. 2007, 9, 4717–4720. 10.1021/ol702106t. PubMed DOI
Loarueng C.; Boekfa B.; Jarussophon S.; Pongwan P.; Kaewchangwat N.; Suttisintong K.; Jarussophon N. Theoretical and Experimental Investigation of NMR, IR and UV-Visible Spectra of Hydroxyl-Substituted-4-Chloromethylcoumarin Derivatives. ARKIVOC 2020, 6, 1–12. 10.24820/ark.5550190.p010.982. DOI
Jivaramonaikul W.; Rashatasakhon P.; Wanichwecharungruang S. UVA Absorption and Photostability of Coumarins. Photochem. Photobiol. Sci. 2010, 9, 1120–1125. 10.1039/c0pp00057d. PubMed DOI
Bradley J.; Reuter D.; Frings S. Facilitation of Calmodulin-Mediated Odor Adaptation by cAMP-Gated Channel Subunits. Science 2001, 294, 2176–2178. 10.1126/science.1063415. PubMed DOI
Matsumoto M.; Solzin J.; Helbig A.; Hagen V.; Ueno S.-i.; Kawase O.; Maruyama Y.; Ogiso M.; Godde M.; Minakata H.; Kaupp U. B.; Hoshi M.; Weyand I. A Sperm-Activating Peptide Controls a cGMP-Signaling Pathway in Starfish Sperm. Dev. Biol. 2003, 260, 314–324. 10.1016/S0012-1606(03)00236-7. PubMed DOI
Geißler D.; Antonenko Y. N.; Schmidt R.; Keller S.; Krylova O. O.; Wiesner B.; Bendig J.; Pohl P.; Hagen V. (Coumarin-4-yl)methyl Esters as Highly Efficient, Ultrafast Phototriggers for Protons and Their Application to Acidifying Membrane Surfaces. Angew. Chem., Int. Ed. 2005, 44, 1195–1198. 10.1002/anie.200461567. PubMed DOI
Hagen V.; Frings S.; Bendig J.; Lorenz D.; Wiesner B.; Kaupp U. B. Fluorescence Spectroscopic Quantification of the Release of Cyclic Nucleotides from Photocleavable [Bis(carboxymethoxy)coumarin-4-yl]methyl Esters inside Cells. Angew. Chem., Int. Ed. 2002, 41, 3625–3628. 10.1002/1521-3773(20021004)41:19<3625::AID-ANIE3625>3.0.CO;2-J. PubMed DOI
Chen H.-L.; Hsu J. C.-C.; Viet M. H.; Li M. S.; Hu C.-K.; Liu C.-H.; Luh F. Y.; Chen S. S.-W.; Chang E. S.-H.; Wang A. H.-J.; Hsu M.-F.; Fann W.; Chen R. P.-Y. Studying Submicrosecond Protein Folding Kinetics Using a Photolabile Caging Strategy and Time-Resolved Photoacoustic Calorimetry. Proteins: Struct., Funct., Genet. 2010, 78, 2973–2983. 10.1002/prot.22823. PubMed DOI
Chen E. H. L.; Lu T. T. Y.; Hsu J. C. C.; Tseng Y. J.; Lim T. S.; Chen R. P. Y. Directly Monitor Protein Rearrangement on a Nanosecond-To-Millisecond Time-Scale. Sci. Rep. 2017, 7, 8691.10.1038/s41598-017-08385-0. PubMed DOI PMC
Kaupp U. B.; Solzin J.; Hildebrand E.; Brown J. E.; Helbig A.; Hagen V.; Beyermann M.; Pampaloni F.; Weyand I. The Signal Flow and Motor Response Controling Chemotaxis of Sea Urchin Sperm. Nat. Cell Biol. 2003, 5, 109–117. 10.1038/ncb915. PubMed DOI
Bourbon P.; Peng Q.; Ferraudi G.; Stauffacher C.; Wiest O.; Helquist P. Synthesis, Photophysical, Photochemical, and Computational Studies of Coumarin-Labeled Nicotinamide Derivatives. J. Org. Chem. 2012, 77, 2756–2762. 10.1021/jo2025527. PubMed DOI
Shibu E. S.; Ono K.; Sugino S.; Nishioka A.; Yasuda A.; Shigeri Y.; Wakida S.-i.; Sawada M.; Biju V. Photouncaging Nanoparticles for MRI and Fluorescence Imaging in Vitro and in Vivo. ACS Nano 2013, 7, 9851–9859. 10.1021/nn4043699. PubMed DOI
Narumi T.; Takano H.; Ohashi N.; Suzuki A.; Furuta T.; Tamamura H. Isostere-Based Design of 8-Azacoumarin-Type Photolabile Protecting Groups: A Hydrophilicity-Increasing Strategy for Coumarin-4-ylmethyls. Org. Lett. 2014, 16, 1184–1187. 10.1021/ol5000583. PubMed DOI
Fedoryak O. D.; Dore T. M. Brominated Hydroxyquinoline as a Photolabile Protecting Group with Sensitivity to Multiphoton Excitation. Org. Lett. 2002, 4, 3419–3422. 10.1021/ol026524g. PubMed DOI
Schaal J.; Dekowski B.; Wiesner B.; Eichhorst J.; Marter K.; Vargas C.; Keller S.; Eremina N.; Barth A.; Baumann A.; Eisenhardt D.; Hagen V. Coumarin-Based Octopamine Phototriggers and their Effects on an Insect Octopamine Receptor. ChemBioChem 2012, 13, 1458–1464. 10.1002/cbic.201200110. PubMed DOI
Goard M.; Aakalu G.; Fedoryak O. D.; Quinonez C.; St. Julien J.; Poteet S. J.; Schuman E. M.; Dore T. M. Light-Mediated Inhibition of Protein Synthesis. Chem. Biol. 2005, 12, 685–693. 10.1016/j.chembiol.2005.04.018. PubMed DOI
Robu V. G.; Pfeiffer E. S.; Robia S. L.; Balijepalli R. C.; Pi Y.; Kamp T. J.; Walker J. W. Localization of Functional Endothelin Receptor Signaling Complexes in Cardiac Transverse Tubules. J. Biol. Chem. 2003, 278, 48154–48161. 10.1074/jbc.M304396200. PubMed DOI
Nomura W.; Narumi T.; Ohashi N.; Serizawa Y.; Lewin N. E.; Blumberg P. M.; Furuta T.; Tamamura H. Synthetic Caged DAG-lactones for Photochemically Controlled Activation of Protein Kinase C. ChemBioChem 2011, 12, 535–539. 10.1002/cbic.201000670. PubMed DOI PMC
Lin W.; Lawrence D. S. A Strategy for the Construction of Caged Diols Using a Photolabile Protecting Group. J. Org. Chem. 2002, 67, 2723–2726. 10.1021/jo0163851. PubMed DOI
Lu M.; Fedoryak O. D.; Moister B. R.; Dore T. M. Bhc-diol as a Photolabile Protecting Group for Aldehydes and Ketones. Org. Lett. 2003, 5, 2119–2122. 10.1021/ol034536b. PubMed DOI
Baron M.; Morris J. C.; Telitel S.; Clément J.-L.; Lalevée J.; Morlet-Savary F.; Spangenberg A.; Malval J.-P.; Soppera O.; Gigmes D.; Guillaneuf Y. Light-Sensitive Alkoxyamines as Versatile Spatially- and Temporally- Controlled Precursors of Alkyl Radicals and Nitroxides. J. Am. Chem. Soc. 2018, 140, 3339–3344. 10.1021/jacs.7b12807. PubMed DOI
Wosnick J. H.; Shoichet M. S. Three-dimensional Chemical Patterning of Transparent Hydrogels. Chem. Mater. 2008, 20, 55–60. 10.1021/cm071158m. DOI
Wylie R. G.; Ahsan S.; Aizawa Y.; Maxwell K. L.; Morshead C. M.; Shoichet M. S. Spatially Controlled Simultaneous Patterning of Multiple Growth Factors in Three-Dimensional Hydrogels. Nat. Mater. 2011, 10, 799–806. 10.1038/nmat3101. PubMed DOI
Abate-Pella D.; Zeliadt N. A.; Ochocki J. D.; Warmka J. K.; Dore T. M.; Blank D. A.; Wattenberg E. V.; Distefano M. D. Photochemical Modulation of Ras-Mediated Signal Transduction Using Caged Farnesyltransferase Inhibitors: Activation by One- and Two-Photon Excitation. ChemBioChem 2012, 13, 1009–1016. 10.1002/cbic.201200063. PubMed DOI PMC
Tam R. Y.; Fisher S. A.; Baker A. E. G.; Shoichet M. S. Transparent Porous Polysaccharide Cryogels Provide Biochemically Defined, Biomimetic Matrices for Tunable 3D Cell Culture. Chem. Mater. 2016, 28, 3762–3770. 10.1021/acs.chemmater.6b00627. DOI
Fisher S. A.; Tam R. Y.; Fokina A.; Mahmoodi M. M.; Distefano M. D.; Shoichet M. S. Photo-Immobilized EGF Chemical Gradients Differentially Impact Breast Cancer Cell Invasion and Drug Response in Defined 3D Hydrogels. Biomaterials 2018, 178, 751–766. 10.1016/j.biomaterials.2018.01.032. PubMed DOI PMC
Mahmoodi M. M.; Fisher S. A.; Tam R. Y.; Goff P. C.; Anderson R. B.; Wissinger J. E.; Blank D. A.; Shoichet M. S.; Distefano M. D. 6-Bromo-7-hydroxy-3-methylcoumarin (mBhc) Is an Efficient Multi-Photon Labile Protecting Group for Thiol Caging and Three-Dimensional Chemical Patterning. Org. Biomol. Chem. 2016, 14, 8289–8300. 10.1039/C6OB01045H. PubMed DOI PMC
Sinha D. K.; Neveu P.; Gagey N.; Aujard I.; Benbrahim-Bouzidi C.; Le Saux T.; Rampon C.; Gauron C.; Goetz B.; Dubruille S.; Baaden M.; Volovitch M.; Bensimon D.; Vriz S.; Jullien L. Photocontrol of Protein Activity in Cultured Cells and Zebrafish with One- and Two-Photon Illumination. ChemBioChem 2010, 11, 653–663. 10.1002/cbic.201000008. PubMed DOI
Kim Y. A.; Ramirez D. M. C.; Costain W. J.; Johnston L. J.; Bittman R. A New Tool to Assess Ceramide Bioactivity: 6-Bromo-7-hydroxycoumarinyl-Caged Ceramide. Chem. Commun. 2011, 47, 9236–9238. 10.1039/c1cc12345a. PubMed DOI
Mizukami S.; Hosoda M.; Satake T.; Okada S.; Hori Y.; Furuta T.; Kikuchi K. Photocontrolled Compound Release System Using Caged Antimicrobial Peptide. J. Am. Chem. Soc. 2010, 132, 9524–9525. 10.1021/ja102167m. PubMed DOI
Kawakami T.; Cheng H.; Hashiro S.; Nomura Y.; Tsukiji S.; Furuta T.; Nagamune T. A Caged Phosphopeptide-Based Approach for Photochemical Activation of Kinases in Living Cells. ChemBioChem 2008, 9, 1583–1586. 10.1002/cbic.200800116. PubMed DOI
Perdicakis B.; Montgomery H. J.; Abbott G. L.; Fishlock D.; Lajoie G. A.; Guillemette J. G.; Jervis E. Photocontrol of Nitric Oxide Production in Cell Culture Using a Caged Isoform Selective Inhibitor. Bioorg. Med. Chem. 2005, 13, 47–57. 10.1016/j.bmc.2004.10.002. PubMed DOI
Ando H.; Furuta T.; Tsien R. Y.; Okamoto H. Photo-Mediated Gene Activation Using Caged RNA/DNA in Zebrafish Embryos. Nat. Genet. 2001, 28, 317–325. 10.1038/ng583. PubMed DOI
Rudd A. K.; Devaraj N. K. Traceless Synthesis of Ceramides in Living Cells Reveals Saturation-Dependent Apoptotic Effects. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 7485.10.1073/pnas.1804266115. PubMed DOI PMC
Montgomery H. J.; Perdicakis B.; Fishlock D.; Lajoie G. A.; Jervis E.; Guy Guillemette J. Photo-Control of Nitric Oxide Synthase Activity Using a Caged Isoform Specific Inhibitor. Bioorg. Med. Chem. 2002, 10, 1919–1927. 10.1016/S0968-0896(02)00050-0. PubMed DOI
Feeney M. J.; Hu X.; Srinivasan R.; Van N.; Hunter M.; Georgakoudi I.; Thomas S. W. UV and NIR-Responsive Layer-by-Layer Films Containing 6-Bromo-7-hydroxycoumarin Photolabile Groups. Langmuir 2017, 33, 10877–10885. 10.1021/acs.langmuir.7b01469. PubMed DOI PMC
de Gracia Lux C.; Lux J.; Collet G.; He S.; Chan M.; Olejniczak J.; Foucault-Collet A.; Almutairi A. Short Soluble Coumarin Crosslinkers for Light-Controlled Release of Cells and Proteins from Hydrogels. Biomacromolecules 2015, 16, 3286–3296. 10.1021/acs.biomac.5b00950. PubMed DOI
Owen S. C.; Fisher S. A.; Tam R. Y.; Nimmo C. M.; Shoichet M. S. Hyaluronic Acid Click Hydrogels Emulate the Extracellular Matrix. Langmuir 2013, 29, 7393–7400. 10.1021/la305000w. PubMed DOI
Fomina N.; McFearin C. L.; Sermsakdi M.; Morachis J. M.; Almutairi A. Low Power, Biologically Benign NIR Light Triggers Polymer Disassembly. Macromolecules 2011, 44, 8590–8597. 10.1021/ma201850q. PubMed DOI PMC
Rahman N.; Purpura K. A.; Wylie R. G.; Zandstra P. W.; Shoichet M. S. The Use of Vascular Endothelial Growth Factor Functionalized Agarose to Guide Pluripotent Stem Cell Aggregates Toward Blood Progenitor Cells. Biomaterials 2010, 31, 8262–8270. 10.1016/j.biomaterials.2010.07.040. PubMed DOI
Wylie R. G.; Shoichet M. S. Two-Photon Micropatterning of Amines within an Agarose Hydrogel. J. Mater. Chem. 2008, 18, 2716–2721. 10.1039/b718431j. DOI
Kumar S.; Allard J.-F.; Morris D.; Dory Y. L.; Lepage M.; Zhao Y. Near-Infrared Light Sensitive Polypeptide Block Copolymer Micelles for Drug Delivery. J. Mater. Chem. 2012, 22, 7252–7257. 10.1039/c2jm16380b. DOI
Zhu C.; Bettinger C. J. Light-Induced Remodeling of Physically Crosslinked Hydrogels Using Near-IR Wavelengths. J. Mater. Chem. B 2014, 2, 1613–1618. 10.1039/C3TB21689F. PubMed DOI PMC
Fomina N.; McFearin C. L.; Almutairi A. Increasing Materials’ Response to Two-Photon Nir Light via Self-Immolative Dendritic Scaffolds. Chem. Commun. 2012, 48, 9138–9140. 10.1039/c2cc00072e. PubMed DOI PMC
Ikeda M.; Tanida T.; Yoshii T.; Hamachi I. Rational Molecular Design of Stimulus-Responsive Supramolecular Hydrogels Based on Dipeptides. Adv. Mater. 2011, 23, 2819–2822. 10.1002/adma.201004658. PubMed DOI
Subramaniam R.; Xiao Y.; Li Y.; Qian S. Y.; Sun W.; Mallik S. Light-Mediated and H-Bond Facilitated Liposomal Release: The Role of Lipid Head Groups in Release Efficiency. Tetrahedron Lett. 2010, 51, 529–532. 10.1016/j.tetlet.2009.11.084. DOI
Carter Ramirez D. M.; Pitre S. P.; Kim Y. A.; Bittman R.; Johnston L. J. Photouncaging of Ceramides Promotes Reorganization of Liquid-Ordered Domains in Supported Lipid Bilayers. Langmuir 2013, 29, 3380–3387. 10.1021/la3039158. PubMed DOI PMC
Yoshii T.; Ikeda M.; Hamachi I. Two-Photon-Responsive Supramolecular Hydrogel for Controlling Materials Motion in Micrometer Space. Angew. Chem., Int. Ed. 2014, 53, 7264–7267. 10.1002/anie.201404158. PubMed DOI
Furuta T.; Manabe K.; Teraoka A.; Murakoshi K.; Ohtsubo A.; Suzuki A. Design, Synthesis, and Photochemistry of Modular Caging Groups for Photoreleasable Nucleotides. Org. Lett. 2012, 14, 6182–6185. 10.1021/ol3029093. PubMed DOI
Katayama K.; Tsukiji S.; Furuta T.; Nagamune T. A Bromocoumarin-Based Linker for Synthesis of Photocleavable Peptidoconjugates with High Photosensitivity. Chem. Commun. 2008, 5399–5401. 10.1039/b812058g. PubMed DOI
Biswas S.; Rajesh Y.; Barman S.; Bera M.; Paul A.; Mandal M.; Pradeep Singh N. D. A Dual-Analyte Probe: Hypoxia Activated Nitric Oxide Detection with Phototriggered Drug Release Ability. Chem. Commun. 2018, 54, 7940–7943. 10.1039/C8CC01854E. PubMed DOI
Tarpey M. M.; Wink D. A.; Grisham M. B. Methods for Detection of Reactive Metabolites of Oxygen and Nitrogen: In Vitro and in Vivo Considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 286, R431–R444. 10.1152/ajpregu.00361.2003. PubMed DOI
Zhegalova N. G.; Gonzales G.; Berezin M. Y. Synthesis of Nitric Oxide Probes with Fluorescence Lifetime Sensitivity. Org. Biomol. Chem. 2013, 11, 8228–8234. 10.1039/c3ob41498a. PubMed DOI PMC
Kojima H.; Hirotani M.; Nakatsubo N.; Kikuchi K.; Urano Y.; Higuchi T.; Hirata Y.; Nagano T. Bioimaging of Nitric Oxide with Fluorescent Indicators Based on the Rhodamine Chromophore. Anal. Chem. 2001, 73, 1967–1973. 10.1021/ac001136i. PubMed DOI
Christie R. M.; Lui C.-H. Studies of Fluorescent Dyes: Part 1. An Investigation of the Electronic Spectral Properties of Substituted Coumarins. Dyes Pigm. 1999, 42, 85–93. 10.1016/S0143-7208(99)00012-1. DOI
Gangopadhyay M.; Mukhopadhyay S. K.; Karthik S.; Barman S.; Pradeep Singh N. D. Targeted Photoresponsive TiO2–Coumarin Nanoconjugate for Efficient Combination Therapy in MDA-MB-231 Breast Cancer Cells: Synergic Effect of Photodynamic Therapy (PDT) and Anticancer Drug Chlorambucil. MedChemComm 2015, 6, 769–777. 10.1039/C4MD00481G. DOI
Hagen V.; Kilic F.; Schaal J.; Dekowski B.; Schmidt R.; Kotzur N. [8-[Bis(carboxymethyl)aminomethyl]-6-bromo-7-hydroxycoumarin-4-yl]methyl Moieties as Photoremovable Protecting Groups for Compounds with COOH, NH2, OH, and C=O Functions. J. Org. Chem. 2010, 75, 2790–2797. 10.1021/jo100368w. PubMed DOI
Suzuki A. Z.; Sekine R.; Takeda S.; Aikawa R.; Shiraishi Y.; Hamaguchi T.; Okuno H.; Tamamura H.; Furuta T. A Clickable Caging Group as a New Platform for Modular Caged Compounds with Improved Photochemical Properties. Chem. Commun. 2019, 55, 451–454. 10.1039/C8CC07981A. PubMed DOI
Adamczyk M.; Cornwell M.; Huff J.; Rege S.; Rao T. V. S. Novel 7-Hydroxycoumarin Based Fluorescent Labels. Bioorg. Med. Chem. Lett. 1997, 7, 1985–1988. 10.1016/S0960-894X(97)00345-4. DOI
Suzuki A. Z.; Shiraishi Y.; Aoki H.; Sasaki H.; Watahiki R.; Furuta T. Design, Synthesis, and Photochemical Properties of Clickable Caged Compounds. J. Visualized Exp. 2019, e6002110.3791/60021. PubMed DOI
Barman S.; Mukhopadhyay S. K.; Gangopadhyay M.; Biswas S.; Dey S.; Singh N. D. P. Coumarin–Benzothiazole–Chlorambucil (Cou–Benz–Cbl) Conjugate: An ESIPT Based pH Sensitive Photoresponsive Drug Delivery System. J. Mater. Chem. B 2015, 3, 3490–3497. 10.1039/C4TB02081B. PubMed DOI
Barman S.; Das J.; Biswas S.; Maiti T. K.; Pradeep Singh N. D. A Spiropyran–Coumarin Platform: An Environment Sensitive Photoresponsive Drug Delivery System for Efficient Cancer Therapy. J. Mater. Chem. B 2017, 5, 3940–3944. 10.1039/C7TB00379J. PubMed DOI
Ikegami M.; Arai T. Photoinduced Intramolecular Hydrogen Atom Transfer in 2-(2-Hydroxyphenyl)benzoxazole and 2-(2-Hydroxyphenyl)benzothiazole Studied by Laser Flash Photolysis. J. Chem. Soc. Perk. T. 2002, 2, 1296–1301. 10.1039/b202559k. DOI
Zhao J.; Ji S.; Chen Y.; Guo H.; Yang P. Excited State Intramolecular Proton Transfer (ESIPT): From Principal Photophysics to the Development of New Chromophores and Applications in Fluorescent Molecular Probes and Luminescent Materials. Phys. Chem. Chem. Phys. 2012, 14, 8803–8817. 10.1039/C2CP23144A. PubMed DOI
Wojtyk J. T. C.; Wasey A.; Xiao N.-N.; Kazmaier P. M.; Hoz S.; Yu C.; Lemieux R. P.; Buncel E. Elucidating the Mechanisms of Acidochromic Spiropyran-Merocyanine Interconversion. J. Phys. Chem. A 2007, 111, 2511–2516. 10.1021/jp068575r. PubMed DOI
Takano H.; Narumi T.; Ohashi N.; Suzuki A.; Furuta T.; Nomura W.; Tamamura H. Development of the 8-Aza-3-bromo-7-hydroxycoumarin-4-ylmethyl Group as a New Entry of Photolabile Protecting Groups. Tetrahedron 2014, 70, 4400–4404. 10.1016/j.tet.2014.04.063. DOI
Klausen M.; Dubois V.; Clermont G.; Tonnelé C.; Castet F.; Blanchard-Desce M. Dual-Wavelength Efficient Two-Photon Photorelease of Glycine by π-Extended Dipolar Coumarins. Chem. Sci. 2019, 10, 4209–4219. 10.1039/C9SC00148D. PubMed DOI PMC
Bojtár M.; Németh K.; Domahidy F.; Knorr G.; Verkman A.; Kállay M.; Kele P. Conditionally Activatable Visible-Light Photocages. J. Am. Chem. Soc. 2020, 142, 15164–15171. 10.1021/jacs.0c07508. PubMed DOI PMC
Chitose Y.; Abe M.; Furukawa K.; Katan C. Design, Synthesis, and Reaction of π-Extended Coumarin-based New Caged Compounds with Two-photon Absorption Character in the Near-IR Region. Chem. Lett. 2016, 45, 1186–1188. 10.1246/cl.160586. DOI
Chitose Y.; Abe M.; Furukawa K.; Lin J.-Y.; Lin T.-C.; Katan C. Design and Synthesis of a Caged Carboxylic Acid with a Donor-π–Donor Coumarin Structure: One-photon and Two-photon Uncaging Reactions Using Visible and Near-Infrared Lights. Org. Lett. 2017, 19, 2622–2625. 10.1021/acs.orglett.7b00957. PubMed DOI
Balaiah V.; Seshadri T. R.; Venkateswarlu V. Visible Fluorescence and Chemical Constitution of Compounds of the Benzopyrone Group. Proc. - Indian Acad. Sci., Sect. A 1942, 16, 68.10.1007/BF03177739. DOI
Drexhage K. H.Structure and Properties of Laser Dyes; In Dye Lasers; Schäfer F. P., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 1990.
Kuznetsova N. y. A.; Kaliya O. L. The Photochemistry of Coumarins. Russ. Chem. Rev. 1992, 61, 683–696. 10.1070/RC1992v061n07ABEH000992. DOI
Griffiths J.; Millar V.; Bahra G. S. The Influence of Chain Length and Electron Acceptor Residues in 3-Substituted 7-N,N-Diethylaminocoumarin Dyes. Dyes Pigm. 1995, 28, 327–339. 10.1016/0143-7208(95)00024-A. DOI
Schiedel M.-S.; Briehn C. A.; Bäuerle P. Single-Compound Libraries of Organic Materials: Parallel Synthesis and Screening of Fluorescent Dyes. Angew. Chem., Int. Ed. 2001, 40, 4677–4680. 10.1002/1521-3773(20011217)40:24<4677::AID-ANIE4677>3.0.CO;2-U. PubMed DOI
Schill H.; Nizamov S.; Bottanelli F.; Bierwagen J.; Belov V. N.; Hell S. W. 4-Trifluoromethyl-Substituted Coumarins with Large Stokes Shifts: Synthesis, Bioconjugates, and Their Use in Super-Resolution Fluorescence Microscopy. Chem. - Eur. J. 2013, 19, 16556–16565. 10.1002/chem.201302037. PubMed DOI
Tang X.-J.; Wu Y.; Zhao R.; Kou X.; Dong Z.; Zhou W.; Zhang Z.; Tan W.; Fang X. Photorelease of Pyridines Using a Metal-Free Photoremovable Protecting Group. Angew. Chem., Int. Ed. 2020, 59, 18386.10.1002/anie.202005310. PubMed DOI
Amatrudo J. M.; Olson J. P.; Lur G.; Chiu C. Q.; Higley M. J.; Ellis-Davies G. C. R. Wavelength-Selective One- and Two-Photon Uncaging of GABA. ACS Chem. Neurosci. 2014, 5, 64–70. 10.1021/cn400185r. PubMed DOI PMC
Agarwal H. K.; Zhai S.; Surmeier D. J.; Ellis-Davies G. C. R. Intracellular Uncaging of cGMP with Blue Light. ACS Chem. Neurosci. 2017, 8, 2139–2144. 10.1021/acschemneuro.7b00237. PubMed DOI PMC
Passlick S.; Kramer P. F.; Richers M. T.; Williams J. T.; Ellis-Davies G. C. R. Two-Color, One-Photon Uncaging of Glutamate and GABA. PLoS One 2017, 12, e018773210.1371/journal.pone.0187732. PubMed DOI PMC
Richers M. T.; Amatrudo J. M.; Olson J. P.; Ellis-Davies G. C. R. Cloaked Caged Compounds: Chemical Probes for Two-Photon Optoneurobiology. Angew. Chem., Int. Ed. 2017, 56, 193–197. 10.1002/anie.201609269. PubMed DOI PMC
Matsuzaki M.; Hayama T.; Kasai H.; Ellis-Davies G. C. R. Two-Photon Uncaging of γ-Aminobutyric Acid in Intact Brain Tissue. Nat. Chem. Biol. 2010, 6, 255–257. 10.1038/nchembio.321. PubMed DOI PMC
Hiblot J.; Yu Q.; Sabbadini M. D. B.; Reymond L.; Xue L.; Schena A.; Sallin O.; Hill N.; Griss R.; Johnsson K. Luciferases with Tunable Emission Wavelengths. Angew. Chem., Int. Ed. 2017, 56, 14556–14560. 10.1002/anie.201708277. PubMed DOI
Chang D.; Lindberg E.; Feng S.; Angerani S.; Riezman H.; Winssinger N. Luciferase-Induced Photouncaging: Bioluminolysis. Angew. Chem., Int. Ed. 2019, 58, 16033–16037. 10.1002/anie.201907734. PubMed DOI
Belfield K. D.; Morales A. R.; Kang B.-S.; Hales J. M.; Hagan D. J.; Van Stryland E. W.; Chapela V. M.; Percino J. Synthesis, Characterization, and Optical Properties of New Two-Photon-Absorbing Fluorene Derivatives. Chem. Mater. 2004, 16, 4634–4641. 10.1021/cm049872g. DOI
Preat J.; Jacquemin D.; Perpète E. A. Theoretical Investigations of the UV Spectra of Coumarin Derivatives. Chem. Phys. Lett. 2005, 415, 20–24. 10.1016/j.cplett.2005.08.135. DOI
Tasior M.; Kim D.; Singha S.; Krzeszewski M.; Ahn K. H.; Gryko D. T. π-Expanded Coumarins: Synthesis, Optical Properties and Applications. J. Mater. Chem. C 2015, 3, 1421–1446. 10.1039/C4TC02665A. DOI
Piloto A. M.; Rovira D.; Costa S. P. G.; Gonçalves M. S. T. Oxobenzo[f]benzopyrans as New Fluorescent Photolabile Protecting Groups for the Carboxylic Function. Tetrahedron 2006, 62, 11955–11962. 10.1016/j.tet.2006.09.085. DOI
Fernandes M. J. G.; Costa S. P. G.; Gonçalves M. S. T. Phototriggering of Neuroactive Amino Acids From 5,6-Benzocoumarinyl Conjugates. Tetrahedron 2011, 67, 2422–2426. 10.1016/j.tet.2011.01.090. DOI
Fernandes M. J. G.; Gonçalves M. S. T.; Costa S. P. G. Neurotransmitter Amino Acid—Oxobenzo[f]benzopyran Conjugates: Synthesis and Photorelease Studies. Tetrahedron 2008, 64, 11175–11179. 10.1016/j.tet.2008.09.050. DOI
Soares A. M. S.; Costa S. P. G.; Gonçalves M. S. T. 2-Oxo-2H-Benzo[h]benzopyran as a New Light Sensitive Protecting Group for Neurotransmitter Amino Acids. Amino Acids 2010, 39, 121–133. 10.1007/s00726-009-0383-z. PubMed DOI
Soares A. M. S.; Hungerford G.; Costa S. P. G.; Gonçalves M. S. T. Photoactivation of Butyric Acid from 6-Aminobenzocoumarin Cages. Eur. J. Org. Chem. 2015, 2015, 5979–5986. 10.1002/ejoc.201500396. DOI
Piloto A. M.; Soares A. M. S.; Hungerford G.; Costa S. P. G.; Gonçalves M. S. T. Long-Wavelength Photolysis of Amino Acid 6-(Methoxy-2-oxo-2H-naphtho[1,2-b]pyran-4-yl)methyl Esters. Eur. J. Org. Chem. 2011, 2011, 5447–5451. 10.1002/ejoc.201100391. DOI
Soares A. M. S.; Hungerford G.; Gonçalves M. S. T.; Costa S. P. G. Light Triggering of 5-Aminolevulinic Acid From Fused Coumarin Ester Cages. New J. Chem. 2017, 41, 2997–3005. 10.1039/C6NJ03787A. DOI
Soares A. M. S.; Hungerford G.; Costa S. P. G.; Gonçalves M. S. T. Aminobenzocoumarinylmethyl Esters as Photoactive Precursors for the Release of Butyric Acid. New J. Chem. 2015, 39, 7227–7233. 10.1039/C5NJ00699F. DOI
Sakamoto Y.; Boinapally S.; Katan C.; Abe M. Synthesis and Photochemical Reactivity of Caged Glutamates with a π-Extended Coumarin Chromophore as a Photolabile Protecting Group. Tetrahedron Lett. 2013, 54, 7171–7174. 10.1016/j.tetlet.2013.10.107. DOI
Soares A. M. S.; Hungerford G.; Costa S. P. G.; Gonçalves M. S. T. Photoactivatable Prodrugs of Butyric Acid Based on New Coumarin Fused Oxazole Heterocycles. Dyes Pigm. 2017, 137, 91–100. 10.1016/j.dyepig.2016.10.001. DOI
Yu J.; Shirota Y. A New Class of High-Performance Red-Fluorescent Dyes for Organic Electroluminescent Devices, [7-Diethylamino-3-(2-thienyl)chromen-2-ylidene]-2,2-dicyanovinylamine and {10-(2-Thienyl)-2,3,6,7-tetrahydro-1H,5H-chromeno[8,7,6-ij]quinolizin-11-ylidene}-2,2-dicyanovinylamine. Chem. Lett. 2002, 31, 984–985. 10.1246/cl.2002.984. DOI
Tkach I. I.; Reznichenko A. V.; Luk’yanets E. A. Reaction of 4-Diethylaminosalicylaldehyde with Malononitrile. Chem. Heterocycl. Compd. 1992, 28, 872–880. 10.1007/BF00531317. DOI
Gandioso A.; Bresolí-Obach R.; Nin-Hill A.; Bosch M.; Palau M.; Galindo A.; Contreras S.; Rovira A.; Rovira C.; Nonell S.; Marchán V. Redesigning the Coumarin Scaffold into Small Bright Fluorophores with Far-Red to Near-Infrared Emission and Large Stokes Shifts Useful for Cell Imaging. J. Org. Chem. 2018, 83, 1185–1195. 10.1021/acs.joc.7b02660. PubMed DOI
Kirpichenok M. A.; Gorozhankin S. K.; Grandberg I. I. Reactions of 7-Aminocoumarins Leading to Alkylidenebenzopyrans. Chem. Heterocycl. Compd. 1988, 24, 611–616. 10.1007/BF00475593. DOI
Maciejewski A.; Steer R. P. The Photophysics, Physical Photochemistry, and Related Spectroscopy of Thiocarbonyls. Chem. Rev. 1993, 93, 67–98. 10.1021/cr00017a005. DOI
Steer R. P.; Ramamurthy V. Photophysics and Intramolecular Photochemistry of Thiones in Solution. Acc. Chem. Res. 1988, 21, 380–386. 10.1021/ar00154a005. DOI
Becker R. S.; Chakravorti S.; Gartner C. A.; de Graca Miguel M. Photosensitizers: Comprehensive Photophysics/Photochemistry and Theory of Coumarins, Chromones, Their Homologues and Thione Analogues. J. Chem. Soc., Faraday Trans. 1993, 89, 1007–1019. 10.1039/ft9938901007. DOI
Bhattacharyya K.; Das P. K.; Ramamurthy V.; Rao V. P. Triplet-State Photophysics and Transient Photochemistry of Cyclic Enethiones. A Laser Flash Photolysis Study. J. Chem. Soc., Faraday Trans. 2 1986, 82, 135–147. 10.1039/f29868200135. DOI
Burdzinski G.; Buntinx G.; Poizat O.; Lapouge C. Time-Resolved Resonance Raman Investigation and Ab Initio Calculations of the T1-State Structure of Thiocoumarin. J. Mol. Struct. 2005, 735-736, 115–122. 10.1016/j.molstruc.2004.10.079. DOI
Devanathan S.; Ramamurthy V. Photochemistry of α,β-Unsaturated Thiones: Cycloaddition of Thiocoumarin to Electron-Rich and Electron-Deficient Olefins From T1. J. Org. Chem. 1988, 53, 741–744. 10.1021/jo00239a007. DOI
Fonseca A. S. C.; Gonçalves M. S. T.; Costa S. P. G. Phenacyl Ester Derivatives Bearing Heterocycles as Models for Photocleavable Linkers: Synthesis and Photolysis Studies. Tetrahedron 2012, 68, 8024–8032. 10.1016/j.tet.2012.06.100. DOI
Chen Z.; Sun W.; Butt H.-J.; Wu S. Upconverting-Nanoparticle-Assisted Photochemistry Induced by Low-Intensity Near-Infrared Light: How Low Can We Go?. Chem. - Eur. J. 2015, 21, 9165–9170. 10.1002/chem.201500108. PubMed DOI
Sinha D. K.; Neveu P.; Gagey N.; Aujard I.; Le Saux T.; Rampon C.; Gauron C.; Kawakami K.; Leucht C.; Bally-Cuif L.; Volovitch M.; Bensimon D.; Jullien L.; Vriz S. Photoactivation of the CreERT2 Recombinase for Conditional Site-Specific Recombination with High Spatiotemporal Resolution. Zebrafish 2010, 7, 199–204. 10.1089/zeb.2009.0632. PubMed DOI
Fournier L.; Gauron C.; Xu L.; Aujard I.; Le Saux T.; Gagey-Eilstein N.; Maurin S.; Dubruille S.; Baudin J.-B.; Bensimon D.; Volovitch M.; Vriz S.; Jullien L. A Blue-Absorbing Photolabile Protecting Group for in Vivo Chromatically Orthogonal Photoactivation. ACS Chem. Biol. 2013, 8, 1528–1536. 10.1021/cb400178m. PubMed DOI
Manna D.; Maji B.; Gangopadhyay S. A.; Cox K. J.; Zhou Q.; Law B. K.; Mazitschek R.; Choudhary A. A Singular System with Precise Dosing and Spatiotemporal Control of CRISPR-Cas9. Angew. Chem., Int. Ed. 2019, 58, 6285–6289. 10.1002/anie.201900788. PubMed DOI PMC
Piloto A. M.; Soares A. M. S.; Costa S. P. G.; Gonçalves M. S. T. Photorelease of Amino Acids From Novel Thioxobenzo[f]benzopyran Ester Conjugates. Amino Acids 2012, 42, 2275–2282. 10.1007/s00726-011-0969-0. PubMed DOI
Piloto A. M.; Hungerford G.; Sutter J. U.; Soares A. M. S.; Costa S. P. G.; Gonçalves M. S. T. Photoactivable Heterocyclic Cages in a Comparative Release Study of Butyric Acid as a Model Drug. J. Photochem. Photobiol., A 2015, 299, 44–53. 10.1016/j.jphotochem.2014.10.016. DOI
Gandioso A.; Cano M.; Massaguer A.; Marchán V. A Green Light-Triggerable RGD Peptide for Photocontrolled Targeted Drug Delivery: Synthesis and Photolysis Studies. J. Org. Chem. 2016, 81, 11556–11564. 10.1021/acs.joc.6b02415. PubMed DOI
Gandioso A.; Contreras S.; Melnyk I.; Oliva J.; Nonell S.; Velasco D.; García-Amorós J.; Marchán V. Development of Green/Red-Absorbing Chromophores Based on a Coumarin Scaffold That Are Useful as Caging Groups. J. Org. Chem. 2017, 82, 5398–5408. 10.1021/acs.joc.7b00788. PubMed DOI
Deiters A.; Garner R. A.; Lusic H.; Govan J. M.; Dush M.; Nascone-Yoder N. M.; Yoder J. A. Photocaged Morpholino Oligomers for the Light-Regulation of Gene Function in Zebrafish and Xenopus Embryos. J. Am. Chem. Soc. 2010, 132, 15644–15650. 10.1021/ja1053863. PubMed DOI PMC
Ouyang X.; Shestopalov I. A.; Sinha S.; Zheng G.; Pitt C. L. W.; Li W.-H.; Olson A. J.; Chen J. K. Versatile Synthesis and Rational Design of Caged Morpholinos. J. Am. Chem. Soc. 2009, 131, 13255–13269. 10.1021/ja809933h. PubMed DOI PMC
Tallafuss A.; Gibson D.; Morcos P.; Li Y.; Seredick S.; Eisen J.; Washbourne P. Turning Gene Function ON and OFF Using Sense and Antisense Photo-Morpholinos in Zebrafish. Development 2012, 139, 1691–1699. 10.1242/dev.072702. PubMed DOI PMC
Yamazoe S.; Shestopalov I. A.; Provost E.; Leach S. D.; Chen J. K. Cyclic Caged Morpholinos: Conformationally Gated Probes of Embryonic Gene Function. Angew. Chem., Int. Ed. 2012, 51, 6908–6911. 10.1002/anie.201201690. PubMed DOI PMC
Ohta H.; Tokumaru K. Photolysis of Aromatic Oxime Esters. Finding of Aromatic Substitution by Diphenylmethyleneimino Radicals. Bull. Chem. Soc. Jpn. 1975, 48, 2393–2394. 10.1246/bcsj.48.2393. DOI
Qiu W.; Li M.; Yang Y.; Li Z.; Dietliker K. Cleavable Coumarin-Based Oxime Esters with Terminal Heterocyclic Moieties: Photobleachable Initiators for Deep Photocuring Under Visible LED Light Irradiation. Polym. Chem. 2020, 11, 1356–1363. 10.1039/C9PY01690B. DOI
Hwu J. R.; Tsay S.-C.; Hong S. C.; Leu Y.-J.; Liu C.-F.; Chou S.-S. P. Oxime Esters of Anthraquinone as Photo-Induced DNA-Cleaving Agents for Single- and Double-Strand Scissions. Tetrahedron Lett. 2003, 44, 2957–2960. 10.1016/S0040-4039(03)00375-7. DOI
Hwu J. R.; Yang J.-R.; Tsay S.-C.; Hsu M.-H.; Chen Y.-C.; Chou S.-S. P. Photo-Induced DNA Cleavage by (Heterocyclo)carbonyl Oxime Esters of Anthraquinone. Tetrahedron Lett. 2008, 49, 3312–3315. 10.1016/j.tetlet.2008.03.056. DOI
Fast D. E.; Lauer A.; Menzel J. P.; Kelterer A.-M.; Gescheidt G.; Barner-Kowollik C. Wavelength-Dependent Photochemistry of Oxime Ester Photoinitiators. Macromolecules 2017, 50, 1815–1823. 10.1021/acs.macromol.7b00089. DOI
Singh A. K.; Khade P. K. Anthracene-9-methanol—A Novel Fluorescent Phototrigger for Biomolecular Caging. Tetrahedron Lett. 2005, 46, 5563–5566. 10.1016/j.tetlet.2005.06.026. DOI
Boháčová S.; Ludvíková L.; Poštová Slavĕtínská L.; Vaníková Z.; Klán P.; Hocek M. Protected 5-(Hydroxymethyl)uracil Nucleotides Bearing Visible-Light Photocleavable Groups as Building Blocks for Polymerase Synthesis of Photocaged DNA. Org. Biomol. Chem. 2018, 16, 1527–1535. 10.1039/C8OB00160J. PubMed DOI
Vittorino E.; Cicciarella E.; Sortino S. A “Dual-Function” Photocage Releasing Nitric Oxide and an Anthrylmethyl Cation with a Single Wavelength Light. Chem. - Eur. J. 2009, 15, 6802–6806. 10.1002/chem.200901037. PubMed DOI
Hu P.; Berning K.; Lam Y.-W.; Ng I. H.-M.; Yeung C.-C.; Lam M. H.-W. Development of a Visible Light Triggerable Traceless Staudinger Ligation Reagent. J. Org. Chem. 2018, 83, 12998–13010. 10.1021/acs.joc.8b01370. PubMed DOI
Nikitin K.; Müller-Bunz H.; Ortin Y.; Muldoon J.; McGlinchey M. J. Restricted Rotation in 9-Phenyl-anthracenes: A Prediction Fulfilled. Org. Lett. 2011, 13, 256–259. 10.1021/ol102665y. PubMed DOI
Nazir R.; Thorsted B.; Balčiunas E.; Mazur L.; Deperasińska I.; Samoć M.; Brewer J.; Farsari M.; Gryko D. T. π-Expanded 1,3-Diketones – Synthesis, Optical Properties and Application in Two-Photon Polymerization. J. Mater. Chem. C 2016, 4, 167–177. 10.1039/C5TC03334A. DOI
Shah L.; Laughlin S. T.; Carrico I. S. Light-Activated Staudinger–Bertozzi Ligation within Living Animals. J. Am. Chem. Soc. 2016, 138, 5186–5189. 10.1021/jacs.5b13401. PubMed DOI PMC
Hu P.; Feng T.; Yeung C.-C.; Koo C.-K.; Lau K.-C.; Lam M. H. W. A Photo-Triggered Traceless Staudinger–Bertozzi Ligation Reaction. Chem. - Eur. J. 2016, 22, 11537–11542. 10.1002/chem.201601807. PubMed DOI
Saxon E.; Armstrong J. I.; Bertozzi C. R. A “Traceless” Staudinger Ligation for the Chemoselective Synthesis of Amide Bonds. Org. Lett. 2000, 2, 2141–2143. 10.1021/ol006054v. PubMed DOI
Zhuang H.-B.; Tang W.-J.; Yu J.-Y.; Song Q.-H. Acridin-9-ylmethoxycarbonyl (Amoc): A New Photochemically Removable Protecting Group for Alcohols. Chin. J. Chem. 2006, 24, 1465–1468. 10.1002/cjoc.200690276. DOI
Jana A.; Saha B.; Karthik S.; Barman S.; Ikbal M.; Ghosh S. K.; Pradeep Singh N. D. Fluorescent Photoremovable Precursor (Acridin-9-ylmethyl)ester: Synthesis, Photophysical, Photochemical and Biological Applications. Photochem. Photobiol. Sci. 2013, 12, 1041–1052. 10.1039/c3pp25362g. PubMed DOI
Piloto A. M.; Hungerford G.; Costa S. P. G.; Gonçalves M. S. T. Acridinyl Methyl Esters as Photoactive Precursors in the Release of Neurotransmitteramino Acids. Photochem. Photobiol. Sci. 2013, 12, 339–347. 10.1039/C2PP25261A. PubMed DOI
Ikbal M.; Saha B.; Barman S.; Atta S.; Banerjee D. R.; Ghosh S. K.; Singh N. D. P. Benzo[a]Acridinylmethyl Esters as pH Sensitive Fluorescent Photoactive Precursors: Synthesis, Photophysical, Photochemical and Biological Applications. Org. Biomol. Chem. 2014, 12, 3459–3469. 10.1039/c3ob42600a. PubMed DOI
Kapuscinski J.; Darzynkiewicz Z. Interactions of Acridine Orange with Double Stranded Nucleic Acids. Spectral and Affinity Studies. J. Biomol. Struct. Dyn. 1987, 5, 127–143. 10.1080/07391102.1987.10506381. PubMed DOI
Sayed M.; Krishnamurthy B.; Pal H. Unraveling Multiple Binding Modes of Acridine Orange to DNA Using a Multispectroscopic Approach. Phys. Chem. Chem. Phys. 2016, 18, 24642–24653. 10.1039/C6CP03716J. PubMed DOI
von Tscharner V.; Schwarz G. Complex Formation of Acridine Orange with Single-Stranded Polyriboadenylic Acid and 5′-AMP: Cooperative Binding and Intercalation Between Bases. Biophys. Struct. Mech. 1979, 5, 75–90. 10.1007/BF00535774. PubMed DOI
Jana A.; Atta S.; Sarkar S. K.; Singh N. D. P. 1-Acetylpyrene with Dual Functions as an Environment-Sensitive Fluorophore and Fluorescent Photoremovable Protecting Group. Tetrahedron 2010, 66, 9798–9807. 10.1016/j.tet.2010.10.090. DOI
Furuta T.; Torigai H.; Osawa T.; Iwamura M. New Photochemically Labile Protecting Group for Phosphates. Chem. Lett. 1993, 22, 1179–1182. 10.1246/cl.1993.1179. DOI
Fernandes M. J. G.; Gonçalves M. S. T.; Costa S. P. G. Photorelease of Amino Acid Neurotransmitters From Pyrenylmethyl Ester Conjugates. Tetrahedron 2007, 63, 10133–10139. 10.1016/j.tet.2007.07.107. DOI
Iwamura M.; Hodota C.; Ishibashi M. 1-(α-Diazobenzyl)pyrene: A Reagent for Photolabile and Fluorescent Protection of Carboxyl Groups of Amino Acids and Peptides. Synlett 1991, 1991, 35–36. 10.1055/s-1991-20619. DOI
Okada S.; Yamashita S.; Furuta T.; Iwamura M. (1-Pyrenyl)methyl Carbamates for Fluorescent “Caged” Amino Acids and Peptides. Photochem. Photobiol. 1995, 61, 431–434. 10.1111/j.1751-1097.1995.tb02340.x. DOI
Pukenas L.; Prompinit P.; Nishitha B.; Tate D. J.; Singh N. D. P.; Wälti C.; Evans S. D.; Bushby R. J. Soft Ultraviolet (UV) Photopatterning and Metallization of Self-Assembled Monolayers (SAMs) Formed from the Lipoic Acid Ester of α-Hydroxy-1-acetylpyrene: The Generality of Acid-Catalyzed Removal of Thiol-on-Gold SAMs using Soft UV Light. ACS Appl. Mater. Interfaces 2017, 9, 18388–18397. 10.1021/acsami.7b04708. PubMed DOI
Jana A.; Saha B.; Ikbal M.; Ghosh S. K.; Singh N. D. P. 1-(Hydroxyacetyl)pyrene a New Fluorescent Phototrigger for Cell Imaging and Caging of Alcohols, Phenol and Adenosine. Photochem. Photobiol. Sci. 2012, 11, 1558–1566. 10.1039/c2pp25091h. PubMed DOI
Armbruster C.; Knapp M.; Rechthaler K.; Schamschule R.; Parusel A. B. J.; Köhler G.; Wehrmann W. Fluorescence Properties of 1-Heptanoylpyrene: A Probe for Hydrogen Bonding in Microaggregates and Biological Membranes. J. Photochem. Photobiol., A 1999, 125, 29–38. 10.1016/S1010-6030(99)00099-4. DOI
Jana A.; Ikbal M.; Singh N. D. P. Perylen-3-ylmethyl: Fluorescent Photoremovable Protecting Group (FPRPG) for Carboxylic Acids and Alcohols. Tetrahedron 2012, 68, 1128–1136. 10.1016/j.tet.2011.11.074. DOI
Zimmerman H. E. The Meta Effect in Organic Photochemistry: Mechanistic and Exploratory Organic Photochemistry. J. Am. Chem. Soc. 1995, 117, 8988–8991. 10.1021/ja00140a014. DOI
Zimmerman H. E. Meta-Ortho Effect in Organic Photochemistry: Mechanistic and Exploratory Organic Photochemistry. J. Phys. Chem. A 1998, 102, 5616–5621. 10.1021/jp9803182. DOI
Zimmerman H. E.; Sandel V. R. Mechanistic Organic Photochemistry. II. Solvolytic Photochemical Reactions. J. Am. Chem. Soc. 1963, 85, 915–922. 10.1021/ja00890a019. DOI
Pincock J. A. Photochemistry of Arylmethyl Esters in Nucleophilic Solvents: Radical Pair and Ion Pair Intermediates. Acc. Chem. Res. 1997, 30, 43–49. 10.1021/ar960177r. DOI
Jana A.; Nguyen K. T.; Li X.; Zhu P.; Tan N. S.; Ågren H.; Zhao Y. Perylene-Derived Single-Component Organic Nanoparticles with Tunable Emission: Efficient Anticancer Drug Carriers with Real-Time Monitoring of Drug Release. ACS Nano 2014, 8, 5939–5952. 10.1021/nn501073x. PubMed DOI
Truong V. X.; Li F.; Forsythe J. S. Photolabile Hydrogels Responsive to Broad Spectrum Visible Light for Selective Cell Release. ACS Appl. Mater. Interfaces 2017, 9, 32441–32445. 10.1021/acsami.7b11517. PubMed DOI
Truong V. X. Break Up to Make Up: Utilization of Photocleavable Groups in Biolabeling of Hydrogel Scaffolds. ChemPhotoChem. 2020, 4, 564–570. 10.1002/cptc.202000072. DOI
Dong J.; Zhang R.; Wu H.; Zhan X.; Yang H.; Zhu S.; Wang G. Polymer Nanoparticles for Controlled Release Stimulated by Visible Light and pH. Macromol. Rapid Commun. 2014, 35, 1255–1259. 10.1002/marc.201400078. PubMed DOI
Wang G.; Dong J.; Yuan T.; Zhang J.; Wang L.; Wang H. Visible Light and pH Responsive Polymer-Coated Mesoporous Silica Nanohybrids for Controlled Release. Macromol. Biosci. 2016, 16, 990–994. 10.1002/mabi.201600008. PubMed DOI
Liu G.; Wang X.; Hu J.; Zhang G.; Liu S. Self-Immolative Polymersomes for High-Efficiency Triggered Release and Programmed Enzymatic Reactions. J. Am. Chem. Soc. 2014, 136, 7492–7497. 10.1021/ja5030832. PubMed DOI
Kasai H.; Oikawa H.; Okada S.; Nakanishi H. Crystal Growth of Perylene Microcrystals in the Reprecipitation Method. Bull. Chem. Soc. Jpn. 1998, 71, 2597–2601. 10.1246/bcsj.71.2597. DOI
Jana A.; Devi K. S. P.; Maiti T. K.; Singh N. D. P. Perylene-3-ylmethanol: Fluorescent Organic Nanoparticles as a Single-Component Photoresponsive Nanocarrier with Real-Time Monitoring of Anticancer Drug Release. J. Am. Chem. Soc. 2012, 134, 7656–7659. 10.1021/ja302482k. PubMed DOI
Atta S.; Bera M.; Chattopadhyay T.; Paul A.; Ikbal M.; Maiti M. K.; Singh N. D. P. Nano-Pesticide Formulation Based on Fluorescent Organic Photoresponsive Nanoparticles: For Controlled Release of 2,4-D and Real Time Monitoring of Morphological Changes Induced by 2,4-D in Plant Systems. RSC Adv. 2015, 5, 86990–86996. 10.1039/C5RA17121K. DOI
Barman S.; Mukhopadhyay S. K.; Behara K. K.; Dey S.; Singh N. D. P. 1-Acetylpyrene–Salicylic Acid: Photoresponsive Fluorescent Organic Nanoparticles for the Regulated Release of a Natural Antimicrobial Compound, Salicylic Acid. ACS Appl. Mater. Interfaces 2014, 6, 7045–7054. 10.1021/am500965n. PubMed DOI
Norris S.; Warner C. C.; Thooft A. M.; Demirci S. K.; Lampkin B. J.; Miner K.; Ellern A.; VanVeller B. Blue-Light Photocleavable Protecting Groups Based on Benzothiadiazole Scaffolds. Org. Lett. 2020, 22, 270–273. 10.1021/acs.orglett.9b04268. PubMed DOI
Perrotta R. R.; Winter A. H.; Falvey D. E. Photochemical Heterolysis of 3,5-Bis(dimethylamino)benzyl Alcohols and Esters: Generation of a Benzyl Cation with a Low-Energy Triplet State. Org. Lett. 2011, 13, 212–215. 10.1021/ol102606m. PubMed DOI
Škalamera Đ.; Blažek Bregović V.; Antol I.; Bohne C.; Basarić N. Hydroxymethylaniline Photocages for Carboxylic Acids and Alcohols. J. Org. Chem. 2017, 82, 12554–12568. 10.1021/acs.joc.7b02314. PubMed DOI
Winter A. H.; Falvey D. E.; Cramer C. J.; Gherman B. F. Benzylic Cations with Triplet Ground States: Computational Studies of Aryl Carbenium Ions, Silylenium Ions, Nitrenium Ions, and Oxenium Ions Substituted with Meta π Donors. J. Am. Chem. Soc. 2007, 129, 10113–10119. 10.1021/ja070143m. PubMed DOI
Reinfelds M.; von Cosel J.; Falahati K.; Hamerla C.; Slanina T.; Burghardt I.; Heckel A. A New Photocage Derived from Fluorene. Chem. - Eur. J. 2018, 24, 13026–13035. 10.1002/chem.201802390. PubMed DOI
Bera M.; Maji S.; Paul A.; Ray S.; Maiti T. K.; Singh N. D. P. A Water Soluble Light Activated Hydrogen Sulfide Donor Induced by an Excited State meta Effect. Org. Biomol. Chem. 2019, 17, 9059–9064. 10.1039/C9OB01502G. PubMed DOI
Wang P.; Lu W.; Devalankar D.; Ding Z. Photochemical Formation and Cleavage of C–N Bond. Org. Lett. 2015, 17, 170–172. 10.1021/ol503473c. PubMed DOI
Wang P.; Lu W.; Devalankar D. A.; Ding Z. Structurally Simple Benzyl-Type Photolabile Protecting Groups for Direct Release of Alcohols and Carboxylic Acids. Org. Lett. 2015, 17, 2114–2117. 10.1021/acs.orglett.5b00699. PubMed DOI
Wang P.; Devalankar D. A.; Lu W. Photochemical Cleavage of Benzylic C–N Bond To Release Amines. J. Org. Chem. 2016, 81, 6195–6200. 10.1021/acs.joc.6b00508. PubMed DOI
Freccero M.; Fagnoni M.; Albini A. Homolytic vs Heterolytic Paths in the Photochemistry of Haloanilines. J. Am. Chem. Soc. 2003, 125, 13182–13190. 10.1021/ja036000r. PubMed DOI
Zhu Y.; Pavlos C. M.; Toscano J. P.; Dore T. M. 8-Bromo-7-hydroxyquinoline as a Photoremovable Protecting Group for Physiological Use: Mechanism and Scope. J. Am. Chem. Soc. 2006, 128, 4267–4276. 10.1021/ja0555320. PubMed DOI
Davis M. J.; Kragor C. H.; Reddie K. G.; Wilson H. C.; Zhu Y.; Dore T. M. Substituent Effects on the Sensitivity of a Quinoline Photoremovable Protecting Group to One- and Two-Photon Excitation. J. Org. Chem. 2009, 74, 1721–1729. 10.1021/jo802658a. PubMed DOI
Asad N.; Deodato D.; Lan X.; Widegren M. B.; Phillips D. L.; Du L.; Dore T. M. Photochemical Activation of Tertiary Amines for Applications in Studying Cell Physiology. J. Am. Chem. Soc. 2017, 139, 12591–12600. 10.1021/jacs.7b06363. PubMed DOI
Deodato D.; Asad N.; Dore T. M. Photorearrangement of Quinoline-Protected Dialkylanilines and the Photorelease of Aniline-Containing Biological Effectors. J. Org. Chem. 2019, 84, 7342–7353. 10.1021/acs.joc.9b01031. PubMed DOI
Huang J.; Muliawan A. P.; Ma J.; Li M. D.; Chiu H. K.; Lan X.; Deodato D.; Phillips D. L.; Dore T. M. A Spectroscopic Study of the Excited State Proton Transfer Processes of (8-Bromo-7-hydroxyquinolin-2-yl)methyl-Protected Phenol in Aqueous Solutions. Photochem. Photobiol. Sci. 2017, 16, 575–584. 10.1039/C6PP00377J. PubMed DOI
Rea A. C.; Vandenberg L. N.; Ball R. E.; Snouffer A. A.; Hudson A. G.; Zhu Y.; McLain D. E.; Johnston L. L.; Lauderdale J. D.; Levin M.; Dore T. M. Light-Activated Serotonin for Exploring Its Action in Biological Systems. Chem. Biol. 2013, 20, 1536–1546. 10.1016/j.chembiol.2013.11.005. PubMed DOI PMC
Asad N.; McLain D. E.; Condon A. F.; Gore S.; Hampton S. E.; Vijay S.; Williams J. T.; Dore T. M. Photoactivatable Dopamine and Sulpiride to Explore the Function of Dopaminergic Neurons and Circuits. ACS Chem. Neurosci. 2020, 11, 939–951. 10.1021/acschemneuro.9b00675. PubMed DOI PMC
Hennig A.-L. K.; Deodato D.; Asad N.; Herbivo C.; Dore T. M. Two-Photon Excitable Photoremovable Protecting Groups Based on the Quinoline Scaffold for Use in Biology. J. Org. Chem. 2020, 85, 726–744. 10.1021/acs.joc.9b02780. PubMed DOI
Li Y.-M.; Shi J.; Cai R.; Chen X.-Y.; Guo Q.-X.; Liu L. Development of New Quinoline-Based Photo-Labile Groups for Photo-Regulation of Bioactive Molecules. Tetrahedron Lett. 2010, 51, 1609–1612. 10.1016/j.tetlet.2010.01.071. DOI
Bera M.; Maji S.; Paul A.; Sahoo B. K.; Maiti T. K.; Singh N. D. P. Quinoline H2S Donor Decorated Fluorescent Carbon Dots: Visible Light Responsive H2S Nanocarriers. J. Mater. Chem. B 2020, 8, 1026–1032. 10.1039/C9TB02157D. PubMed DOI
Narumi T.; Miyata K.; Nii A.; Sato K.; Mase N.; Furuta T. 7-Hydroxy-N-Methylquinolinium Chromophore: A Photolabile Protecting Group for Blue-Light Uncaging. Org. Lett. 2018, 20, 4178–4182. 10.1021/acs.orglett.8b01505. PubMed DOI
Narumi T. Creation and Application of Quinolinium-Type Caged Neurotransmitters Capable of Uncaging with Visible Light. Yakugaku Zasshi 2019, 139, 263–271. 10.1248/yakushi.18-00174-1. PubMed DOI
Barni E.; Savarino P. Quaternary Salts From 2-(Methylpyridyl or Quinolyl)benzimidazoles and Related Polymethine Dyes. J. Heterocycl. Chem. 1979, 16, 1583–1587. 10.1002/jhet.5570160814. DOI
Sutherland D.; Compton C. The Absorption Spectra of some Substituted Quinolines and their Methiodides. J. Org. Chem. 1952, 17, 1257–1261. 10.1021/jo50009a011. DOI
Ma J.; Mewes J.-M.; Harris K. T.; Dore T. M.; Phillips D. L.; Dreuw A. Unravelling the Early Photochemical Behavior of (8-Substituted-7-hydroxyquinolinyl)methyl Acetates Through Electronic Structure Theory and Ultrafast Transient Absorption Spectroscopy. Phys. Chem. Chem. Phys. 2017, 19, 1089–1096. 10.1039/C6CP05499D. PubMed DOI
Ma J.; Rea A. C.; An H.; Ma C.; Guan X.; Li M.-D.; Su T.; Yeung C. S.; Harris K. T.; Zhu Y.; Nganga J. L.; Fedoryak O. D.; Dore T. M.; Phillips D. L. Unraveling the Mechanism of the Photodeprotection Reaction of 8-Bromo- and 8-Chloro-7-hydroxyquinoline Caged Acetates. Chem. - Eur. J. 2012, 18, 6854–6865. 10.1002/chem.201200366. PubMed DOI PMC
Kohler G.; Rechthaler K.; Rotkiewicz K.; Rettig W. Formation and Stabilization of Twisted Intramolecular Charge Transfer States in Binary Mixed Solvents. Chem. Phys. 1996, 207, 85–101. 10.1016/0301-0104(96)00054-7. DOI
Kosower N. S.; Kosower E. M.; Newton G. L.; Ranney H. M. Bimane Fluorescent Labels: Labeling of Normal Human Red Cells Under Physiological Conditions. Proc. Natl. Acad. Sci. U. S. A. 1979, 76, 3382–3386. 10.1073/pnas.76.7.3382. PubMed DOI PMC
Lavis L. D.; Raines R. T. Bright Ideas for Chemical Biology. ACS Chem. Biol. 2008, 3, 142–155. 10.1021/cb700248m. PubMed DOI PMC
Taraska J. W.; Puljung M. C.; Zagotta W. N. Short-Distance Probes for Protein Backbone Structure Based on Energy Transfer Between Bimane and Transition Metal Ions. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 16227–16232. 10.1073/pnas.0905207106. PubMed DOI PMC
Chaudhuri A.; Venkatesh Y.; Behara K. K.; Singh N. D. Bimane: A Visible Light Induced Fluorescent Photoremovable Protecting Group for the Single and Dual Release of Carboxylic and Amino Acids. Org. Lett. 2017, 19, 1598–1601. 10.1021/acs.orglett.7b00416. PubMed DOI
Truong V. X.; Li F.; Forsythe J. S. Visible Light Activation of Nucleophilic Thiol-X Addition via Thioether Bimane Photocleavage for Polymer Cross-Linking. Biomacromolecules 2018, 19, 4277–4285. 10.1021/acs.biomac.8b01153. PubMed DOI
Arumugam S.; Guo J.; Mbua N. E.; Friscourt F.; Lin N.; Nekongo E.; Boons G.-J.; Popik V. V. Selective and Reversible Photochemical Derivatization of Cysteine Residues in Peptides and Proteins. Chem. Sci. 2014, 5, 1591–1598. 10.1039/C3SC51691A. PubMed DOI PMC
Banerjee A.; Falvey D. E. Direct Photolysis of Phenacyl Protecting Groups Studied by Laser Flash Photolysis: An Excited State Hydrogen Atom Abstraction Pathway Leads to Formation of Carboxylic Acids and Acetophenone. J. Am. Chem. Soc. 1998, 120, 2965–2966. 10.1021/ja971431t. DOI
Literák J.; Dostálová A.; Klán P. Chain Mechanism in the Photocleavage of Phenacyl and Pyridacyl Esters in the Presence of Hydrogen Donors. J. Org. Chem. 2006, 71, 713–723. 10.1021/jo0521551. PubMed DOI
Sheehan J. C.; Umezawa K. Phenacyl Photosensitive Blocking Groups. J. Org. Chem. 1973, 38, 3771–3774. 10.1021/jo00961a027. DOI
Bergmark W. R. Photolysis of α-Chloro-o-methylacetophenones. J. Chem. Soc., Chem. Commun. 1978, 61–62. 10.1039/C39780000061. DOI
Haag R.; Wirz J.; Wagner P. J. The Photoenolization of 2-Methylacetophenone and Related Compounds. Helv. Chim. Acta 1977, 60, 2595–2607. 10.1002/hlca.19770600813. DOI
Kammari L.; Plíštil L.; Wirz J.; Klán P. 2,5-Dimethylphenacyl Carbamate: A Photoremovable Protecting Group for Amines and Amino Acids. Photochem. Photobiol. Sci. 2007, 6, 50–56. 10.1039/B612233G. PubMed DOI
Klán P.; Zabadal M.; Heger D. 2, 5-Dimethylphenacyl as a New Photoreleasable Protecting Group for Carboxylic Acids. Org. Lett. 2000, 2, 1569–1571. 10.1021/ol005789x. PubMed DOI
Literák J.; Wirz J.; Klán P. 2,5-Dimethylphenacyl Carbonates: A Photoremovable Protecting Group for Alcohols and Phenols. Photochem. Photobiol. Sci. 2005, 4, 43–46. 10.1039/B408851D. PubMed DOI
Zabadal M.; Pelliccioli A. P.; Klán P.; Wirz J. 2,5-Dimethylphenacyl Esters: A Photoremovable Protecting Group for Carboxylic Acids. J. Phys. Chem. A 2001, 105, 10329–10333. 10.1021/jp010220e. DOI
Ruzicka R.; Zabadal M.; Klán P. Photolysis of Phenacyl Esters in a Two-Phase System. Synth. Commun. 2002, 32, 2581–2590. 10.1081/SCC-120005943. DOI
Anderson J. C.; Reese C. B. A Photo-Induced Rearrangement Involving Aryl Participation. Tetrahedron Lett. 1962, 3, 1–4. 10.1016/S0040-4039(00)62031-2. DOI
Givens R. S.; Park C.-H. p-Hydroxyphenacyl ATP1: A New Phototrigger. Tetrahedron Lett. 1996, 37, 6259–6262. 10.1016/0040-4039(96)01390-1. DOI
Park C.-H.; Givens R. S. New Photoactivated Protecting Groups. 6. p-Hydroxyphenacyl: A Phototrigger for Chemical and Biochemical Probes. J. Am. Chem. Soc. 1997, 119, 2453–2463. 10.1021/ja9635589. DOI
Corrie J. E. T.; Trentham D. R. Synthetic, Mechanistic and Photochemical Studies of Phosphate Esters of Substituted Benzoins. J. Chem. Soc., Perkin Trans. 1 1992, 1, 2409–2417. 10.1039/p19920002409. DOI
Sheehan J. C.; Wilson R. M.; Oxford A. W. Photolysis of Methoxy-Substituted Benzoin Esters. Photosensitive Protecting Group for Carboxylic Acids. J. Am. Chem. Soc. 1971, 93, 7222–7228. 10.1021/ja00755a017. DOI
Shi Y.; Corrie J. E.; Wan P. Mechanism of 3’,5’-Dimethoxybenzoin Ester Photochemistry: Heterolytic Cleavage Intramolecularly Assisted by the Dimethoxybenzene Ring Is the Primary Photochemical Step. J. Org. Chem. 1997, 62, 8278–8279. 10.1021/jo971121t. PubMed DOI
Dong Y.; Lam J. W. Y.; Qin A.; Liu J.; Li Z.; Tang B. Z.; Sun J.; Kwok H. S. Aggregation-Induced Emissions of Tetraphenylethene Derivatives and Their Utilities as Chemical Vapor Sensors and in Organic Light-Emitting Diodes. Appl. Phys. Lett. 2007, 91, 011111.10.1063/1.2753723. DOI
Hong Y.; Lam J. W. Y.; Tang B. Z. Aggregation-Induced Emission. Chem. Soc. Rev. 2011, 40, 5361–5388. 10.1039/c1cs15113d. PubMed DOI
Luo J.; Xie Z.; Lam J. W. Y.; Cheng L.; Chen H.; Qiu C.; Kwok H. S.; Zhan X.; Liu Y.; Zhu D.; Tang B. Z. Aggregation-Induced Emission of 1-Methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 1740–1741. 10.1039/b105159h. PubMed DOI
Parthiban C.; M P.; Vinod Kumar Reddy L.; Sen D.; Singh N. D. P. Single-Component Fluorescent Organic Nanoparticles with Four-Armed Phototriggers for Chemo-Photodynamic Therapy and Cellular Imaging. ACS Appl. Nano Mater. 2019, 2, 3728–3734. 10.1021/acsanm.9b00630. DOI
Hong Y.; Lam J. W. Y.; Tang B. Z. Aggregation-Induced Emission: Phenomenon, Mechanism and Applications. Chem. Commun. 2009, 4332–4353. 10.1039/b904665h. PubMed DOI
Kammath V. B.; Šolomek T.; Ngoy B. P.; Heger D.; Klán P.; Rubina M.; Givens R. S. A Photo-Favorskii Ring Contraction Reaction: The Effect of Ring Size. J. Org. Chem. 2013, 78, 1718–1729. 10.1021/jo300850a. PubMed DOI PMC
Favorskii A. Favorskii Rearrangement. Russ. J. Gen. Chem. 1894, 26, 590.
Aston J. G.; Newkirk J. D. α-Halo Ketones. IV. The Isomeric α-Chloroketones Derived from 3-Heptanone. J. Am. Chem. Soc. 1951, 73, 3900–3902. 10.1021/ja01152a102. DOI
Bordwell F. G.; Scamehorn R. G.; Springer W. R. Favorskii Rearrangements. III. Evidence for an Ionization-π-Participation Mechanism. J. Am. Chem. Soc. 1969, 91, 2087–2093. 10.1021/ja01036a037. DOI
Burr J. G.; Dewar M. J. S. The Mechanism of the Favorski Reaction. J. Chem. Soc. 1954, 1201–1203. 10.1039/jr9540001201. DOI
Loftfield R. B. On the Mechanism of the Faworskii Rearrangement of α-Halo Ketones. J. Am. Chem. Soc. 1950, 72, 632–633. 10.1021/ja01157a515. DOI
Loftfield R. B. The Alkaline Rearrangement of α-Haloketones. II. The Mechanism of the Faworskii Reaction. J. Am. Chem. Soc. 1951, 73, 4707–4714. 10.1021/ja01154a066. DOI
Chiang Y.; Kresge A. J.; Zhu Y. Flash Photolytic Generation and Study of p-Quinone Methide in Aqueous Solution. An Estimate of Rate and Equilibrium Constants for Heterolysis of the Carbon-Bromine Bond in p-Hydroxybenzyl Bromide. J. Am. Chem. Soc. 2002, 124, 6349–6356. 10.1021/ja020020w. PubMed DOI
Givens R. S.; Heger D.; Hellrung B.; Kamdzhilov Y.; Mac M.; Conrad P. G.; Cope E.; Lee J. I.; Mata-Segreda J. F.; Schowen R. L.; Wirz J. The Photo-Favorskii Reaction of p-Hydroxyphenacyl Compounds Is Initiated by Water-Assisted, Adiabatic Extrusion of a Triplet Biradical. J. Am. Chem. Soc. 2008, 130, 3307–3309. 10.1021/ja7109579. PubMed DOI PMC
Barman S.; Mukhopadhyay S. K.; Biswas S.; Nandi S.; Gangopadhyay M.; Dey S.; Anoop A.; Pradeep Singh N. D. A p-Hydroxyphenacyl–Benzothiazole–Chlorambucil Conjugate as a Real-Time-Monitoring Drug-Delivery System Assisted by Excited-State Intramolecular Proton Transfer. Angew. Chem., Int. Ed. 2016, 55, 4194–4198. 10.1002/anie.201508901. PubMed DOI
Luo X.; Wu J.; Lv T.; Lai Y.; Zhang H.; Lu J.-J.; Zhang Y.; Huang Z. Synthesis and Evaluation of Novel O2-Derived Diazeniumdiolates as Photochemical and Real-Time Monitoring Nitric Oxide Delivery Agents. Org. Chem. Front. 2017, 4, 2445–2449. 10.1039/C7QO00695K. DOI
Parthiban C.; M P.; L V. K. R.; Sen D.; S M. S.; Singh N. D. P. Visible-Light -Triggered Fluorescent Organic Nanoparticles for Chemo-Photodynamic Therapy with Real-Time Cellular Imaging. ACS Appl. Nano Mater. 2018, 1, 6281–6288. 10.1021/acsanm.8b01495. DOI
Hrabie J. A.; Keefer L. K. Chemistry of the Nitric Oxide-Releasing Diazeniumdiolate (“Nitrosohydroxylamine”) Functional Group and Its Oxygen-Substituted Derivatives. Chem. Rev. 2002, 102, 1135–1154. 10.1021/cr000028t. PubMed DOI
Korman A.; Sun H.; Hua B.; Yang H.; Capilato J. N.; Paul R.; Panja S.; Ha T.; Greenberg M. M.; Woodson S. A. Light-Controlled Twister Ribozyme with Single-Molecule Detection Resolves RNA Function in Time and Space. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 12080–12086. 10.1073/pnas.2003425117. PubMed DOI PMC
Biswas S.; Das J.; Barman S.; Rao Pinninti B.; Maiti T. K.; Singh N. D. P. Environment Activatable Nanoprodrug: Two-Step Surveillance in the Anticancer Drug Release. ACS Appl. Mater. Interfaces 2017, 9, 28180–28184. 10.1021/acsami.7b05132. PubMed DOI
Chang M. C. Y.; Pralle A.; Isacoff E. Y.; Chang C. J. A Selective, Cell-Permeable Optical Probe for Hydrogen Peroxide in Living Cells. J. Am. Chem. Soc. 2004, 126, 15392–15393. 10.1021/ja0441716. PubMed DOI PMC
Kuivila H. G.; Armour A. G. Electrophilic Displacement Reactions. IX. Effects of Substituents on Rates of Reactions Between Hydrogen Peroxide and Benzeneboronic Acid. J. Am. Chem. Soc. 1957, 79, 5659–5662. 10.1021/ja01578a020. DOI
Kuivila H. G.; Wiles R. A. Electrophilic Displacement Reactions. VII. Catalysis by Chelating Agents in the Reaction Between Hydrogen Peroxide and Benzeneboronic Acid. J. Am. Chem. Soc. 1955, 77, 4830–4834. 10.1021/ja01623a043. DOI
Noh J.; Kwon B.; Han E.; Park M.; Yang W.; Cho W.; Yoo W.; Khang G.; Lee D. Amplification of Oxidative Stress by a Dual Stimuli-Responsive Hybrid Drug Enhances Cancer Cell Death. Nat. Commun. 2015, 6, 6907.10.1038/ncomms7907. PubMed DOI
Ye M.; Han Y.; Tang J.; Piao Y.; Liu X.; Zhou Z.; Gao J.; Rao J.; Shen Y. A Tumor-Specific Cascade Amplification Drug Release Nanoparticle for Overcoming Multidrug Resistance in Cancers. Adv. Mater. 2017, 29, 1702342.10.1002/adma.201702342. PubMed DOI
Major Jourden J. L.; Cohen S. M. Hydrogen Peroxide Activated Matrix Metalloproteinase Inhibitors: A Prodrug Approach. Angew. Chem., Int. Ed. 2010, 49, 6795–6797. 10.1002/anie.201003819. PubMed DOI PMC
Houk A. L.; Givens R. S.; Elles C. G. Two-Photon Activation of p-Hydroxyphenacyl Phototriggers: Toward Spatially Controlled Release of Diethyl Phosphate and ATP. J. Phys. Chem. B 2016, 120, 3178–3186. 10.1021/acs.jpcb.5b12150. PubMed DOI
McEvoy A. L.; Hoi H.; Bates M.; Platonova E.; Cranfill P. J.; Baird M. A.; Davidson M. W.; Ewers H.; Liphardt J.; Campbell R. E. mMaple: A Photoconvertible Fluorescent Protein for Use in Multiple Imaging Modalities. PLoS One 2012, 7, e5131410.1371/journal.pone.0051314. PubMed DOI PMC
Zhang W.; Lohman A. W.; Zhuravlova Y.; Lu X.; Wiens M. D.; Hoi H.; Yaganoglu S.; Mohr M. A.; Kitova E. N.; Klassen J. S.; Pantazis P.; Thompson R. J.; Campbell R. E. Optogenetic Control with a Photocleavable Protein, PhoCl. Nat. Methods 2017, 14, 391–394. 10.1038/nmeth.4222. PubMed DOI
Chattoraj M.; King B. A.; Bublitz G. U.; Boxer S. G. Ultrafast Excited State Dynamics in Green Fluorescent Protein: Multiple States and Proton Transfer. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 8362.10.1073/pnas.93.16.8362. PubMed DOI PMC
McAnaney T. B.; Shi X.; Abbyad P.; Jung H.; Remington S. J.; Boxer S. G. Green Fluorescent Protein Variants as Ratiometric Dual Emission pH Sensors. 3. Temperature Dependence of Proton Transfer. Biochemistry 2005, 44, 8701–8711. 10.1021/bi050132a. PubMed DOI
Mizuno H.; Mal T. K.; Tong K. I.; Ando R.; Furuta T.; Ikura M.; Miyawaki A. Photo-Induced Peptide Cleavage in the Green-to-Red Conversion of a Fluorescent Protein. Mol. Cell 2003, 12, 1051–1058. 10.1016/S1097-2765(03)00393-9. PubMed DOI
Endo M.; Iwawaki T.; Yoshimura H.; Ozawa T. Photocleavable Cadherin Inhibits Cell-to-Cell Mechanotransduction by Light. ACS Chem. Biol. 2019, 14, 2206–2214. 10.1021/acschembio.9b00460. PubMed DOI
Meador K.; Wysoczynski C. L.; Norris A. J.; Aoto J.; Bruchas M. R.; Tucker C. L. Achieving Tight Control of a Photoactivatable Cre Recombinase Gene Switch: New Design Strategies and Functional Characterization in Mammalian Cells and Rodent. Nucleic Acids Res. 2019, 47, e9710.1093/nar/gkz585. PubMed DOI PMC
Ollech D.; Pflästerer T.; Shellard A.; Zambarda C.; Spatz J. P.; Marcq P.; Mayor R.; Wombacher R.; Cavalcanti-Adam E. A. An Optochemical Tool for Light-Induced Dissociation of Adherens Junctions to Control Mechanical Coupling Between Cells. Nat. Commun. 2020, 11, 472.10.1038/s41467-020-14390-1. PubMed DOI PMC
Shadish J. A.; Strange A. C.; DeForest C. A. Genetically Encoded Photocleavable Linkers for Patterned Protein Release from Biomaterials. J. Am. Chem. Soc. 2019, 141, 15619–15625. 10.1021/jacs.9b07239. PubMed DOI PMC
Xiang D.; Wu X.; Cao W.; Xue B.; Qin M.; Cao Y.; Wang W. Hydrogels With Tunable Mechanical Properties Based on Photocleavable Proteins. Front. Chem. 2020, 8, 7.10.3389/fchem.2020.00007. PubMed DOI PMC
Paul A.; Biswas A.; Sinha S.; Shah S. S.; Bera M.; Mandal M.; Singh N. D. P. Push–Pull Stilbene: Visible Light Activated Photoremovable Protecting Group for Alcohols and Carboxylic Acids with Fluorescence Reporting Employed for Drug Delivery. Org. Lett. 2019, 21, 2968–2972. 10.1021/acs.orglett.9b00124. PubMed DOI
Lewis G. N.; Magel T. T.; Lipkin D. The Absorption and Re-emission of Light by cis- and trans-Stilbenes and the Efficiency of their Photochemical Isomerization. J. Am. Chem. Soc. 1940, 62, 2973–2980. 10.1021/ja01868a024. DOI
Moore W. M.; Morgan D. D.; Stermitz F. R. The Photochemical Conversion of Stilbene to Phenanthrene. The Nature of the Intermediate. J. Am. Chem. Soc. 1963, 85, 829–830. 10.1021/ja00889a050. DOI
Muszkat K. A.; Fischer E. Structure, Spectra, Photochemistry, and Thermal Reactions of the 4a,4b-Dihydrophenanthrenes. J. Chem. Soc. B 1967, 662–678. 10.1039/j29670000662. DOI
Mallory F. B.; Gordon J. T.; Wood C. S. Photochemistry of Stilbenes. II. Substituent Effects on the Rates of Phenanthrene Formation. J. Am. Chem. Soc. 1963, 85, 828–829. 10.1021/ja00889a049. DOI
Lapouyade R.; Koussini R.; Rayez J.-C. Photocyclisation of 1,1-Diarylethylenes; The Novel Formation of a Five-Membered Ring. J. Chem. Soc., Chem. Commun. 1975, 676–677. 10.1039/c39750000676. DOI
Sargent M. V.; Timmons C. J. Studies in Photochemistry. Part I. The Stilbenes. J. Chem. Soc. 1964, 5544–5552. 10.1039/jr9640005544. DOI
Giles R. G. F.; Sargent M. V. Photochemical-Synthesis of Phenanthrenes from 2-Methoxystilbenes. J. Chem. Soc., Perkin Trans. 1 1974, 1, 2447–2450. 10.1039/p19740002447. DOI
Wood C. S.; Mallory F. B. Photochemistry of Stilbenes. IV. The Preparation of Substituted Phenanthrenes. J. Org. Chem. 1964, 29, 3373–3377. 10.1021/jo01034a059. DOI
Cava M. P.; Mitchell M. J.; Havlicek S. C.; Lindert A.; Spangler R. J. Photochemical Routes to Aporphines. New Syntheses of Nuciferine and Glaucine. J. Org. Chem. 1970, 35, 175–179. 10.1021/jo00826a038. PubMed DOI
Cava M. P.; Stern P.; Wakisaka K. An Improved Photochemical Aporphine Synthesis: New Syntheses of Dicentrine and Cassameridine. Tetrahedron 1973, 29, 2245–2249. 10.1016/S0040-4020(01)93344-7. DOI
Lin C.-K.; Wang Y.-F.; Cheng Y.-C.; Yang J.-S. Multisite Constrained Model of trans-4-(N, N-Dimethylamino)-4′-nitrostilbene for Structural Elucidation of Radiative and Nonradiative Excited States. J. Phys. Chem. A 2013, 117, 3158–3164. 10.1021/jp310770s. PubMed DOI
Galvan-Gonzalez A.; Belfield K. D.; Stegeman G. I.; Canva M.; Marder S. R.; Staub K.; Levina G.; Twieg R. J. Photodegradation of Selected π-Conjugated Electro-Optic Chromophores. J. Appl. Phys. 2003, 94, 756–763. 10.1063/1.1578703. DOI
Mallory F. B.; Rudolph M. J.; Oh S. M. Photochemistry of Stilbenes. 8. Eliminative Photocyclization of Ortho-Methoxystilbenes. J. Org. Chem. 1989, 54, 4619–4626. 10.1021/jo00280a032. DOI
Cuppen T. J. H. M.; Laarhoven W. H. Photodehydrocyclizations of Stilbene-Like Compounds. VI. Chemical Evidence of an Excited State Mechanism. J. Am. Chem. Soc. 1972, 94, 5914–5915. 10.1021/ja00771a074. DOI
Mallory F. B.; Wood C. S.; Gordon J. T.; Lindquist L. C.; Savitz M. L. Photochemistry of Stilbenes I. J. Am. Chem. Soc. 1962, 84, 4361–4362. 10.1021/ja00881a044. DOI
Baxter I.; Phillips W. R. Reactions Between 2,5-Di-t-butyl-1,4-benzoquinone and Certain Primary Aliphatic Amines. J. Chem. Soc., Perkin Trans. 1 1973, 1, 268–272. 10.1039/p19730000268. DOI
Bruce J. M. Light-Induced Reactions of Quinones. Q. Rev., Chem. Soc. 1967, 21, 405–428. 10.1039/qr9672100405. DOI
El’tsov A. V.; Studzinskii O. P.; Grebenkina V. M. Photoinitiation of the Reactions of Quinones. Russ. Chem. Rev. 1977, 46, 93–114. 10.1070/RC1977v046n02ABEH002115. DOI
Görner H. Photoprocesses of p-Benzoquinones in Aqueous Solution. J. Phys. Chem. A 2003, 107, 11587–11595. 10.1021/jp030789a. DOI
Görner H.; von Sonntag C. Photoprocesses of Chloro-Substituted p-Benzoquinones. J. Phys. Chem. A 2008, 112, 10257–10263. 10.1021/jp805046p. PubMed DOI
Ando Y.; Suzuki K. Photoredox Reactions of Quinones. Chem. - Eur. J. 2018, 24, 15955–15964. 10.1002/chem.201801064. PubMed DOI
Amada I.; Yamaji M.; Tsunoda S. i.; Shizuka H. Laser Photolysis Studies of Electron Transfer Between Triplet Naphthoquinones and Amines. J. Photochem. Photobiol., A 1996, 95, 27–32. 10.1016/1010-6030(95)04235-0. DOI
Görner H. Photoreduction of 9,10-Anthraquinone Derivatives: Transient Spectroscopy and Effects of Alcohols and Amines on Reactivity in Solution. Photochem. Photobiol. 2003, 77, 171–179. 10.1562/0031-8655(2003)0770171POADTS2.0.CO2. PubMed DOI
Görner H. Photoreduction of p-Benzoquinones: Effects of Alcohols and Amines on the Intermediates and Reactivities in Solution. Photochem. Photobiol. 2003, 78, 440–448. 10.1562/0031-8655(2003)078<0440:POPEOA>2.0.CO;2. PubMed DOI
Jones G.; Mouli N.; Haney W. A.; Bergmark W. R. Photoreduction of Chloranil by Benzhydrol and Related Compounds. Hydrogen Atom Abstraction vs Sequential Electron-Proton Transfer via Quinone Triplet Radical Ion-Pairs. J. Am. Chem. Soc. 1997, 119, 8788–8794. 10.1021/ja970271i. DOI
Mac M.; Wirz J. Salt Effects on the Reactions of Radical Ion Pairs Formed by Electron Transfer Quenching of Triplet 2-Methyl-1,4-naphthoquinone by Amines. Optical Flash Photolysis and Step-Scan FTIR Investigations. Photochem. Photobiol. Sci. 2002, 1, 24–29. 10.1039/b106798b. PubMed DOI
Wakisaka A.; Ebbesen T. W.; Sakuragi H.; Tokumaru K. Effect of Water Concentration on Photoreduction of Anthraquinone-2-sulfonate by 2-Propanol in Aqueous Acetonitrile Solution. J. Phys. Chem. 1987, 91, 6547–6551. 10.1021/j100310a025. DOI
Bruce J. M.; Chaudhry A.-U.-H.; Dawes K. Light-Induced and Related Reactions of Quinones. Part X. Further Studies with Hydroxymethyl-, Vinyl-, and (2-Ethoxycarbonylethyl)-1,4-benzoquinones. J. Chem. Soc., Perkin Trans. 1 1974, 1, 288–294. 10.1039/p19740000288. DOI
Farid S. Photolysis of t-Butyl-p-quinones: Competing 1,4- and 1,5-Dipolar Cycloadditions of the Photoproduct to Nitriles and Ketones. J. Chem. Soc. D 1970, 303–304. 10.1039/c29700000303. DOI
Görner H. Photoreactions of 2-Methyl-5-isopropyl-1,4-benzoquinone. J. Photochem. Photobiol., A 2004, 165, 215–222. 10.1016/j.jphotochem.2004.03.020. DOI
Görner H. Photoreactions of 2,5-Dibromo-3-methyl-6-isopropyl-1,4-benzoquinone. J. Photochem. Photobiol., A 2005, 175, 138–145. 10.1016/j.jphotochem.2005.03.028. DOI
Orlando C. M.; Mark H.; Bose A. K.; Manhas M. S. Photoreactions: Rearrangement of Thymoquinone. Chem. Commun. 1966, 714–715. 10.1039/c19660000714. DOI
Orlando C. M.; Mark H.; Bose A. K.; Manhas M. S. Photoreactions. IV. Photolysis of tert-Butyl-Substituted p-Benzoquinones. J. Am. Chem. Soc. 1967, 89, 6527–6532. 10.1021/ja01001a027. DOI
Orlando C. M.; Mark H.; Bose A. K.; Manhas M. S. Photoreactions. V. Mechanism of the Photorearrangement of Alkyl-p-Benzoquinones. J. Org. Chem. 1968, 33, 2512–2516. 10.1021/jo01270a076. DOI
Stidham M. A.; Siedow J. N. Photochemical Reactions of Dibromothymoquinone: Structure and Inhibitory Properties of the Photoproduct. Photochem. Photobiol. 1983, 38, 537–539. 10.1111/j.1751-1097.1983.tb03379.x. DOI
Cameron D. W.; Giles R. G. F. A Photochemical Rearrangement Involving Aminated Quinones. Chem. Commun. 1965, 573–574. 10.1039/c19650000573. DOI
Cameron D. W.; Giles R. G. F. Photochemical Formation of Benzoxazoline Derivatives from Aminated Quinones. J. Chem. Soc. C 1968, 1461–1464. 10.1039/j39680001461. DOI
Giles R. G. F. The Photochemistry of an Aminated 1,4-Benzoquinone. Tetrahedron Lett. 1972, 13, 2253–2254. 10.1016/S0040-4039(01)84819-X. DOI
Maruyama K.; Kozuka T.; Otsuki T. The Intramolecular Hydrogen Abstraction Reaction in the Photolysis of Aminated 1,4-Naphthoquinones. Bull. Chem. Soc. Jpn. 1977, 50, 2170–2173. 10.1246/bcsj.50.2170. DOI
Iwamoto H. Photoinduced Intramolecular Cyclization Reaction of 3-Substituted 2-Alkenoyl-1,4-benzoquinones. Bull. Chem. Soc. Jpn. 1989, 62, 3479–3487. 10.1246/bcsj.62.3479. DOI
Iwamoto H.; Takuwa A. Photoinduced Intramolecular Cyclization Reaction of 2-(2-Alkenoyl)-3-isopropylthio-1,4-benzoquinones to Heterocyclic Compounds. Bull. Chem. Soc. Jpn. 1991, 64, 724–726. 10.1246/bcsj.64.724. DOI
Kemp D. S.; Reczek J. New Protective Groups for Peptide Synthesis--III the Maq Ester Group Mild Reductive Cleavage of 2-Acyloxymethyleneanthraquinones. Tetrahedron Lett. 1977, 18, 1031–1034. 10.1016/S0040-4039(01)92820-5. DOI
Guo Y.; Song Q.; Wang J.; Ma J.; Zhang X.; Phillips D. L. Unraveling the Photodeprotection Mechanism of Anthraquinon-2-ylmethoxycarbonyl-Caged Alcohols Using Time-Resolved Spectroscopy. J. Org. Chem. 2018, 83, 13454–13462. 10.1021/acs.joc.8b02252. PubMed DOI
Guo Y.; Song Q.; Xu T.; Ma J.; Phillips D. L. The Solvent Effect on the Photodeprotection of Anthraquinone Protected Carboxylic Acid Unravelled by Time-Resolved Spectroscopic Studies. Phys. Chem. Chem. Phys. 2019, 21, 14598–14604. 10.1039/C9CP01227C. PubMed DOI
Ren M.-G.; Bi N.-M.; Mao M.; Song Q.-H. 2-(1′-Hydroxyethyl)-anthraquinone as a Photolabile Protecting Group for Carboxylic Acids. J. Photochem. Photobiol., A 2009, 204, 13–18. 10.1016/j.jphotochem.2009.02.006. DOI
Arumugam S.; Popik V. V. Photochemical Generation and the Reactivity of o-Naphthoquinone Methides in Aqueous Solutions. J. Am. Chem. Soc. 2009, 131, 11892–11899. 10.1021/ja9031924. PubMed DOI
Arumugam S.; Popik V. V. Dual Reactivity of Hydroxy- and Methoxy- Substituted o-Quinone Methides in Aqueous Solutions: Hydration versus Tautomerization. J. Org. Chem. 2010, 75, 7338–7346. 10.1021/jo101613t. PubMed DOI
Kulikov A.; Arumugam S.; Popik V. V. Photolabile Protection of Alcohols, Phenols, and Carboxylic Acids with 3-Hydroxy-2-naphthalenemethanol. J. Org. Chem. 2008, 73, 7611–7615. 10.1021/jo801302m. PubMed DOI
Yu J.-y.; Tang W.-J.; Wang H.-B.; Song Q.-H. Anthraquinon-2-ylethyl-1′,2′-diol (Aqe-Diol) as a New Photolabile Protecting Group for Aldehydes and Ketones. J. Photochem. Photobiol., A 2007, 185, 101–105. 10.1016/j.jphotochem.2006.05.010. DOI
Perpète E. A.; Lambert C.; Wathelet V.; Preat J.; Jacquemin D. Ab Initio Studies of the λmax of Naphthoquinones Dyes. Spectrochim. Acta, Part A 2007, 68, 1326–1333. 10.1016/j.saa.2007.02.012. PubMed DOI
Russkikh V. V. Synthesis and Efficiency of Photolysis of 2-Dialkylamino-1,4-benzoquinones and 2-Dialkylamino-1,4-anthraquinones. Zhurnal Organicheskoi Khimii 1995, 31, 380–384.
Takagi K.; Kawabe M.; Matsuoka M.; Kitao T. Syntheses of Deep Coloured Aminonaphthoquinonoid Dyes. Reaction of Dichloronaphthazarins with 2-Aminobenzenethiol and Related Compounds. Dyes Pigm. 1985, 6, 177–188. 10.1016/0143-7208(85)80016-4. DOI
Braude E. A. Studies in Light Absorption. Part I. p-Benzoquinones. J. Chem. Soc. 1945, 490–497. 10.1039/jr9450000490. DOI
Eugster C. H.; Bosshard P. Abnormale Diels-Alder-Reaktionen zwischen Acylchinonen und Furanen. Helv. Chim. Acta 1963, 46, 815–851. 10.1002/hlca.19630460315. DOI
Hammond P. R. Substituent Effects on the Acceptor Properties of 1,4-Benzoquinone. J. Chem. Soc. 1964, 471–479. 10.1039/jr9640000471. DOI
Ukai S.; Hirose K. Reaction of Phenol Derivatives with Sulfoxides. II. A New Method of Synthesis of Monothio Derivatives of p-Benzoquinone. Chem. Pharm. Bull. 1968, 16, 195–201. 10.1248/cpb.16.195. DOI
Fabian J.; Hartmann H.. Quinoid Dyes. Light Absorption of Organic Colorants: Theoretical Treatment and Empirical Rules; Fabian J., Hartmann H., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 1980.
Falci K. J.; Franck R. W.; Smith G. P. Approaches to Mitomycins - Photochemistry of Aminoquinones. J. Org. Chem. 1977, 42, 3317–3319. 10.1021/jo00440a033. PubMed DOI
Giles R. G. F.; Mitchell P. R.; Roos G. H. P.; Baxter I. Photochemical Reaction of 2-Acetyl-3-Alkylamino-1,4-Benzoquinones - Formation of Benzoxazoles. J. Chem. Soc., Perkin Trans. 1 1973, 1, 493–496. 10.1039/p19730000493. DOI
Chen Y. G.; Steinmetz M. G. Photochemical Cyclization with Release of Carboxylic Acids and Phenol from Pyrrolidino-Substituted 1,4-Benzoquinones Using Visible Light. Org. Lett. 2005, 7, 3729–3732. 10.1021/ol051362k. PubMed DOI
Chen Y. G.; Steinmetz M. G. Photoactivation of Amino-Substituted 1,4-Benzoquinones for Release of Carboxylate and Phenolate Leaving Groups Using Visible Light. J. Org. Chem. 2006, 71, 6053–6060. 10.1021/jo060790g. PubMed DOI
Wang X. D.; Kalow J. A. Rapid Aqueous Photouncaging by Red Light. Org. Lett. 2018, 20, 1716–1719. 10.1021/acs.orglett.8b00100. PubMed DOI
Ramachandran M. S.; Singh U. C.; Subbaratnam N. R.; Kelkar V. K. Spectral Properties of Some Amino Substituted p-Benzoquinones. Proc. Indian Acad. Sci., Chem. Sci. 1979, 88, 155–162.
Wallenfels K.; Draber W. Der Einfluss der Substituenten auf Elektronen- und Schwingungsspektren von Aminochinonen. Tetrahedron 1964, 20, 1889–1912. 10.1016/S0040-4020(01)98457-1. DOI
Alouane A.; Labruère R.; Le Saux T.; Aujard I.; Dubruille S.; Schmidt F.; Jullien L. Light Activation for the Versatile and Accurate Kinetic Analysis of Disassembly of Self-Immolative Spacers. Chem. - Eur. J. 2013, 19, 11717–11724. 10.1002/chem.201301298. PubMed DOI
Labruère R.; Alouane A.; Le Saux T.; Aujard I.; Pelupessy P.; Gautier A.; Dubruille S.; Schmidt F.; Jullien L. Self-Immolative” Spacer for Uncaging with Fluorescence Reporting. Angew. Chem., Int. Ed. 2012, 51, 9344–9347. 10.1002/anie.201204032. PubMed DOI
Schaefer C. G.; Peters K. S. Picosecond Dynamics of the Photoreduction of Benzophenone by Triethylamine. J. Am. Chem. Soc. 1980, 102, 7566–7567. 10.1021/ja00545a030. DOI
Bruce J. M.The Chemistry of the Quinonoid Compounds; Wiley and Sons: New York, 1974.
Regan C. J.; Walton D. P.; Shafaat O. S.; Dougherty D. A. Mechanistic Studies of the Photoinduced Quinone Trimethyl Lock Decaging Process. J. Am. Chem. Soc. 2017, 139, 4729–4736. 10.1021/jacs.6b12007. PubMed DOI
Ma C.; Kwok W. M.; Chan W. S.; Du Y.; Kan J. T. W.; Toy P. H.; Phillips D. L. Ultrafast Time-Resolved Transient Absorption and Resonance Raman Spectroscopy Study of the Photodeprotection and Rearrangement Reactions of p-Hydroxyphenacyl Caged Phosphates. J. Am. Chem. Soc. 2006, 128, 2558–2570. 10.1021/ja0532032. PubMed DOI
Toteva M. M.; Richard J. P. The Generation and Reactions of Quinone Methides. Adv. Phys. Org. Chem. 2011, 45, 39–91. 10.1016/B978-0-12-386047-7.00002-3. PubMed DOI PMC
Carling C.-J.; Olejniczak J.; Foucault-Collet A.; Collet G.; Viger M. L.; Nguyen Huu V. A.; Duggan B. M.; Almutairi A. Efficient Red Light Photo-Uncaging of Active Molecules in Water Upon Assembly Into Nanoparticles. Chem. Sci. 2016, 7, 2392–2398. 10.1039/C5SC03717D. PubMed DOI PMC
Walton D. P.; Dougherty D. A. A General Strategy for Visible-Light Decaging Based on the Quinone Trimethyl Lock. J. Am. Chem. Soc. 2017, 139, 4655–4658. 10.1021/jacs.7b01548. PubMed DOI
Milstien S.; Cohen L. A. Rate Acceleration by Stereopopulation Control: Models for Enzyme Action. Proc. Natl. Acad. Sci. U. S. A. 1970, 67, 1143–1147. 10.1073/pnas.67.3.1143. PubMed DOI PMC
Milstien S.; Cohen L. A. Stereopopulation Control. I. Rate Enhancement in the Lactonizations of o-Hydroxyhydrocinnamic Acids. J. Am. Chem. Soc. 1972, 94, 9158–9165. 10.1021/ja00781a029. PubMed DOI
Okoh O. A.; Klahn P. Trimethyl Lock: A Multifunctional Molecular Tool for Drug Delivery, Cellular Imaging, and Stimuli-Responsive Materials. ChemBioChem 2018, 19, 1668–1694. 10.1002/cbic.201800269. PubMed DOI
Huvelle S.; Alouane A.; Le Saux T.; Jullien L.; Schmidt F. Syntheses and Kinetic Studies of Cyclisation-Based Self-Immolative Spacers. Org. Biomol. Chem. 2017, 15, 3435–3443. 10.1039/C7OB00121E. PubMed DOI
Shigenaga A.; Morishita K.; Yamaguchi K.; Ding H.; Ebisuno K.; Sato K.; Yamamoto J.; Akaji K.; Otaka A. Development of UV-Responsive Catch-and-Release System of a Cysteine Protease Model Peptide. Tetrahedron 2011, 67, 8879–8886. 10.1016/j.tet.2011.09.062. DOI
Shigenaga A.; Tsuji D.; Nishioka N.; Tsuda S.; Itoh K.; Otaka A. Synthesis of a Stimulus-Responsive Processing Device and Its Application to a Nucleocytoplasmic Shuttle Peptide. ChemBioChem 2007, 8, 1929–1931. 10.1002/cbic.200700442. PubMed DOI
Barbafina A.; Latterini L.; Carlotti B.; Elisei F. Characterization of Excited States of Quinones and Identification of Their Deactivation Pathways. J. Phys. Chem. A 2010, 114, 5980–5984. 10.1021/jp911734x. PubMed DOI
Kemp D. R.; Porter G. Photochemistry of Methylated p-Benzoquinones. Proc. R. Soc. London, A 1971, 326, 117–130. 10.1098/rspa.1971.0195. DOI
Truong V. X.; Li F.; Ercole F.; Forsythe J. S. Visible-Light-Mediated Cleavage of Polymer Chains Under Physiological Conditions via Quinone Photoreduction and Trimethyl Lock. Chem. Commun. 2017, 53, 12076–12079. 10.1039/C7CC07257K. PubMed DOI
Rosen B. M.; Lligadas G.; Hahn C.; Percec V. Synthesis of Dendrimers Through Divergent Iterative Thio-Bromo “Click” Chemistry. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 3931–3939. 10.1002/pola.23519. DOI
Rosen B. M.; Lligadas G.; Hahn C.; Percec V. Synthesis of Dendritic Macromolecules Through Divergent Iterative Thio-Bromo “Click” Chemistry and SET-LRP. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 3940–3948. 10.1002/pola.23518. DOI
Turner A. D.; Pizzo S. V.; Rozakis G.; Porter N. A. Photoreactivation of Irreversibly Inhibited Serine Proteinases. J. Am. Chem. Soc. 1988, 110, 244–250. 10.1021/ja00209a040. DOI
Turner A. D.; Pizzo S. V.; Rozakis G. W.; Porter N. A. Photochemical Activation of Acylated α-Thrombin. J. Am. Chem. Soc. 1987, 109, 1274–1275. 10.1021/ja00238a062. DOI
Shiono H.; Nohta H.; Utsuyama C.; Hiramatsu M. New Method for Adding Reagents: An Application of Caged Molecules to Analytical Chemistry. Anal. Chim. Acta 2000, 405, 17–21. 10.1016/S0003-2670(99)00746-1. DOI
Norris J. L.; Hangauer M. J.; Porter N. A.; Caprioli R. M. Nonacid Cleavable Detergents Applied to MALDI Mass Spectrometry Profiling of Whole Cells. J. Mass Spectrom. 2005, 40, 1319–1326. 10.1002/jms.914. PubMed DOI
Duan X.-Y.; Zhai B.-C.; Song Q.-H. Water-Soluble o-Hydroxycinnamate as an Efficient Photoremovable Protecting Group of Alcohols with Fluorescence Reporting. Photochem. Photobiol. Sci. 2012, 11, 593–598. 10.1039/c2pp05309h. PubMed DOI
Thuring J. W.; Li H.; Porter N. A. Comparative Study of the Active Site Caging of Serine Proteases: Thrombin and Factor Xa. Biochemistry 2002, 41, 2002–2013. 10.1021/bi0106078. PubMed DOI
Porter N. A.; Bruhnke J. D. Acyl Thrombin Photochemistry: Kinetics for Deacylation of Enzyme Cinnamate Geometric Isomers. J. Am. Chem. Soc. 1989, 111, 7616–7618. 10.1021/ja00201a054. DOI
Porter N. A.; Bruhnke J. D. Photocoagulation of Human Plasma: Acyl Serine Proteinase Photochemistry. Photochem. Photobiol. 1990, 51, 37–43. 10.1111/j.1751-1097.1990.tb01681.x. PubMed DOI
Porter N. A.; Bush K. A.; Kinter K. S. Photo-Reversible Binding of Thrombin to Avidin by Means of a Photolabile Inhibitor. J. Photochem. Photobiol., B 1997, 38, 61–69. 10.1016/S1011-1344(96)07427-1. PubMed DOI
Stoddard B. L.; Bruhnke J.; Porter N.; Ringe D.; Petsko G. A. Structure and Activity of Two Photoreversible Cinnamates Bound to Chymotrypsin. Biochemistry 1990, 29, 4871–4879. 10.1021/bi00472a017. PubMed DOI
Schelkle K. M.; Bender M.; Jeltsch K.; Buckup T.; Müllen K.; Hamburger M.; Bunz U. H. F. Light-Induced Solubility Modulation of Polyfluorene To Enhance the Performance of OLEDs. Angew. Chem., Int. Ed. 2015, 54, 14545–14548. 10.1002/anie.201505141. PubMed DOI
Venkatesh Y.; Srivastava H. K.; Bhattacharya S.; Mehra M.; Datta P. K.; Bandyopadhyay S.; Singh N. D. P. One- and Two-Photon Uncaging: Carbazole Fused o-Hydroxycinnamate Platform for Dual Release of Alcohols (Same or Different) with Real-Time Monitoring. Org. Lett. 2018, 20, 2241–2244. 10.1021/acs.orglett.8b00090. PubMed DOI PMC
Garrett E. R.; Lippold B. C.; Mielck J. B. Kinetics and Mechanisms of Lactonization of Coumarinic Acids and Hydrolysis of Coumarins I. J. Pharm. Sci. 1971, 60, 396–405. 10.1002/jps.2600600312. PubMed DOI
Hershfield R.; Schmir G. L. Lactonization of Ring-Substituted Coumarinic Acids. Structural Effects on the Partitioning of Tetrahedral Intermediates in Esterification. J. Am. Chem. Soc. 1973, 95, 7359–7369. 10.1021/ja00803a025. PubMed DOI
Hershfield R.; Schmir G. L. Lactonization of Coumarinic Acids. Kinetic Evidence for Three Species of the Tetrahedral Intermediate. J. Am. Chem. Soc. 1973, 95, 8032–8040. 10.1021/ja00805a014. PubMed DOI
Lippold B. C.; Garrett E. R. Kinetics and Mechanisms of Lactonization of Coumarinic Acids and Hydrolysis of Coumarins II. J. Pharm. Sci. 1971, 60, 1019–1027. 10.1002/jps.2600600704. PubMed DOI
Gagey N.; Emond M.; Neveu P.; Benbrahim C.; Goetz B.; Aujard I.; Baudin J.-B.; Jullien L. Alcohol Uncaging with Fluorescence Reporting: Evaluation of o-Acetoxyphenyl Methyloxazolone Precursors. Org. Lett. 2008, 10, 2341–2344. 10.1021/ol800284g. PubMed DOI
Gagey N.; Neveu P.; Benbrahim C.; Goetz B.; Aujard I.; Baudin J.-B.; Jullien L. Two-Photon Uncaging with Fluorescence Reporting: Evaluation of the o-Hydroxycinnamic Platform. J. Am. Chem. Soc. 2007, 129, 9986–9998. 10.1021/ja0722022. PubMed DOI
Paul A.; Mengji R.; Chandy O. A.; Nandi S.; Bera M.; Jana A.; Anoop A.; Singh N. D. P. ESIPT-Induced Fluorescent o-Hydroxycinnamate: A Self-Monitoring Phototrigger for Prompt Image-Guided Uncaging of Alcohols. Org. Biomol. Chem. 2017, 15, 8544–8552. 10.1039/C7OB02280H. PubMed DOI
Gagey N.; Neveu P.; Jullien L. Two-Photon Uncaging with the Efficient 3,5-Dibromo-2,4-dihydroxycinnamic Caging Group. Angew. Chem., Int. Ed. 2007, 46, 2467–2469. 10.1002/anie.200604598. PubMed DOI
Tremblay M. S.; Sames D. A New Fluorogenic Transformation: Development of an Optical Probe for Coenzyme Q. Org. Lett. 2005, 7, 2417–2420. 10.1021/ol0507569. PubMed DOI
Walton D. P.; Dougherty D. A. A General Strategy for Visible-Light Decaging Based on the Quinone cis-Alkenyl Lock. Chem. Commun. 2019, 55, 4965–4968. 10.1039/C9CC01073D. PubMed DOI
Pelliccioli A. P.; Klán P.; Zabadal M.; Wirz J. Photorelease of HCl from o-Methylphenacyl Chloride Proceeds through the Z-Xylylenol. J. Am. Chem. Soc. 2001, 123, 7931–7932. 10.1021/ja016088d. PubMed DOI
Chiang Y.; Kresge A. J.; Hellrung B.; Schünemann P.; Wirz J. Flash Photolysis of 5-Methyl-1,4-naphthoquinone in Aqueous Solution: Kinetics and Mechanism of Photoenolization and of Enol Trapping. Helv. Chim. Acta 1997, 80, 1106–1121. 10.1002/hlca.19970800408. DOI
Antony L. A. P.; Slanina T.; Šebej P.; Šolomek T.; Klán P. Fluorescein Analogue Xanthene-9-Carboxylic Acid: A Transition-Metal-Free CO Releasing Molecule Activated by Green Light. Org. Lett. 2013, 15, 4552–4555. 10.1021/ol4021089. PubMed DOI
Štacko P.; Šebej P.; Veetil A. T.; Klán P. Carbon–Carbon Bond Cleavage in Fluorescent Pyronin Analogues Induced by Yellow Light. Org. Lett. 2012, 14, 4918–4921. 10.1021/ol302244f. PubMed DOI
Martínek M.; Váňa J.; Šebej P.; Navrátil R.; Slanina T.; Ludvíková L.; Roithová J.; Klán P. Photochemistry of a 9-Dithianyl-Pyronin Derivative: A Cornucopia of Reaction Intermediates Lead to Common Photoproducts. ChemPlusChem 2020, 85, 2230–2242. 10.1002/cplu.202000370. PubMed DOI
Katori A.; Kuramochi K.; Tsubaki K. Oxidative Cleavage of exo-Alkylidene Xanthenes. Tetrahedron 2016, 72, 2997–3002. 10.1016/j.tet.2016.04.019. DOI
Dao H. M.; Whang C.-H.; Shankar V. K.; Wang Y.-H.; Khan I. A.; Walker L. A.; Husain I.; Khan S. I.; Murthy S. N.; Jo S. Methylene Blue as a Far-Red Light-Mediated Photocleavable Multifunctional Ligand. Chem. Commun. 2020, 56, 1673–1676. 10.1039/C9CC08916K. PubMed DOI
Sun J.; Feng F. An S-Alkyl Thiocarbamate-Based Biosensor for Highly Sensitive and Selective Detection of Hypochlorous Acid. Analyst 2018, 143, 4251–4255. 10.1039/C8AN01027G. PubMed DOI
Benstead M.; Mehl G. H.; Boyle R. W. 4,4′-Difluoro-4-bora-3a,4a-diaza-s-indacenes (BODIPYs) as Components of Novel Light Active Materials. Tetrahedron 2011, 67, 3573–3601. 10.1016/j.tet.2011.03.028. DOI
Bessette A.; Hanan G. S. Design, Synthesis and Photophysical Studies of Dipyrromethene-Based Materials: Insights Into Their Applications in Organic Photovoltaic Devices. Chem. Soc. Rev. 2014, 43, 3342–3405. 10.1039/C3CS60411J. PubMed DOI
El-Khouly M. E.; Fukuzumi S.; D’Souza F. Photosynthetic Antenna–Reaction Center Mimicry by Using Boron Dipyrromethene Sensitizers. ChemPhysChem 2014, 15, 30–47. 10.1002/cphc.201300715. PubMed DOI
Klfout H.; Stewart A.; Elkhalifa M.; He H. BODIPYs for Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2017, 9, 39873–39889. 10.1021/acsami.7b07688. PubMed DOI
Li W.; Xie Z.; Jing X. BODIPY Photocatalyzed Oxidation of Thioanisole Under Visible Light. Catal. Commun. 2011, 16, 94–97. 10.1016/j.catcom.2011.09.007. DOI
Boens N.; Leen V.; Dehaen W. Fluorescent Indicators Based on BODIPY. Chem. Soc. Rev. 2012, 41, 1130–1172. 10.1039/C1CS15132K. PubMed DOI
Kamkaew A.; Lim S. H.; Lee H. B.; Kiew L. V.; Chung L. Y.; Burgess K. BODIPY Dyes in Photodynamic Therapy. Chem. Soc. Rev. 2013, 42, 77–88. 10.1039/C2CS35216H. PubMed DOI PMC
Kowada T.; Maeda H.; Kikuchi K. BODIPY-Based Probes for the Fluorescence Imaging of Biomolecules in Living Cells. Chem. Soc. Rev. 2015, 44, 4953–4972. 10.1039/C5CS00030K. PubMed DOI
Bertrand B.; Passador K.; Goze C.; Denat F.; Bodio E.; Salmain M. Metal-Based BODIPY Derivatives as Multimodal Tools for Life Sciences. Coord. Chem. Rev. 2018, 358, 108–124. 10.1016/j.ccr.2017.12.007. DOI
Ni Y.; Wu J. Far-Red and Near Infrared BODIPY Dyes: Synthesis and Applications for Fluorescent pH Probes and Bio-Imaging. Org. Biomol. Chem. 2014, 12, 3774–3791. 10.1039/c3ob42554a. PubMed DOI
Ulrich G.; Ziessel R.; Harriman A. The Chemistry of Fluorescent Bodipy Dyes: Versatility Unsurpassed. Angew. Chem., Int. Ed. 2008, 47, 1184–1201. 10.1002/anie.200702070. PubMed DOI
Lu H.; Mack J.; Yang Y.; Shen Z. Structural Modification Strategies for the Rational Design of Red/Nir Region BODIPYs. Chem. Soc. Rev. 2014, 43, 4778–4823. 10.1039/C4CS00030G. PubMed DOI
Hinkeldey B.; Schmitt A.; Jung G. Comparative Photostability Studies of BODIPY and Fluorescein Dyes by Using Fluorescence Correlation Spectroscopy. ChemPhysChem 2008, 9, 2019–2027. 10.1002/cphc.200800299. PubMed DOI
Singh-Rachford T. N.; Haefele A.; Ziessel R.; Castellano F. N. Boron Dipyrromethene Chromophores: Next Generation Triplet Acceptors/Annihilators for Low Power Upconversion Schemes. J. Am. Chem. Soc. 2008, 130, 16164–16165. 10.1021/ja807056a. PubMed DOI
Kollmannsberger M.; Rurack K.; Resch-Genger U.; Daub J. Ultrafast Charge Transfer in Amino-Substituted Boron Dipyrromethene Dyes and Its Inhibition by Cation Complexation: A New Design Concept for Highly Sensitive Fluorescent Probes. J. Phys. Chem. A 1998, 102, 10211–10220. 10.1021/jp982701c. DOI
Qin W.; Baruah M.; Stefan A.; Van der Auweraer M.; Boens N. Photophysical Properties of BODIPY-Derived Hydroxyaryl Fluorescent pH Probes in Solution. ChemPhysChem 2005, 6, 2343–2351. 10.1002/cphc.200500341. PubMed DOI
Röhr H.; Trieflinger C.; Rurack K.; Daub J. Proton- and Redox-Controlled Switching of Photo- and Electrochemiluminescence in Thiophenyl-Substituted Boron–Dipyrromethene Dyes. Chem. - Eur. J. 2006, 12, 689–700. 10.1002/chem.200500729. PubMed DOI
Sazanovich I. V.; Kirmaier C.; Hindin E.; Yu L.; Bocian D. F.; Lindsey J. S.; Holten D. Structural Control of the Excited-State Dynamics of Bis(dipyrrinato)zinc Complexes: Self-Assembling Chromophores for Light-Harvesting Architectures. J. Am. Chem. Soc. 2004, 126, 2664–2665. 10.1021/ja038763k. PubMed DOI
Kee H. L.; Kirmaier C.; Yu L.; Thamyongkit P.; Youngblood W. J.; Calder M. E.; Ramos L.; Noll B. C.; Bocian D. F.; Scheidt W. R.; Birge R. R.; Lindsey J. S.; Holten D. Structural Control of the Photodynamics of Boron-Dipyrrin Complexes. J. Phys. Chem. B 2005, 109, 20433–20443. 10.1021/jp0525078. PubMed DOI PMC
de Wael E. V.; Pardoen J. A.; van Koeveringe J. A.; Lugtenburg J. Pyrromethene-BF2 Complexes (4,4′-Difluoro-4-bora-3a,4a-diaza-s-indacenes). Synthesis and Luminescence Properties. Recl. Trav. Chim. Pays-Bas 1977, 96, 306–309. 10.1002/recl.19770961205. DOI
Yogo T.; Urano Y.; Ishitsuka Y.; Maniwa F.; Nagano T. Highly Efficient and Photostable Photosensitizer Based on BODIPY Chromophore. J. Am. Chem. Soc. 2005, 127, 12162–12163. 10.1021/ja0528533. PubMed DOI
Rumyantsev E. V.; Alyoshin S. N.; Marfin Y. S. Kinetic Study of BODIPY Resistance to Acids and Alkalis: Stability Ranges in Aqueous and Non-Aqueous Solutions. Inorg. Chim. Acta 2013, 408, 181–185. 10.1016/j.ica.2013.08.015. DOI
Yang L.; Simionescu R.; Lough A.; Yan H. Some Observations Relating to the Stability of the BODIPY Fluorophore Under Acidic and Basic Conditions. Dyes Pigm. 2011, 91, 264–267. 10.1016/j.dyepig.2011.03.027. DOI
Boens N.; Verbelen B.; Ortiz M. J.; Jiao L.; Dehaen W. Synthesis of BODIPY Dyes Through Postfunctionalization of the Boron Dipyrromethene Core. Coord. Chem. Rev. 2019, 399, 213024.10.1016/j.ccr.2019.213024. DOI
Loudet A.; Burgess K. BODIPY Dyes and Their Derivatives: Syntheses and Spectroscopic Properties. Chem. Rev. 2007, 107, 4891–4932. 10.1021/cr078381n. PubMed DOI
Rubinstein N.; Liu P.; Miller E. W.; Weinstain R. meso-Methylhydroxy BODIPY: a scaffold for photo-labile protecting groups. Chem. Commun. 2015, 51, 6369–6372. 10.1039/C5CC00550G. PubMed DOI
Goswami P. P.; Syed A.; Beck C. L.; Albright T. R.; Mahoney K. M.; Unash R.; Smith E. A.; Winter A. H. BODIPY-Derived Photoremovable Protecting Groups Unmasked with Green Light. J. Am. Chem. Soc. 2015, 137, 3783–3786. 10.1021/jacs.5b01297. PubMed DOI
Albright T. R.; Winter A. H. A Fine Line Separates Carbocations from Diradical Ions in Donor-Unconjugated Cations. J. Am. Chem. Soc. 2015, 137, 3402–3410. 10.1021/jacs.5b00707. PubMed DOI
Buck A. T.; Beck C. L.; Winter A. H. Inverted Substrate Preferences for Photochemical Heterolysis Arise from Conical Intersection Control. J. Am. Chem. Soc. 2014, 136, 8933–8940. 10.1021/ja501777r. PubMed DOI
Slanina T.; Shrestha P.; Palao E.; Kand D.; Peterson J. A.; Dutton A. S.; Rubinstein N.; Weinstain R.; Winter A. H.; Klán P. In Search of the Perfect Photocage: Structure–Reactivity Relationships in meso-Methyl BODIPY Photoremovable Protecting Groups. J. Am. Chem. Soc. 2017, 139, 15168–15175. 10.1021/jacs.7b08532. PubMed DOI
Štacko P.; Muchovaá L.; Vítek L.; Klán P. Visible to NIR Light Photoactivation of Hydrogen Sulfide for Biological Targeting. Org. Lett. 2018, 20, 4907–4911. 10.1021/acs.orglett.8b02043. PubMed DOI
Li M.; Dove A. P.; Truong V. X. Additive-Free Green Light-Induced Ligation Using BODIPY Triggers. Angew. Chem., Int. Ed. 2020, 59, 2284–2288. 10.1002/anie.201912555. PubMed DOI
Peterson J. A.; Fischer L. J.; Gehrmann E. J.; Shrestha P.; Yuan D.; Wijesooriya C.; Smith E. A.; Winter A. H. Direct Photorelease of Alcohols from Boron-Alkylated BODIPY Photocages. J. Org. Chem. 2020, 85, 5712–5717. 10.1021/acs.joc.0c00044. PubMed DOI
Vohradská N.; Sánchez-Carnerero E. M.; Pastierik T.; Mazal C.; Klán P. Controlled Photorelease of Alkynoic Acids and Their Decarboxylative Deprotection for Copper-Catalyzed Azide/Alkyne Cycloaddition. Chem. Commun. 2018, 54, 5558–5561. 10.1039/C8CC03341B. PubMed DOI
Blangetti M.; Fraix A.; Lazzarato L.; Marini E.; Rolando B.; Sodano F.; Fruttero R.; Gasco A.; Sortino S. A Nonmetal-Containing Nitric Oxide Donor Activated with Single-Photon Green Light. Chem. - Eur. J. 2017, 23, 9026–9029. 10.1002/chem.201701889. PubMed DOI
Liu M.; Meng J.; Bao W.; Liu S.; Wei W.; Ma G.; Tian Z. Single-Chromophore-Based Therapeutic Agent Enables Green-Light-Triggered Chemotherapy and Simultaneous Photodynamic Therapy to Cancer Cells. ACS Applied Bio Materials 2019, 2, 3068–3076. 10.1021/acsabm.9b00356. PubMed DOI
Kand D.; Pizarro L.; Angel I.; Avni A.; Friedmann-Morvinski D.; Weinstain R. Organelle-Targeted BODIPY Photocages: Visible-Light-Mediated Subcellular Photorelease. Angew. Chem., Int. Ed. 2019, 58, 4659–4663. 10.1002/anie.201900850. PubMed DOI PMC
Toupin N. P.; Arora K.; Shrestha P.; Peterson J. A.; Fischer L. J.; Rajagurubandara E.; Podgorski I.; Winter A. H.; Kodanko J. J. BODIPY-Caged Photoactivated Inhibitors of Cathepsin B Flip the Light Switch on Cancer Cell Apoptosis. ACS Chem. Biol. 2019, 14, 2833–2840. 10.1021/acschembio.9b00711. PubMed DOI PMC
Peterson J. A.; Wijesooriya C.; Gehrmann E. J.; Mahoney K. M.; Goswami P. P.; Albright T. R.; Syed A.; Dutton A. S.; Smith E. A.; Winter A. H. Family of BODIPY Photocages Cleaved by Single Photons of Visible/Near-Infrared Light. J. Am. Chem. Soc. 2018, 140, 7343–7346. 10.1021/jacs.8b04040. PubMed DOI
Lv W.; Li Y.; Li F.; Lan X.; Zhang Y.; Du L.; Zhao Q.; Phillips D. L.; Wang W. Upconversion-like Photolysis of BODIPY-Based Prodrugs via a One-Photon Process. J. Am. Chem. Soc. 2019, 141, 17482–17486. 10.1021/jacs.9b09034. PubMed DOI
Sitkowska K.; Feringa B. L.; Szymański W. Green-Light-Sensitive BODIPY Photoprotecting Groups for Amines. J. Org. Chem. 2018, 83, 1819–1827. 10.1021/acs.joc.7b02729. PubMed DOI PMC
Faggi E.; Aguilera J.; Sáez R.; Pujol F.; Marquet J.; Hernando J.; Sebastián R. M. Wavelength-Tunable Light-Induced Polymerization of Cyanoacrylates Using Photogenerated Amines. Macromolecules 2019, 52, 2329–2339. 10.1021/acs.macromol.8b02318. DOI
Kand D.; Liu P.; Navarro M. X.; Fischer L. J.; Rousso-Noori L.; Friedmann-Morvinski D.; Winter A. H.; Miller E. W.; Weinstain R. Water-Soluble BODIPY Photocages with Tunable Cellular Localization. J. Am. Chem. Soc. 2020, 142, 4970–4974. 10.1021/jacs.9b13219. PubMed DOI PMC
Sitkowska K.; Hoes M. F.; Lerch M.; Lameijer L.; van der Meer P.; Szymanski W.; Feringa B. L. Red – Light – Sensitive BODIPY Photoprotecting Groups for Amines and Their Biological Application in Controlling Heart Rhythm. Chem. Commun. 2020, 56, 5480.10.1039/D0CC02178D. PubMed DOI
Al Anshori J.; Slanina T.; Palao E.; Klán P. The Internal Heavy-Atom Effect on 3-Phenylselanyl and 3-Phenyltellanyl BODIPY Derivatives Studied by Transient Absorption Spectroscopy. Photochem. Photobiol. Sci. 2016, 15, 250–259. 10.1039/C5PP00366K. PubMed DOI
Ludvíková L.; Friš P.; Heger D.; Šebej P.; Wirz J.; Klán P. Photochemistry of Rose Bengal in Water and Acetonitrile: A Comprehensive Kinetic Analysis. Phys. Chem. Chem. Phys. 2016, 18, 16266–16273. 10.1039/C6CP01710J. PubMed DOI
Shrestha P.; Dissanayake K. C.; Gehrmann E. J.; Wijesooriya C. S.; Mukhopadhyay A.; Smith E. A.; Winter A. H. Efficient Far-Red/Near-IR Absorbing BODIPY Photocages by Blocking Unproductive Conical Intersections. J. Am. Chem. Soc. 2020, 142, 15505–15512. 10.1021/jacs.0c07139. PubMed DOI
Murata M.; Miyashita S.; Yokoo C.; Tamai M.; Hanada K.; Hatayama K.; Towatari T.; Nikawa T.; Katunuma N. Novel Epoxysuccinyl Peptides Selective Inhibitors of Cathepsin B, in Vitro. FEBS Lett. 1991, 280, 307–310. 10.1016/0014-5793(91)80318-W. PubMed DOI
Kawatani M.; Kamiya M.; Takahashi H.; Urano Y. Factors Affecting the Uncaging Efficiency of 500 nm Light-Activatable BODIPY Caging Group. Bioorg. Med. Chem. Lett. 2018, 28, 1–5. 10.1016/j.bmcl.2017.11.030. PubMed DOI
Umeda N.; Takahashi H.; Kamiya M.; Ueno T.; Komatsu T.; Terai T.; Hanaoka K.; Nagano T.; Urano Y. Boron Dipyrromethene As a Fluorescent Caging Group for Single-Photon Uncaging with Long-Wavelength Visible Light. ACS Chem. Biol. 2014, 9, 2242–2246. 10.1021/cb500525p. PubMed DOI
Sunahara H.; Urano Y.; Kojima H.; Nagano T. Design and Synthesis of a Library of BODIPY-Based Environmental Polarity Sensors Utilizing Photoinduced Electron-Transfer-Controlled Fluorescence ON/OFF Switching. J. Am. Chem. Soc. 2007, 129, 5597–5604. 10.1021/ja068551y. PubMed DOI
Rehm D.; Weller A. Kinetics of Fluorescence Quenching by Electron and H-Atom Transfer. Isr. J. Chem. 1970, 8, 259–271. 10.1002/ijch.197000029. DOI
Miura T.; Urano Y.; Tanaka K.; Nagano T.; Ohkubo K.; Fukuzumi S. Rational Design Principle for Modulating Fluorescence Properties of Fluorescein-Based Probes by Photoinduced Electron Transfer. J. Am. Chem. Soc. 2003, 125, 8666–8671. 10.1021/ja035282s. PubMed DOI
Kumari P.; Kulkarni A.; Sharma A. K.; Chakrapani H. Visible-Light Controlled Release of a Fluoroquinolone Antibiotic for Antimicrobial Photopharmacology. ACS Omega 2018, 3, 2155–2160. 10.1021/acsomega.7b01906. PubMed DOI PMC
Sharma A. K.; Nair M.; Chauhan P.; Gupta K.; Saini D. K.; Chakrapani H. Visible-Light-Triggered Uncaging of Carbonyl Sulfide for Hydrogen Sulfide (H2S) Release. Org. Lett. 2017, 19, 4822–4825. 10.1021/acs.orglett.7b02259. PubMed DOI
Patil N. G.; Basutkar N. B.; Ambade A. V. Visible Light-Triggered Disruption of Micelles of an Amphiphilic Block Copolymer With BODIPY at the Junction. Chem. Commun. 2015, 51, 17708–17711. 10.1039/C5CC06820G. PubMed DOI
Dyer R. G.; Turnbull K. D. Hydrolytic Stabilization of Protected p-Hydroxybenzyl Halides Designed as Latent Quinone Methide Precursors. J. Org. Chem. 1999, 64, 7988–7995. 10.1021/jo991085t. DOI
Chauhan P.; Bora P.; Ravikumar G.; Jos S.; Chakrapani H. Esterase Activated Carbonyl Sulfide/Hydrogen Sulfide (H2S) Donors. Org. Lett. 2017, 19, 62–65. 10.1021/acs.orglett.6b03336. PubMed DOI
Schenk S.; Kesselmeier J.; Anders E. How Does the Exchange of One Oxygen Atom with Sulfur Affect the Catalytic Cycle of Carbonic Anhydrase?. Chem. - Eur. J. 2004, 10, 3091–3105. 10.1002/chem.200305754. PubMed DOI
Steiger A. K.; Pardue S.; Kevil C. G.; Pluth M. D. Self-Immolative Thiocarbamates Provide Access to Triggered H2S Donors and Analyte Replacement Fluorescent Probes. J. Am. Chem. Soc. 2016, 138, 7256–7259. 10.1021/jacs.6b03780. PubMed DOI PMC
Powell C. R.; Foster J. C.; Okyere B.; Theus M. H.; Matson J. B. Therapeutic Delivery of H2S via COS: Small Molecule and Polymeric Donors with Benign Byproducts. J. Am. Chem. Soc. 2016, 138, 13477–13480. 10.1021/jacs.6b07204. PubMed DOI PMC
Olson K. R. The Therapeutic Potential of Hydrogen Sulfide: Separating Hype From Hope. Am. J. Physiol. Reg. I. 2011, 301, R297–R312. 10.1152/ajpregu.00045.2011. PubMed DOI
Wijesooriya C. S.; Peterson J. A.; Shrestha P.; Gehrmann E. J.; Winter A. H.; Smith E. A. A Photoactivatable BODIPY Probe for Localization-Based Super-Resolution Cellular Imaging. Angew. Chem., Int. Ed. 2018, 57, 12685–12689. 10.1002/anie.201805827. PubMed DOI
Li H.; Vaughan J. C. Switchable Fluorophores for Single-Molecule Localization Microscopy. Chem. Rev. 2018, 118, 9412–9454. 10.1021/acs.chemrev.7b00767. PubMed DOI PMC
Dempsey G. T.; Vaughan J. C.; Chen K. H.; Bates M.; Zhuang X. Evaluation of Fluorophores for Optimal Performance in Localization-Based Super-Resolution Imaging. Nat. Methods 2011, 8, 1027–1036. 10.1038/nmeth.1768. PubMed DOI PMC
van de Linde S.; Löschberger A.; Klein T.; Heidbreder M.; Wolter S.; Heilemann M.; Sauer M. Direct Stochastic Optical Reconstruction Microscopy with Standard Fluorescent Probes. Nat. Protoc. 2011, 6, 991–1009. 10.1038/nprot.2011.336. PubMed DOI
Zhang Y.; Raymo F. M. Live-Cell Imaging at the Nanoscale with Bioconjugatable and Photoactivatable Fluorophores. Bioconjugate Chem. 2020, 31, 1052–1062. 10.1021/acs.bioconjchem.0c00073. PubMed DOI
Takeda A.; Komatsu T.; Nomura H.; Naka M.; Matsuki N.; Ikegaya Y.; Terai T.; Ueno T.; Hanaoka K.; Nagano T.; Urano Y. Unexpected Photo-instability of 2,6-Sulfonamide-Substituted BODIPYs and Its Application to Caged GABA. ChemBioChem 2016, 17, 1233–1240. 10.1002/cbic.201600097. PubMed DOI
Sambath K.; Zhao T.; Wan Z.; Zhang Y. Photo-Uncaging of BODIPY Oxime Ester for Histone Deacetylases Induced Apoptosis in Tumor Cells. Chem. Commun. 2019, 55, 14162–14165. 10.1039/C9CC07199G. PubMed DOI
Umezawa B.; Hoshino O.; Sawaki S. Organic Photochemistry. I. 3, 4-Dihydroisoquinolines from Tetrahydroisoquinoline N-Tosylates. Chem. Pharm. Bull. 1969, 17, 1115–1119. 10.1248/cpb.17.1115. DOI
Hamada T.; Nishida A.; Matsumoto Y.; Yonemitsu O. Photohydrolysis of Sulfonamides via Donor-Acceptor Ion Pairs with Electron-Donating Aromatics and Its Application to the Selective Detosylation of Lysine Peptides. J. Am. Chem. Soc. 1980, 102, 3978–3980. 10.1021/ja00531a064. DOI
Hamada T.; Nishida A.; Yonemitsu O. Selective Removal of Electron-Accepting p-Toluene- and Naphthalenesulfonyl Protecting Groups for Amino Function via Photoinduced Donor Acceptor Ion Pairs With Electron-Donating Aromatics. J. Am. Chem. Soc. 1986, 108, 140–145. 10.1021/ja00261a023. DOI
Hamada T.; Nishida A.; Yonemitsu O. A New Amino Protecting Group Readily Removable with Near Ultraviolet Light as an Application of Electron-Transfer Photochemistry. Tetrahedron Lett. 1989, 30, 4241–4244. 10.1016/S0040-4039(01)80700-0. DOI
Papageorgiou G.; Corrie J. E. T. Synthetic and Photochemical Studies of N-Arenesulfonyl Amino Acids. Tetrahedron 1999, 55, 237–254. 10.1016/S0040-4020(98)01029-1. DOI
Boreen A. L.; Arnold W. A.; McNeill K. Photochemical Fate of Sulfa Drugs in the Aquatic Environment: Sulfa Drugs Containing Five-Membered Heterocyclic Groups. Environ. Sci. Technol. 2004, 38, 3933–3940. 10.1021/es0353053. PubMed DOI
Boreen A. L.; Arnold W. A.; McNeill K. Triplet-Sensitized Photodegradation of Sulfa Drugs Containing Six-Membered Heterocyclic Groups: Identification of an SO2 Extrusion Photoproduct. Environ. Sci. Technol. 2005, 39, 3630–3638. 10.1021/es048331p. PubMed DOI
Weiss B.; Dürr H.; Haas H. J. Photochemistry of Sulfonamides and Sulfonylureas: A Contribution to the Problem of Light-Induced Dermatoses. Angew. Chem., Int. Ed. Engl. 1980, 19, 648–650. 10.1002/anie.198006481. PubMed DOI
Jones G.; Lu L. N.; Fu H.; Farahat C. W.; Oh C.; Greenfield S. R.; Gosztola D. J.; Wasielewski M. R. Intramolecular Electron Transfer across Amino Acid Spacers in the Picosecond Time Regime. Charge-Transfer Interaction through Peptide Bonds. J. Phys. Chem. B 1999, 103, 572–581. 10.1021/jp9832802. DOI
Palao E.; Slanina T.; Muchová L.; Šolomek T.; Vítek L.; Klán P. Transition-Metal-Free CO-Releasing BODIPY Derivatives Activatable by Visible to NIR Light as Promising Bioactive Molecules. J. Am. Chem. Soc. 2016, 138, 126–133. 10.1021/jacs.5b10800. PubMed DOI
Fukuzumi S. New Perspective of Electron Transfer Chemistry. Org. Biomol. Chem. 2003, 1, 609–620. 10.1039/b300053b. PubMed DOI
Corrie J. E. T.; Papageorgiou G. Synthesis and Evaluation of Photolabile Sulfonamides as Potential Reagents for Rapid Photorelease of Neuroactive Amines. J. Chem. Soc., Perkin Trans. 1 1996, 1, 1583–1592. 10.1039/p19960001583. DOI
Hill R. R.; Jeffs G. E.; Roberts D. R.; Wood S. A. Photodegradation of Aryl Sulfonamides: N-Tosylglycine. Chem. Commun. 1999, 1735–1736. 10.1039/a905358a. DOI
Griesbeck A. G. Photochemical Transformations of Proteinogenic and Non-Proteinogenic Amino Acids. Chimia 1998, 52, 272–283.
Bucher G.; Scaiano J. C.; Sinta R.; Barclay G.; Cameron J. Laser Flash Photolysis of Carbamates Derived from 9-Fluorenone Oxime. J. Am. Chem. Soc. 1995, 117, 3848–3855. 10.1021/ja00118a021. DOI
Hwang H.; Jang D.-J.; Chae K. H. Photolysis Reaction Mechanism of Dibenzophenoneoxime Hexamethylenediurethane, a New Type of Photobase Generator. J. Photochem. Photobiol., A 1999, 126, 37–42. 10.1016/S1010-6030(99)00129-X. DOI
Lalevée J.; Allonas X.; Fouassier J. P.; Tachi H.; Izumitani A.; Shirai M.; Tsunooka M. Investigation of the Photochemical Properties of an Important Class of Photobase Generators: The O-Acyloximes. J. Photochem. Photobiol., A 2002, 151, 27–37. 10.1016/S1010-6030(02)00174-0. DOI
McCarroll A. J.; Walton J. C. Exploitation of Aldoxime Esters as Radical Precursors in Preparative and EPR Spectroscopic Roles. J. Chem. Soc. Perk. T. 2000, 2, 2399–2409. 10.1039/b007212p. DOI
Chowdhury N.; Dutta S.; Dasgupta S.; Singh N. D. P.; Baidya M.; Ghosh S. K. Synthesis, Photophysical, Photochemical, Dna Cleavage/Binding and Cytotoxic Properties of Pyrene Oxime Ester Conjugates. Photochem. Photobiol. Sci. 2012, 11, 1239–1250. 10.1039/c2pp25033k. PubMed DOI
Jiang H.; An X.; Tong K.; Zheng T.; Zhang Y.; Yu S. Visible-Light-Promoted Iminyl-Radical Formation from Acyl Oximes: A Unified Approach to Pyridines, Quinolines, and Phenanthridines. Angew. Chem., Int. Ed. 2015, 54, 4055–4059. 10.1002/anie.201411342. PubMed DOI
An X.-D.; Yu S. Visible-Light-Promoted and One-Pot Synthesis of Phenanthridines and Quinolines from Aldehydes and O-Acyl Hydroxylamine. Org. Lett. 2015, 17, 2692–2695. 10.1021/acs.orglett.5b01096. PubMed DOI
Matsubara R.; Idros U. M.; Yabuta T.; Ma H.; Hayashi M.; Eda K. Photoinduced Nitrile Formation from O-(Arylcarbonyl) oxime: Usage as a Photoremovable Protecting Group. ChemPhotoChem. 2018, 2, 1012–1016. 10.1002/cptc.201800167. DOI
Photochemistry and Photophysics of Coordination Compounds I; Balzani V., Campagna S., Eds.; Springer-Verlag: Berlin, Heidelberg, 2007.
Photochemistry and Photophysics of Coordination Compounds II; Balzani V., Campagna S., Eds.; Springer-Verlag: Berlin, Heidelberg, 2007.
Martins P.; Marques M.; Coito L.; Pombeiro A. J. L.; Baptista P. V.; Fernandes A. R. Organometallic Compounds in Cancer Therapy: Past Lessons and Future Directions. Anti-Cancer Agents Med. Chem. 2014, 14, 1199–1212. 10.2174/1871520614666140829124925. PubMed DOI
Simpson P. V.; Desai N. M.; Casari I.; Massi M.; Falasca M. Metal-Based Antitumor Compounds: Beyond Cisplatin. Future Med. Chem. 2019, 11, 119–135. 10.4155/fmc-2018-0248. PubMed DOI
Ndagi U.; Mhlongo N.; Soliman M. E. Metal Complexes in Cancer Therapy - an Update From Drug Design Perspective. Drug Des., Dev. Ther. 2017, 11, 599–616. 10.2147/DDDT.S119488. PubMed DOI PMC
Maity B.; Chakravarty A. R. Photocytotoxic Organometallic Compounds. Indian J. Chem. A 2012, 51, 69–82.
Lo K. K. W. Luminescent Rhenium(I) and Iridium(III) Polypyridine Complexes as Biological Probes, Imaging Reagents, and Photocytotoxic Agents. Acc. Chem. Res. 2015, 48, 2985–2995. 10.1021/acs.accounts.5b00211. PubMed DOI
Kwiatkowski S.; Knap B.; Przystupski D.; Saczko J.; Kedzierska E.; Knap-Czop K.; Kotlinska J.; Michel O.; Kotowski K.; Kulbacka J. Photodynamic Therapy - Mechanisms, Photosensitizers and Combinations. Biomed. Pharmacother. 2018, 106, 1098–1107. 10.1016/j.biopha.2018.07.049. PubMed DOI
Yip A. M. H.; Lo K. K. W. Luminescent Rhenium(I), Ruthenium(II), and Iridium(III) Polypyridine Complexes Containing a Poly(Ethylene Glycol) Pendant or Bioorthogonal Reaction Group as Biological Probes and Photocytotoxic Agents. Coord. Chem. Rev. 2018, 361, 138–163. 10.1016/j.ccr.2018.01.021. DOI
Imberti C.; Zhang P.; Huang H.; Sadler P. J. New Designs for Phototherapeutic Transition Metal Complexes. Angew. Chem., Int. Ed. 2020, 59, 61–73. 10.1002/anie.201905171. PubMed DOI PMC
Haas K. L.; Franz K. J. Application of Metal Coordination Chemistry To Explore and Manipulate Cell Biology. Chem. Rev. 2009, 109, 4921–4960. 10.1021/cr900134a. PubMed DOI PMC
Bjelosevic A.; Pages B. J.; Spare L. K.; Deo K. M.; Ang D. L.; Aldrich-Wright J. R. Exposing “Bright” Metals: Promising Advances in Photoactivated Anticancer Transition Metal Complexes. Curr. Med. Chem. 2018, 25, 478–492. 10.2174/0929867324666170530085123. PubMed DOI
Bonnet S. Why Develop Photoactivated Chemotherapy?. Dalton Trans. 2018, 47, 10330–10343. 10.1039/C8DT01585F. PubMed DOI
Jia P. P.; Ouyang R. Z.; Cao P. H.; Tong X.; Zhou X.; Lei T.; Zhao Y. F.; Guo N.; Chang H. Z.; Miao Y. Q.; Zhou S. Review: Recent Advances and Future Development of Metal Complexes as Anticancer Agents. J. Coord. Chem. 2017, 70, 2175–2201. 10.1080/00958972.2017.1349313. DOI
Reessing F.; Szymanski W. Beyond Photodynamic Therapy: Light-Activated Cancer Chemotherapy. Curr. Med. Chem. 2018, 24, 4905–4950. 10.2174/0929867323666160906103223. PubMed DOI
Renfrew A. K.; O’Neill E. S.; Hambley T. W.; New E. J. Harnessing the Properties of Cobalt Coordination Complexes for Biological Application. Coord. Chem. Rev. 2018, 375, 221–233. 10.1016/j.ccr.2017.11.027. DOI
Ruggiero E.; Alonso-De Castro S.; Habtemariam A.; Salassa L.. The Photochemistry of Transition Metal Complexes and Its Application in Biology and Medicine. Luminescent and Photoactive Transition Metal Complexes as Biomolecular Probes and Cellular Reagents; Lo K. K. W., Ed., 2015; Vol. 165.
Miller N. A.; Wiley T. E.; Spears K. G.; Ruetz M.; Kieninger C.; Krautler B.; Sension R. J. Toward the Design of Photoresponsive Conditional Antivitamins B-12: A Transient Absorption Study of an Arylcobalamin and an Alkynylcobalamin. J. Am. Chem. Soc. 2016, 138, 14250–14256. 10.1021/jacs.6b05299. PubMed DOI
Anderson E. D.; Gorka A. P.; Schnermann M. J. Near-Infrared Uncaging or Photosensitizing Dictated by Oxygen Tension. Nat. Commun. 2016, 7, 13378.10.1038/ncomms13378. PubMed DOI PMC
Zayat L.; Salierno M.; Etchenique R. Ruthenium(II) Bipyridyl Complexes as Photolabile Caging Groups for Amines. Inorg. Chem. 2006, 45, 1728–1731. 10.1021/ic0512983. PubMed DOI
Lutterman D. A.; Fu P. K. L.; Turro C. cis-[Rh2(μ-O2CCH3)2(CH3CN)6]2+ as a Photoactivated Cisplatin Analog. J. Am. Chem. Soc. 2006, 128, 738–739. 10.1021/ja057620q. PubMed DOI
Renfrew A. K.; Bryce N. S.; Hambley T. Cobalt(III) Chaperone Complexes of Curcumin: Photoreduction, Cellular Accumulation and Light-Selective Toxicity towards Tumour Cells. Chem. - Eur. J. 2015, 21, 15224–15234. 10.1002/chem.201502702. PubMed DOI
Hennig H. Homogeneous Photo Catalysis by Transition Metal Complexes. Coord. Chem. Rev. 1999, 182, 101–123. 10.1016/S0010-8545(98)00201-X. DOI
Vlcek A. The Life and Times of Excited States of Organometallic and Coordination Compounds. Coord. Chem. Rev. 2000, 200, 933–977. 10.1016/S0010-8545(00)00308-8. DOI
Vogler A.; Kunkely H. Charge Transfer Excitation of Organometallic Compounds - Spectroscopy and Photochemistry. Coord. Chem. Rev. 2004, 248, 273–278. 10.1016/j.ccr.2004.01.005. DOI
Shell T. A.; Lawrence D. S. Vitamin B-12: A Tunable, Long Wavelength, Light-Responsive Platform for Launching Therapeutic Agents. Acc. Chem. Res. 2015, 48, 2866–2874. 10.1021/acs.accounts.5b00331. PubMed DOI PMC
Kozlowski P. M.; Garabato B. D.; Lodowski P.; Jaworska M. Photolytic Properties of Cobalamins: A Theoretical Perspective. Dalton Trans. 2016, 45, 4457–4470. 10.1039/C5DT04286K. PubMed DOI
Barker H. A.; Weissbach H.; Smyth R. D. A Coenzyme Containing Pseudovitamin B12. Proc. Natl. Acad. Sci. U. S. A. 1958, 44, 1093–1097. 10.1073/pnas.44.11.1093. PubMed DOI PMC
Harris D. A.; Stickrath A. B.; Carroll E. C.; Sension R. J. Influence of Environment on the Electronic Structure of Cob(III)alamins: Time-Resolved Absorption Studies of the S1 State Spectrum and Dynamics. J. Am. Chem. Soc. 2007, 129, 7578–7585. 10.1021/ja066197y. PubMed DOI
Subramanian G.; Zhang X. Y.; Kodis G.; Kong Q. Y.; Liu C. M.; Chizmeshya A.; Weierstall U.; Spence J. Direct Structural and Chemical Characterization of the Photolytic Intermediates of Methylcobalamin Using Time-Resolved X-ray Absorption Spectroscopy. J. Phys. Chem. Lett. 2018, 9, 1542–1546. 10.1021/acs.jpclett.8b00083. PubMed DOI
Miller N. A.; Deb A.; Alonso-Mori R.; Garabato B. D.; Glownia J. M.; Kiefer L. M.; Koralek J.; Sikorski M.; Spears K. G.; Wiley T. E.; Zhu D. L.; Kozlowski P. M.; Kubarych K. J.; Penner-Hahn J. E.; Sension R. J. Polarized XANES Monitors Femtosecond Structural Evolution of Photoexcited Vitamin B-12. J. Am. Chem. Soc. 2017, 139, 1894–1899. 10.1021/jacs.6b11295. PubMed DOI
Miller N. A.; Deb A.; Alonso-Mori R.; Glownia J. M.; Kiefer L. M.; Konar A.; Michocki L. B.; Sikorski M.; Sofferman D. L.; Song S.; Toda M. J.; Wiley T. E.; Zhu D. L.; Kozlowski P. M.; Kubarych K. J.; Penner-Hahn J. E.; Sension R. J. Ultrafast X-ray Absorption Near Edge Structure Reveals Ballistic Excited State Structural Dynamics. J. Phys. Chem. A 2018, 122, 4963–4971. 10.1021/acs.jpca.8b04223. PubMed DOI
Shiang J. J.; Walker L. A.; Anderson N. A.; Cole A. G.; Sension R. J. Time-Resolved Spectroscopic Studies of B-12 Coenzymes: The Photolysis of Methylcobalamin Is Wavelength Dependent. J. Phys. Chem. B 1999, 103, 10532–10539. 10.1021/jp992358r. DOI
Shiang J. J.; Cole A. G.; Sension R. J.; Hang K.; Weng Y. X.; Trommel J. S.; Marzilli L. G.; Lian T. Q. Ultrafast Excited-State Dynamics in Vitamin B-12 and Related Cob(III)alamins. J. Am. Chem. Soc. 2006, 128, 801–808. 10.1021/ja054374+. PubMed DOI
Sension R. J.; Harris D. A.; Stickrath A.; Cole A. G.; Fox C. C.; Marsh E. N. G. Time-Resolved Measurements of the Photolysis and Recombination of Adenosylcobalamin Bound to Glutamate Mutase. J. Phys. Chem. B 2005, 109, 18146–18152. 10.1021/jp052492d. PubMed DOI
Peng J. A.; Tang K. C.; McLoughlin K.; Yang Y.; Forgach D.; Sension R. J. Ultrafast Excited-State Dynamics and Photolysis in Base-Off B-12 Coenzymes and Analogues: Absence of the trans-Nitrogenous Ligand Opens a Channel for Rapid Nonradiative Decay. J. Phys. Chem. B 2010, 114, 12398–12405. 10.1021/jp104641u. PubMed DOI
Wiley T. E.; Miller N. A.; Miller W. R.; Sofferman D. L.; Lodowski P.; Toda M. J.; Jaworska M.; Kozlowski P. M.; Sension R. J. Off to the Races: Comparison of Excited State Dynamics in Vitamin B12 Derivatives Hydroxocobalamin and Aquocobalamin. J. Phys. Chem. A 2018, 122, 6693–6703. 10.1021/acs.jpca.8b06103. PubMed DOI
Bussandri A. P.; Kiarie C. W.; Van Willigen H. Photoinduced Bond Homolysis of B12 Coenzymes. An FT-EPR Study. Res. Chem. Intermed. 2002, 28, 697–710. 10.1163/15685670260469366. DOI
Schwartz P. A.; Frey P. A. 5’-Peroxyadenosine and 5’-Peroxyadenosylcobalamin as Intermediates in the Aerobic Photolysis of Adenosylcobalamin. Biochemistry 2007, 46, 7284–7292. 10.1021/bi700077v. PubMed DOI PMC
Kruppa A. I.; Taraban M. B.; Leshina T. V.; Natarajan E.; Grissom C. B. CIDNP in the Photolysis of Coenzyme B-12 Model Compounds Suggesting That C-CO Bond Homolysis Occurs From the Singlet State. Inorg. Chem. 1997, 36, 758–759. 10.1021/ic960562c. DOI
Padmakumar R.; Banerjee R. Evidence That Cobalt-Carbon Bond Homolysis Is Coupled to Hydrogen Atom Abstraction From Substrate in Methylmalonyl-CoA Mutase. Biochemistry 1997, 36, 3713–3718. 10.1021/bi962503g. PubMed DOI
Yoder L. M.; Cole A. G.; Walker L. A.; Sension R. J. Time-Resolved Spectroscopic Studies of B-12 Coenzymes: Influence of Solvent on the Photolysis of Adenosylcobalamin. J. Phys. Chem. B 2001, 105, 12180–12188. 10.1021/jp012157z. DOI
Lodowski P.; Ciura K.; Toda M. J.; Jaworska M.; Kozlowski P. M. Photodissociation of Ethylphenylcobalamin Antivitamin B-12. Phys. Chem. Chem. Phys. 2017, 19, 30310–30315. 10.1039/C7CP06589B. PubMed DOI
Lodowski P.; Jaworska M.; Andruniow T.; Garabato B. D.; Kozlowski P. M. Mechanism of Co-C Bond Photolysis in the Base-On Form of Methylcobalamin. J. Phys. Chem. A 2014, 118, 11718–11734. 10.1021/jp508513p. PubMed DOI
Lodowski P.; Jaworska M.; Andruniow T.; Kumar M.; Kozlowski P. M. Photodissociation of Co-C Bond in Methyl- and Ethylcobalamin: An Insight from TD-DFT Calculations. J. Phys. Chem. B 2009, 113, 6898–6909. 10.1021/jp810223h. PubMed DOI
Lodowski P.; Jaworska M.; Garabato B. D.; Kozowski P. M. Mechanism of Co-C Bond Photolysis in Methylcobalamin: Influence of Axial Base. J. Phys. Chem. A 2015, 119, 3913–3928. 10.1021/jp5120674. PubMed DOI
Lodowski P.; Toda M. J.; Ciura K.; Jaworska M.; Kozlowski P. M. Photolytic Properties of Antivitamins B-12. Inorg. Chem. 2018, 57, 7838–7850. 10.1021/acs.inorgchem.8b00956. PubMed DOI
Andruniow T.; Lodowski P.; Garabato B. D.; Jaworska M.; Kozlowski P. M. The Role of Spin-Orbit Coupling in the Photolysis of Methylcobalamin. J. Chem. Phys. 2016, 144, 124305.10.1063/1.4943184. PubMed DOI
Garabato B. D.; Lodowski P.; Jaworska M.; Kozlowski P. M. Mechanism of Co-C Photodissociation in Adenosylcobalamin. Phys. Chem. Chem. Phys. 2016, 18, 19070–19082. 10.1039/C6CP02136K. PubMed DOI
Jaworska M.; Lodowski P.; Andruniow T.; Pawel M. Photolysis of Methylcobalamin: Identification of the Relevant Excited States Involved in CO-C Bond Scission. J. Phys. Chem. B 2007, 111, 2419–2422. 10.1021/jp0685840. PubMed DOI
Kozlowski P. M.; Kumar M.; Piecuch P.; Li W.; Bauman N. P.; Hansen J. A.; Lodowski P.; Jaworska M. The Cobalt–Methyl Bond Dissociation in Methylcobalamin: New Benchmark Analysis Based on Density Functional Theory and Completely Renormalized Coupled-Cluster Calculations. J. Chem. Theory Comput. 2012, 8, 1870–1894. 10.1021/ct300170y. PubMed DOI
Mamun A. A.; Toda M. J.; Kozlowski P. M. Can Photolysis of the Co-C Bond in Coenzyme B12-Dependent Enzymes Be Used to Mimic the Native Reaction?. J. Photochem. Photobiol., B 2019, 191, 175–184. 10.1016/j.jphotobiol.2018.12.018. PubMed DOI
Mamun A. A.; Toda M. J.; Lodowski P.; Jaworska M.; Kozlowski P. M. Mechanism of Light Induced Radical Pair Formation in Coenzyme B12-Dependent Ethanolamine Ammonia-Lyase. ACS Catal. 2018, 8, 7164–7178. 10.1021/acscatal.8b00120. DOI
Jones A. R.; Woodward J. R.; Scrutton N. S. Continuous Wave Photolysis Magnetic Field Effect Investigations with Free and Protein-Bound Alkylcobalamins. J. Am. Chem. Soc. 2009, 131, 17246–17253. 10.1021/ja9059238. PubMed DOI
Jones A. R.; Hay S.; Woodward J. R.; Scrutton N. S. Magnetic Field Effect Studies Indicate Reduced Geminate Recombination of the Radical Pair in Substrate-Bound Adenosylcobalamin-Dependent Ethanolamine Ammonia Lyase. J. Am. Chem. Soc. 2007, 129, 15718–15727. 10.1021/ja077124x. PubMed DOI
Kutta R. J.; Hardman S. J. O.; Johannissen L. O.; Bellina B.; Messiha H. L.; Ortiz-Guerrero J. M.; Elias-Arnanz M.; Padmanabhan S.; Barran P.; Scrutton N. S.; Jones A. R. The Photochemical Mechanism of a B-12-Dependent Photoreceptor Protein. Nat. Commun. 2015, 6, 7907.10.1038/ncomms8907. PubMed DOI PMC
Rodgers Z. L.; Hughes R. M.; Doherty L. M.; Shell J. R.; Molesky B. P.; Brugh A. M.; Forbes M. D. E.; Moran A. M.; Lawrence D. S. B-12-Mediated, Long Wavelength Photopolymerization of Hydrogels. J. Am. Chem. Soc. 2015, 137, 3372–3378. 10.1021/jacs.5b00182. PubMed DOI PMC
Rodgers Z. L.; Shell T. A.; Brugh A. M.; Nowotarski H. L.; Forbes M. D. E.; Lawrence D. S. Fluorophore Assisted Photolysis of Thiolato-Cob(III)alamins. Inorg. Chem. 2016, 55, 1962–1969. 10.1021/acs.inorgchem.5b02036. PubMed DOI PMC
McCue A. C.; Moreau W. M.; Shell T. A. Visible Light-Induced Radical Mediated DNA Damage. Photochem. Photobiol. 2018, 94, 545–551. 10.1111/php.12890. PubMed DOI PMC
Giedyk M.; Turkowska J.; Lepak S.; Marculewicz M.; Proinsias K. O.; Gryko D. Photoinduced Vitamin B-12-Catalysis for Deprotection of (Allyloxy)arenes. Org. Lett. 2017, 19, 2670–2673. 10.1021/acs.orglett.7b01012. PubMed DOI
Walker L. A.; Jarrett J. T.; Anderson N. A.; Pullen S. H.; Matthews R. G.; Sension R. J. Time-Resolved Spectroscopic Studies of B-12 Coenzymes, the Identification of a Metastable Cob(III)Alamin Photoproduct in the Photolysis of Methylcobalamin. J. Am. Chem. Soc. 1998, 120, 3597–3603. 10.1021/ja974024q. DOI
Pratt J. M. Chemistry of Vitamin B12. 2. Photochemical Reactions. J. Chem. Soc. 1964, 5154–5160. 10.1039/jr9640005154. DOI
Pratt J. M.; Whitear B. R. D. Photolysis of Methylcobalamin. J. Chem. Soc. A 1971, 252–255. 10.1039/j19710000252. DOI
Chen E.; Chance M. R. Continuous-Wave Quantum Yields of Various Cobalamins Are Influenced by Competition Between Geminate Recombination and Cage Escape. Biochemistry 1993, 32, 1480–1487. 10.1021/bi00057a011. PubMed DOI
Walker L. A.; Shiang J. J.; Anderson N. A.; Pullen S. H.; Sension R. J. Time-Resolved Spectroscopic Studies of B12 Coenzymes: The Photolysis and Geminate Recombination of Adenosylcobalamin. J. Am. Chem. Soc. 1998, 120, 7286–7292. 10.1021/ja981029u. DOI
Endicott J. F.; Ferraudi G. J. Flash Photolytic Investigation of Low-Energy Homolytic Processes in Methylcobalamin. J. Am. Chem. Soc. 1977, 99, 243–245. 10.1021/ja00443a043. PubMed DOI
Shell T. A.; Lawrence D. S. A New Trick (Hydroxyl Radical Generation) for an Old Vitamin (B-12). J. Am. Chem. Soc. 2011, 133, 2148–2150. 10.1021/ja111585c. PubMed DOI PMC
Sension R. J.; Cole A. G.; Harris A. D.; Fox C. C.; Woodbury N. W.; Lin S.; Marsh E. N. G. Photolysis and Recombination of Adenosylcobalamin Bound to Glutamate Mutase. J. Am. Chem. Soc. 2004, 126, 1598–1599. 10.1021/ja0396910. PubMed DOI
Vaid F. H. M.; Zahid S.; Faiyaz A.; Qadeer K.; Gul W.; Anwar Z.; Ahmad I. Photolysis of Methylcobalamin in Aqueous Solution: A Kinetic Study. J. Photochem. Photobiol., A 2018, 362, 40–48. 10.1016/j.jphotochem.2018.05.011. DOI
Ahmad I.; Qadeer K.; Hafeez A.; Zahid S.; Sheraz M. A.; Khattak S. U. R. Effect of Ascorbic Acid on the Photolysis of Cyanocobalamin and Aquocobalamin/Hydroxocobalamin in Aqueous Solution: A Kinetic Study. J. Photochem. Photobiol., A 2017, 332, 92–100. 10.1016/j.jphotochem.2016.08.004. DOI
Shell T. A.; Shell J. R.; Rodgers Z. L.; Lawrence D. S. Tunable Visible and Near-IR Photoactivation of Light-Responsive Compounds by Using Fluorophores as Light-Capturing Antennas. Angew. Chem., Int. Ed. 2014, 53, 875–878. 10.1002/anie.201308816. PubMed DOI PMC
Priestman M. A.; Shell T. A.; Sun L.; Lee H. M.; Lawrence D. S. Merging of Confocal and Caging Technologies: Selective Three-Color Communication with Profluorescent Reporters. Angew. Chem., Int. Ed. 2012, 51, 7684–7687. 10.1002/anie.201202820. PubMed DOI PMC
Smith W. J.; Oien N. P.; Hughes R. M.; Marvin C. M.; Rodgers Z. L.; Lee J.; Lawrence D. S. Cell-Mediated Assembly of Phototherapeutics. Angew. Chem., Int. Ed. 2014, 53, 10945–10948. 10.1002/anie.201406216. PubMed DOI PMC
Hughes R. M.; Marvin C. M.; Rodgers Z. L.; Ding S.; Oien N. P.; Smith W. J.; Lawrence D. S. Phototriggered Secretion of Membrane Compartmentalized Bioactive Agents. Angew. Chem., Int. Ed. 2016, 55, 16080–16083. 10.1002/anie.201609731. PubMed DOI PMC
Kainrath S.; Stadler M.; Reichhart E.; Distel M.; Janovjak H. Green-Light-Induced Inactivation of Receptor Signaling Using Cobalamin-Binding Domains. Angew. Chem., Int. Ed. 2017, 56, 4608–4611. 10.1002/anie.201611998. PubMed DOI PMC
Chatelle C.; Ochoa-Fernandez R.; Engesser R.; Schneider N.; Beyer H. M.; Jones A. R.; Timmer J.; Zurbriggen M. D.; Weber W. A Green-Light-Responsive System for the Control of Transgene Expression in Mammalian and Plant Cells. ACS Synth. Biol. 2018, 7, 1349–1358. 10.1021/acssynbio.7b00450. PubMed DOI
Jost M.; Fernandez-Zapata J.; Polanco M. C.; Ortiz-Guerrero J. M.; Chen P. Y. T.; Kang G.; Padmanabhan S.; Elias-Arnanz M.; Drennan C. L. Structural Basis for Gene Regulation by a B-12-Dependent Photoreceptor. Nature 2015, 526, 536–U167. 10.1038/nature14950. PubMed DOI PMC
Jost M.; Simpson J. H.; Drennan C. L. The Transcription Factor CarH Safeguards Use of Adenosylcobalamin as a Light Sensor by Altering the Photolysis Products. Biochemistry 2015, 54, 3231–3234. 10.1021/acs.biochem.5b00416. PubMed DOI PMC
Claessens C. G.; Hahn U.; Torres T. Phthalocyanines: From Outstanding Electronic Properties to Emerging Applications. Chem. Rec. 2008, 8, 75–97. 10.1002/tcr.20139. PubMed DOI
Doane T. L.; Chuang C. H.; Chomas A.; Burda C. Photophysics of Silicon Phthalocyanines in Aqueous Media. ChemPhysChem 2013, 14, 321–330. 10.1002/cphc.201200962. PubMed DOI
Moreira L. M.; Vieira dos Santos F.; Lyon J. P.; Maftoum-Costa M.; Pacheco-Soares C.; Soares da Silva N. Photodynamic Therapy: Porphyrins and Phthalocyanines as Photosensitizers. Aust. J. Chem. 2008, 61, 741–754. 10.1071/CH08145. DOI
Nyokong T. Effects of Substituents on the Photochemical and Photophysical Properties of Main Group Metal Phthalocyanines. Coord. Chem. Rev. 2007, 251, 1707–1722. 10.1016/j.ccr.2006.11.011. DOI
Wang K. K.-H.; Wilson J. D.; Kenney M. E.; Mitra S.; Foster T. H. Irradiation-Induced Enhancement of Pc 4 Fluorescence and Changes in Light Scattering are Potential Dosimeters for Pc 4-PDT. Photochem. Photobiol. 2007, 83, 1056–1062. 10.1111/j.1751-1097.2007.00128.x. PubMed DOI
Li Z. Y.; Lieberman M. Axial Reactivity of Soluble Silicon(IV) Phthalocyanines. Inorg. Chem. 2001, 40, 932–939. 10.1021/ic000968w. DOI
Fujitsuka M.; Ito O.; Konami H. Photoexcited State Properties of Silicon Phthalocyanine Monomer, Dimer, and Trimer. Bull. Chem. Soc. Jpn. 2001, 74, 1823–1829. 10.1246/bcsj.74.1823. DOI
Maree M. D.; Kuznetsova N.; Nyokong T. Silicon Octaphenoxyphthalocyanines: Photostability and Singlet Oxygen Quantum Yields. J. Photochem. Photobiol., A 2001, 140, 117–125. 10.1016/S1010-6030(01)00409-9. DOI
Allen C. M.; Sharman W. M.; van Lier J. E. Current Status of Phthalocyanines in the Photodynamic Therapy of Cancer. J. Porphyrins Phthalocyanines 2001, 5, 161–169. 10.1002/jpp.324. DOI
Mitsunaga M.; Ogawa M.; Kosaka N.; Rosenblum L. T.; Choyke P. L.; Kobayashi H. Cancer Cell–Selective in Vivo Near Infrared Photoimmunotherapy Targeting Specific Membrane Molecules. Nat. Med. 2011, 17, 1685.10.1038/nm.2554. PubMed DOI PMC
Li X.; Zheng B.-D.; Peng X.-H.; Li S.-Z.; Ying J.-W.; Zhao Y.; Huang J.-D.; Yoon J. Phthalocyanines as Medicinal Photosensitizers: Developments in the Last Five Years. Coord. Chem. Rev. 2019, 379, 147–160. 10.1016/j.ccr.2017.08.003. DOI
Oleinick N. L.; Antunez A. R.; Clay M. E.; Rihter B. D.; Kenney M. E. New Phthalocyanine Photosensitizers for Photodynamic Therapy. Photochem. Photobiol. 1993, 57, 242–247. 10.1111/j.1751-1097.1993.tb02282.x. PubMed DOI
Maiti B.; Manna A. K.; McCleese C.; Doane T. L.; Chakrapani S.; Burda C.; Dunietz B. D. Photoinduced Homolytic Bond Cleavage of the Central Si-C Bond in Porphyrin Macrocycles Is a Charge Polarization Driven Process. J. Phys. Chem. A 2016, 120, 7634–7640. 10.1021/acs.jpca.6b05610. PubMed DOI
Zheng J. Y.; Konishi K.; Aida T. A Photoresponsive Silicon Radical Within a Porphyrin (-Cloud: Photolysis of Organo- and Nitroxysilicon Porphyrins With Visible Light. J. Am. Chem. Soc. 1998, 120, 9838–9843. 10.1021/ja980273i. DOI
Li J.; Yang Y.; Zhang P.; Sounik J. R.; Kenney M. E. Synthesis, Properties and Drug Potential of the Photosensitive Alkyl- and Alkylsiloxy-Ligated Silicon Phthalocyanine Pc 227. Photochem. Photobiol. Sci. 2014, 13, 1690–1698. 10.1039/C4PP00321G. PubMed DOI
Cheng Y.; Doane T. L.; Chuang C.-H.; Ziady A.; Burda C. Near Infrared Light-Triggered Drug Generation and Release from Gold Nanoparticle Carriers for Photodynamic Therapy. Small 2014, 10, 1799–1804. 10.1002/smll.201303329. PubMed DOI PMC
Doane T.; Cheng Y.; Sodhi N.; Burda C. NIR Photocleavage of the Si-C Bond in Axial Si-Phthalocyanines. J. Phys. Chem. A 2014, 118, 10587–10595. 10.1021/jp505656e. PubMed DOI
Rajaputra P.; Bio M.; Nkepang G.; Thapa P.; Woo S.; You Y. Anticancer Drug Released From Near IR-Activated Prodrug Overcomes Spatiotemporal Limits of Singlet Oxygen. Bioorg. Med. Chem. 2016, 24, 1540–1549. 10.1016/j.bmc.2016.02.025. PubMed DOI PMC
Bio M.; Rajaputra P.; Nkepang G.; You Y. J. Far-Red Light Activatable, Multifunctional Prodrug for Fluorescence Optical Imaging and Combinational Treatment. J. Med. Chem. 2014, 57, 3401–3409. 10.1021/jm5000722. PubMed DOI PMC
Thapa P.; Li M.; Bio M.; Rajaputra P.; Nkepang G.; Sun Y.; Woo S.; You Y. Far-Red Light-Activatable Prodrug of Paclitaxel for the Combined Effects of Photodynamic Therapy and Site-Specific Paclitaxel Chemotherapy. J. Med. Chem. 2016, 59, 3204–3214. 10.1021/acs.jmedchem.5b01971. PubMed DOI PMC
Anderson E. D.; Sova S.; Ivanic J.; Kelly L.; Schnermann M. J. Defining the Conditional Basis of Silicon Phthalocyanine Near-IR Ligand Exchange. Phys. Chem. Chem. Phys. 2018, 20, 19030–19036. 10.1039/C8CP03842B. PubMed DOI PMC
Sato K.; Ando K.; Okuyama S.; Moriguchi S.; Ogura T.; Totoki S.; Hanaoka H.; Nagaya T.; Kokawa R.; Takakura H.; Nishimura M.; Hasegawa Y.; Choyke P. L.; Ogawa M.; Kobayashi H. Photoinduced Ligand Release from a Silicon Phthalocyanine Dye Conjugated with Monoclonal Antibodies: A Mechanism of Cancer Cell Cytotoxicity after Near-Infrared Photoimmunotherapy. ACS Cent. Sci. 2018, 4, 1559–1569. 10.1021/acscentsci.8b00565. PubMed DOI PMC
Kobayashi H.; Choyke P. L. Near-Infrared Photoimmunotherapy of Cancer. Acc. Chem. Res. 2019, 52, 2332–2339. 10.1021/acs.accounts.9b00273. PubMed DOI PMC
Thies S.; Sell H.; Bornholdt C.; Schutt C.; Kohler F.; Tuczek F.; Herges R. Light-Driven Coordination-Induced Spin-State Switching: Rational Design of Photodissociable Ligands. Chem. - Eur. J. 2012, 18, 16358–16368. 10.1002/chem.201201698. PubMed DOI
Thies S.; Sell H.; Schütt C.; Bornholdt C.; Näther C.; Tuczek F.; Herges R. Light-Induced Spin Change by Photodissociable External Ligands: A New Principle for Magnetic Switching of Molecules. J. Am. Chem. Soc. 2011, 133, 16243–16250. 10.1021/ja206812f. PubMed DOI
Thies S.; Bornholdt C.; Köhler F.; Sönnichsen F. D.; Näther C.; Tuczek F.; Herges R. Coordination-Induced Spin Crossover (CISCO) through Axial Bonding of Substituted Pyridines to Nickel–Porphyrins: σ-Donor versus π-Acceptor Effects. Chem. - Eur. J. 2010, 16, 10074–10083. 10.1002/chem.201000603. PubMed DOI
Peters M. K.; Hamer S.; Jakel T.; Rohricht F.; Sonnichsen F. D.; von Essen C.; Lahtinen M.; Naether C.; Rissanen K.; Herges R. Spin Switching with Triazolate-Strapped Ferrous Porphyrins. Inorg. Chem. 2019, 58, 5265–5272. 10.1021/acs.inorgchem.9b00349. PubMed DOI
Nilsson J. R.; O’Sullivan M. C.; Li S.; Anderson H. L.; Andreasson J. A Photoswitchable Supramolecular Complex With Release-And-Report Capabilities. Chem. Commun. 2015, 51, 847–850. 10.1039/C4CC08513B. PubMed DOI
Juris A.; Balzani V.; Barigelletti F.; Campagna S.; Belser P.; von Zelewsky A. Ru(II) Polypyridine Complexes: Photophysics, Photochemistry, Eletrochemistry, and Chemiluminescence. Coord. Chem. Rev. 1988, 84, 85–277. 10.1016/0010-8545(88)80032-8. DOI
Campagna S.; Puntoriero F.; Nastasi F.; Bergamini G.; Balzani V.. Photochemistry and Photophysics of Coordination Compounds: Ruthenium. Photochemistry and Photophysics of Coordination Compounds I; Balzani V., Campagna S., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2007.
Cannizzo A.; van Mourik F.; Gawelda W.; Zgrablic G.; Bressler C.; Chergui M. Broadband Femtosecond Fluorescence Spectroscopy of [Ru(bpy)3]2+. Angew. Chem., Int. Ed. 2006, 45, 3174–3176. 10.1002/anie.200600125. PubMed DOI
Durham B.; Caspar J. V.; Nagle J. K.; Meyer T. J. Photochemistry of tris(2,2′-Bipyridine)ruthenium2+ ion. J. Am. Chem. Soc. 1982, 104, 4803–4810. 10.1021/ja00382a012. DOI
Tu Y. J.; Mazumder S.; Endicott J. F.; Turro C.; Kodanko J. J.; Schlegel H. B. Selective Photodissociation of Acetonitrile Ligands in Ruthenium Polypyridyl Complexes Studied by Density Functional Theory. Inorg. Chem. 2015, 54, 8003–8011. 10.1021/acs.inorgchem.5b01202. PubMed DOI PMC
Laemmel A. C.; Collin J. P.; Sauvage J. P. Efficient and Selective Photochemical Labilization of a Given Bidentate Ligand in Mixed Ruthenium(II) Complexes of the Ru(phen)2L2+ and Ru(bipy)2L2+ family (L = sterically hindering chelate). Eur. J. Inorg. Chem. 1999, 1999, 383–386. 10.1002/(SICI)1099-0682(199903)1999:3<383::AID-EJIC383>3.0.CO;2-9. DOI
Wacholtz W. F.; Auerbach R. A.; Schmehl R. H. Independent Control of Charge-Transfer and Metal-Centered Excited States in Mixed-Ligand Polypyridine Ruthenium(II) Complexes via Specific Ligand Design. Inorg. Chem. 1986, 25, 227–234. 10.1021/ic00222a027. DOI
Rillema D. P.; Blanton C. B.; Shaver R. J.; Jackman D. C.; Boldaji M.; Bundy S.; Worl L. A.; Meyer T. J. MLCT-dd Energy Gap in Pyridyl-Pyrimidine and Bis(Pyridine) Complexes of Ruthenium(II). Inorg. Chem. 1992, 31, 1600–1606. 10.1021/ic00035a016. DOI
Allen G. H.; White R. P.; Rillema D. P.; Meyer T. J. Synthetic Control of Excited-State Properties. Tris-Chelate Complexes Containing the Ligands 2,2′-Bipyrazine, 2,2′-Bipyridine, and 2,2′-Bipyrimidine. J. Am. Chem. Soc. 1984, 106, 2613–2620. 10.1021/ja00321a020. DOI
Cruz A. J.; Kirgan R.; Siam K.; Heiland P.; Rillema D. P. Photochemical and Photophysical Properties of Ruthenium(II) bis-Bipyridine bis-Nitrile Complexes: Photolability. Inorg. Chim. Acta 2010, 363, 2496–2505. 10.1016/j.ica.2010.04.014. DOI
Sun Y.; Joyce L. E.; Dickson N. M.; Turro C. Efficient DNA Photocleavage by [Ru(bpy)2(dppn)]2+ with Visible Light. Chem. Commun. 2010, 46, 2426–2428. 10.1039/b925574e. PubMed DOI
Li A.; Turro C.; Kodanko J. J. Ru(II) Polypyridyl Complexes as Photocages for Bioactive Compounds Containing Nitriles and Aromatic Heterocycles. Chem. Commun. 2018, 54, 1280–1290. 10.1039/C7CC09000E. PubMed DOI PMC
White J. K.; Schmehl R. H.; Turro C. An Overview of Photosubstitution Reactions of RU(II) Imine Complexes and Their Application in Photobiology and Photodynamic Therapy. Inorg. Chim. Acta 2017, 454, 7–20. 10.1016/j.ica.2016.06.007. PubMed DOI PMC
Soupart A.; Alary F.; Heully J.-L.; Elliott P. I. P.; Dixon I. M. Recent Progress in Ligand Photorelease Reaction Mechanisms: Theoretical Insights Focusing on RuII3MC States. Coord. Chem. Rev. 2020, 408, 213184.10.1016/j.ccr.2020.213184. DOI
Huisman M.; White J. K.; Lewalski V. G.; Podgorski I.; Turro C.; Kodanko J. J. Caging the Uncageable: Using Metal Complex Release for Photochemical Control Over Irreversible Inhibition. Chem. Commun. 2016, 52, 12590–12593. 10.1039/C6CC07083C. PubMed DOI PMC
Fleming F. F.; Yao L. H.; Ravikumar P. C.; Funk L.; Shook B. C. Nitrile-Containing Pharmaceuticals: Efficacious Roles of the Nitrile Pharmacophore. J. Med. Chem. 2010, 53, 7902–7917. 10.1021/jm100762r. PubMed DOI PMC
Sun W.; Thiramanas R.; Slep L. D.; Zeng X. L.; Mailander V.; Wu S. Photoactivation of Anticancer Ru Complexes in Deep Tissue: How Deep Can We Go?. Chem. - Eur. J. 2017, 23, 10832–10837. 10.1002/chem.201701224. PubMed DOI
Pinnick D. V.; Durham B. Photosubstitution Reactions of Ru(bpy)2XYn+ Complexes. Inorg. Chem. 1984, 23, 1440–1445. 10.1021/ic00178a028. DOI
Wacholtz W. M.; Auerbach R. A.; Schmehl R. H.; Ollino M.; Cherry W. R. Correlation of Ligand Field Excited-State Energies With Ligand Field Strength in (Polypyridine)Ruthenium(II) Complexes. Inorg. Chem. 1985, 24, 1758–1760. 10.1021/ic00206a009. DOI
Liu Y.; Turner D. B.; Singh T. N.; Angeles-Boza A. M.; Chouai A.; Dunbar K. R.; Turro C. Ultrafast Ligand Exchange: Detection of a Pentacoordinate Ru(II) Intermediate and Product Formation. J. Am. Chem. Soc. 2009, 131, 26–27. 10.1021/ja806860w. PubMed DOI
Sun Q.; Mosquera-Vazquez S.; Suffren Y.; Hankache J.; Amstutz N.; Lawson Daku L. M.; Vauthey E.; Hauser A. On the Role of Ligand-Field States for the Photophysical Properties of Ruthenium(II) Polypyridyl Complexes. Coord. Chem. Rev. 2015, 282-283, 87–99. 10.1016/j.ccr.2014.07.004. DOI
Zayat L.; Calero C.; Albores P.; Baraldo L.; Etchenique R. A New Strategy for Neurochemical Photodelivery: Metal-Ligand Heterolytic Cleavage. J. Am. Chem. Soc. 2003, 125, 882–883. 10.1021/ja0278943. PubMed DOI
Nikolenko V.; Yuste R.; Zayat L.; Baraldo L. M.; Etchenique R. Two-Photon Uncaging of Neurochemicals Using Inorganic Metal Complexes. Chem. Commun. 2005, 1752–1754. 10.1039/b418572b. PubMed DOI
Filevich O.; Salierno M.; Etchenique R. A Caged Nicotine With Nanosecond Range Kinetics and Visible Light Sensitivity. J. Inorg. Biochem. 2010, 104, 1248–1251. 10.1016/j.jinorgbio.2010.08.003. PubMed DOI
Zayat L.; Noval M. G.; Campi J.; Calero C. I.; Calvo D. J.; Etchenique R. A New Inorganic Photolabile Protecting Group for Highly Efficient Visible Light GABA Uncaging. ChemBioChem 2007, 8, 2035–2038. 10.1002/cbic.200700354. PubMed DOI
Ruiu T.; Garino C.; Salassa L.; Pizarro A. M.; Nervi C.; Gobetto R.; Sadler P. J. Spectroscopic and Computational Study of Ligand Photodissociation from [Ru(dipyrido[3,2-a:2′,3′-c]phenazine)(4-aminopyridine)4]2+. Eur. J. Inorg. Chem. 2010, 2010, 1186–1195. 10.1002/ejic.200900990. DOI
Salierno M.; Fameli C.; Etchenique R. Caged Amino Acids for Visible-Light Photodelivery. Eur. J. Inorg. Chem. 2008, 2008, 1125–1128. 10.1002/ejic.200700963. DOI
Rial Verde E. M.; Zayat L.; Etchenique R.; Yuste R. Photorelease of GABA with Visible Light Using an Inorganic Caging Group. Front. Neural Circuits 2008, 2, 2.10.3389/neuro.04.002.2008. PubMed DOI PMC
Salierno M.; Marceca E.; Peterka D. S.; Yuste R.; Etchenique R. A Fast Ruthenium Polypyridine Cage Complex Photoreleases Glutamate With Visible or IR Light in One and Two Photon Regimes. J. Inorg. Biochem. 2010, 104, 418–422. 10.1016/j.jinorgbio.2009.12.004. PubMed DOI PMC
Caraballo R. M.; Rosi P.; Hodak J. H.; Baraldo L. M. Photosubstitution of Monodentate Ligands from Ru-II-Dicarboxybipyridine Complexes. Eur. J. Inorg. Chem. 2017, 2017, 3612–3621. 10.1002/ejic.201700439. DOI
Battistin F.; Balducci G.; Wei J. H.; Renfrew A. K.; Alessio E. Photolabile Ru Model Complexes with Chelating Diimine Ligands for Light-Triggered Drug Release. Eur. J. Inorg. Chem. 2018, 2018, 1469–1480. 10.1002/ejic.201701392. DOI
del Marmol J.; Filevich O.; Etchenique R. A Ruthenium-Rhodamine Complex as an Activatable Fluorescent Probe. Anal. Chem. 2010, 82, 6259–6264. 10.1021/ac1012128. PubMed DOI
Wachter E.; Heidary D. K.; Howerton B. S.; Parkin S.; Glazer E. C. Light-Activated Ruthenium Complexes Photobind DNA and Are Cytotoxic in the Photodynamic Therapy Window. Chem. Commun. 2012, 48, 9649–9651. 10.1039/c2cc33359g. PubMed DOI
Knoll J. D.; Albani B. A.; Durr C. B.; Turro C. Unusually Efficient Pyridine Photodissociation from Ru(II) Complexes with Sterically Bulky Bidentate Ancillary Ligands. J. Phys. Chem. A 2014, 118, 10603–10610. 10.1021/jp5057732. PubMed DOI PMC
Salassa L.; Garino C.; Salassa G.; Gobetto R.; Nervi C. Mechanism of Ligand Photodissociation in Photoactivable Ru(bpy)2L22+ Complexes: A Density Functional Theory Study. J. Am. Chem. Soc. 2008, 130, 9590–9597. 10.1021/ja8025906. PubMed DOI
Salassa L.; Garino C.; Salassa G.; Nervi C.; Gobetto R.; Lamberti C.; Gianolio D.; Bizzarri R.; Sadler P. J. Ligand-Selective Photodissociation from Ru(bpy)(4AP)42+: A Spectroscopic and Computational Study. Inorg. Chem. 2009, 48, 1469–1481. 10.1021/ic8015436. PubMed DOI
Gottle A. J.; Alary F.; Boggio-Pasqua M.; Dixon I. M.; Heully J. L.; Bahreman A.; Askes S. H. C.; Bonnet S. Pivotal Role of a Pentacoordinate (MC)-M-3 State on the Photocleavage Efficiency of a Thioether Ligand in Ruthenium(II) Complexes: A Theoretical Mechanistic Study. Inorg. Chem. 2016, 55, 4448–4456. 10.1021/acs.inorgchem.6b00268. PubMed DOI
Loftus L. M.; Al-Afyouni K. F.; Rohrabaugh T. N.; Gallucci J. C.; Moore C. E.; Rack J. J.; Turro C. Unexpected Role of Ru(II) Orbital and Spin Contribution on Photoinduced Ligand Exchange: New Mechanism To Access the Photodynamic Therapy Window. J. Phys. Chem. C 2019, 123, 10291–10299. 10.1021/acs.jpcc.9b01576. DOI
van Rixel V. H. S.; Ramu V.; Auyeung A. B.; Beztsinna N.; Leger D. Y.; Lameijer L. N.; Hilt S. T.; Le Dévédec S. E.; Yildiz T.; Betancourt T.; Gildner M. B.; Hudnall T. W.; Sol V.; Liagre B.; Kornienko A.; Bonnet S. Photo-Uncaging of a Microtubule-Targeted Rigidin Analogue in Hypoxic Cancer Cells and in a Xenograft Mouse Model. J. Am. Chem. Soc. 2019, 141, 18444–18454. 10.1021/jacs.9b07225. PubMed DOI
Loftus L. M.; Al-Afyouni K. F.; Turro C. New RuII Scaffold for Photoinduced Ligand Release with Red Light in the Photodynamic Therapy (PDT) Window. Chem. - Eur. J. 2018, 24, 11550–11553. 10.1002/chem.201802405. PubMed DOI
Li A.; White J. K.; Arora K.; Herroon M. K.; Martin P. D.; Schlegel H. B.; Podgorski I.; Turro C.; Kodanko J. J. Selective Release of Aromatic Heterocycles from Ruthenium Tris(2-pyridylmethyl)amine with Visible Light. Inorg. Chem. 2016, 55, 10–12. 10.1021/acs.inorgchem.5b02600. PubMed DOI PMC
Sharma R.; Knoll J. D.; Martin P. D.; Podgorski I.; Turro C.; Kodanko J. J. Ruthenium Tris(2-pyridylmethyl)amine as an Effective Photocaging Group for Nitriles. Inorg. Chem. 2014, 53, 3272–3274. 10.1021/ic500299s. PubMed DOI PMC
Arora K.; White J. K.; Sharma R.; Mazumder S.; Martin P. D.; Schlegel H. B.; Turro C.; Kodanko J. J. Effects of Methyl Substitution in Ruthenium Tris(2-pyridylmethyl)amine Photocaging Groups for Nitriles. Inorg. Chem. 2016, 55, 6968–6979. 10.1021/acs.inorgchem.6b00650. PubMed DOI PMC
Loftus L. M.; Li A.; Fillman K. L.; Martin P. D.; Kodanko J. J.; Turro C. Unusual Role of Excited State Mixing in the Enhancement of Photoinduced Ligand Exchange in Ru(II) Complexes. J. Am. Chem. Soc. 2017, 139, 18295–18306. 10.1021/jacs.7b09937. PubMed DOI PMC
Bahreman A.; Limburg B.; Siegler M. A.; Bouwman E.; Bonnet S. Spontaneous Formation in the Dark, and Visible Light-Induced Cleavage, of a Ru-S Bond in Water: A Thermodynamic and Kinetic Study. Inorg. Chem. 2013, 52, 9456–9469. 10.1021/ic401105v. PubMed DOI
Bahreman A.; Limburg B.; Siegler M. A.; Koning R.; Koster A. J.; Bonnet S. Ruthenium Polypyridyl Complexes Hopping at Anionic Lipid Bilayers through a Supramolecular Bond Sensitive to Visible Light. Chem. - Eur. J. 2012, 18, 10271–10280. 10.1002/chem.201200624. PubMed DOI
Chan H.; Ghrayche J. B.; Wei J. H.; Renfrew A. K. Photolabile Ruthenium(II)-Purine Complexes: Phototoxicity, DNA Binding, and Light-Triggered Drug Release. Eur. J. Inorg. Chem. 2017, 2017, 1679–1686. 10.1002/ejic.201601137. DOI
Ragazzon G.; Bratsos I.; Alessio E.; Salassa L.; Habtemariam A.; McQuitty R. J.; Clarkson G. J.; Sadler P. J. Design of Photoactivatable Metallodrugs: Selective and Rapid Light-Induced Ligand Dissociation From Half-Sandwich [Ru([9]aneS3)(N–N′)(py)]2+ Complexes. Inorg. Chim. Acta 2012, 393, 230–238. 10.1016/j.ica.2012.06.031. DOI
Finazzi I.; Bratsos I.; Gianferrara T.; Bergamo A.; Demitri N.; Balducci G.; Alessio E. Photolabile Ru-II Half-Sandwich Complexes Suitable for Developing “Caged” Compounds: Chemical Investigation and Unexpected Dinuclear Species with Bridging Diamine Ligands. Eur. J. Inorg. Chem. 2013, 2013, 4743–4753. 10.1002/ejic.201300792. DOI
Bratsos I.; Alessio E. The Pivotal Role of Ru-DMSO Compounds in the Discovery of Well-Behaved Precursors. Eur. J. Inorg. Chem. 2018, 2018, 2996–3013. 10.1002/ejic.201800469. DOI
Respondek T.; Garner R. N.; Herroon M. K.; Podgorski I.; Turro C.; Kodanko J. J. Light Activation of a Cysteine Protease Inhibitor: Caging of a Peptidomimetic Nitrile with RuII(bpy)2. J. Am. Chem. Soc. 2011, 133, 17164–17167. 10.1021/ja208084s. PubMed DOI PMC
Ramalho S. D.; Sharma R.; White J. K.; Aggarwal N.; Chalasani A.; Sameni M.; Moin K.; Vieira P. C.; Turro C.; Kodanko J. J.; Sloane B. F. Imaging Sites of Inhibition of Proteolysis in Pathomimetic Human Breast Cancer Cultures by Light-Activated Ruthenium Compound. PLoS One 2015, 10, e0142527.10.1371/journal.pone.0142527. PubMed DOI PMC
Herroon M. K.; Sharma R.; Rajagurubandara E.; Turro C.; Kodanko J. J.; Podgorski I. Photoactivated Inhibition of Cathepsin K in a 3D Tumor Model. Biol. Chem. 2016, 397, 571–582. 10.1515/hsz-2015-0274. PubMed DOI PMC
Lameijer L. N.; Ernst D.; Hopkins S. L.; Meijer M. S.; Askes S. H. C.; Le Devedec S. E.; Bonnet S. A Red-Light-Activated Ruthenium-Caged NAMPT Inhibitor Remains Phototoxic in Hypoxic Cancer Cells. Angew. Chem., Int. Ed. 2017, 56, 11549–11553. 10.1002/anie.201703890. PubMed DOI PMC
Zamora A.; Denning C. A.; Heidary D. K.; Wachter E.; Nease L. A.; Ruiz J.; Glazer E. C. Ruthenium-Containing p450 Inhibitors for Dual Enzyme Inhibition and DNA Damage. Dalton Trans. 2017, 46, 2165–2173. 10.1039/C6DT04405K. PubMed DOI
Li A.; Yadav R.; White J. K.; Herroon M. K.; Callahan B. P.; Podgorski I.; Turro C.; Scott E. E.; Kodanko J. J. Illuminating Cytochrome P450 Binding: Ru(II)-Caged Inhibitors of CYP17A1. Chem. Commun. 2017, 53, 3673–3676. 10.1039/C7CC01459G. PubMed DOI PMC
Wei J. H.; Renfrew A. K. Photolabile Ruthenium Complexes to Cage and Release a Highly Cytotoxic Anticancer Agent. J. Inorg. Biochem. 2018, 179, 146–153. 10.1016/j.jinorgbio.2017.11.018. PubMed DOI
Karaoun N.; Renfrew A. K. A Luminescent Ruthenium(II) Complex for Light-Triggered Drug Release and Live Cell Imaging. Chem. Commun. 2015, 51, 14038–14041. 10.1039/C5CC05172J. PubMed DOI
Smith N. A.; Zhang P. Y.; Greenough S. E.; Horbury M. D.; Clarkson G. J.; McFeely D.; Habtemariam A.; Salassa L.; Stavros V. G.; Dowson C. G.; Sadler P. J. Combatting AMR: Photoactivatable Ruthenium(II)-Isoniazid Complex Exhibits Rapid Selective Antimycobacterial Activity. Chem. Sci. 2017, 8, 395–404. 10.1039/C6SC03028A. PubMed DOI PMC
Garner R. N.; Gallucci J. C.; Dunbar K. R.; Turro C. Ru(bpy)2(5-cyanouracil)22+ as a Potential Light-Activated Dual-Action Therapeutic Agent. Inorg. Chem. 2011, 50, 9213–9215. 10.1021/ic201615u. PubMed DOI PMC
Sgambellone M. A.; David A.; Garner R. N.; Dunbar K. R.; Turro C. Cellular Toxicity Induced by the Photorelease of a Caged Bioactive Molecule: Design of a Potential Dual-Action Ru(II) Complex. J. Am. Chem. Soc. 2013, 135, 11274–11282. 10.1021/ja4045604. PubMed DOI
Mosquera J.; Sanchez M. I.; Mascarenas J. L.; Vazquez M. E. Synthetic Peptides Caged on Histidine Residues With a Bisbipyridyl Ruthenium(II) Complex That Can Be Photolyzed by Visible Light. Chem. Commun. 2015, 51, 5501–5504. 10.1039/C4CC08049A. PubMed DOI
Sharma R.; Knoll J. D.; Ancona N.; Martin P. D.; Turro C.; Kodanko J. J. Solid-Phase Synthesis as a Platform for the Discovery of New Ruthenium Complexes for Efficient Release of Photocaged Ligands with Visible Light. Inorg. Chem. 2015, 54, 1901–1911. 10.1021/ic502791y. PubMed DOI PMC
Theis S.; Iturmendi A.; Gorsche C.; Orthofer M.; Lunzer M.; Baudis S.; Ovsianikov A.; Liska R.; Monkowius U.; Teasdale I. Metallo-Supramolecular Gels that are Photocleavable with Visible and Near-Infrared Irradiation. Angew. Chem., Int. Ed. 2017, 56, 15857–15860. 10.1002/anie.201707321. PubMed DOI PMC
Teasdale I.; Theis S.; Iturmendi A.; Strobel M.; Hild S.; Jacak J.; Mayrhofer P.; Monkowius U. Dynamic Supramolecular Ruthenium-Based Gels Responsive to Visible/NIR Light and Heat. Chem. - Eur. J. 2019, 25, 9851–9855. 10.1002/chem.201902088. PubMed DOI PMC
Albani B. A.; Peña B.; Leed N. A.; de Paula N. A. B. G.; Pavani C.; Baptista M. S.; Dunbar K. R.; Turro C. Marked Improvement in Photoinduced Cell Death by a New Tris-heteroleptic Complex with Dual Action: Singlet Oxygen Sensitization and Ligand Dissociation. J. Am. Chem. Soc. 2014, 136, 17095–17101. 10.1021/ja508272h. PubMed DOI
Knoll J. D.; Albani B. A.; Turro C. Excited State Investigation of a New Ru(II) Complex for Dual Reactivity With Low Energy Light. Chem. Commun. 2015, 51, 8777–8780. 10.1039/C5CC01865J. PubMed DOI PMC
Loftus L. M.; White J. K.; Albani B. A.; Kohler L.; Kodanko J. J.; Thummel R. P.; Dunbar K. R.; Turro C. New Ru-II Complex for Dual Activity: Photoinduced Ligand Release and O-1(2) Production. Chem. - Eur. J. 2016, 22, 3704–3708. 10.1002/chem.201504800. PubMed DOI PMC
Carneiro Z. A.; de Moraes J. C. B.; Rodrigues F. P.; de Lima R. G.; Curti C.; da Rocha Z. N.; Paulo M.; Bendhack L. M.; Tedesco A. C.; Formiga A. L. B.; da Silva R. S. Photocytotoxic Activity of a Nitrosyl Phthalocyanine Ruthenium Complex - A System Capable of Producing Nitric Oxide and Singlet Oxygen. J. Inorg. Biochem. 2011, 105, 1035–1043. 10.1016/j.jinorgbio.2011.04.011. PubMed DOI
Burya S. J.; Palmer A. M.; Gallucci J. C.; Turro C. Photoinduced Ligand Exchange and Covalent DNA Binding by Two New Dirhodium Bis-Amidato Complexes. Inorg. Chem. 2012, 51, 11882–11890. 10.1021/ic3017886. PubMed DOI
Chifotides H. T.; Lutterman D. A.; Dunbar K. R.; Turro C. Insight into the Photoinduced Ligand Exchange Reaction Pathway of cis- Rh2((-O2CCH3)2(CH3CN)62+ with a DNA Model Chelate. Inorg. Chem. 2011, 50, 12099–12107. 10.1021/ic201645b. PubMed DOI
Li Z. Y.; Burya S. J.; Turro C.; Dunbar K. R. Photochemistry and DNA Photocleavage by a new Unsupported Dirhodium(II, II) Complex. Philos. Trans. R. Soc., A 2013, 371, 20120128.10.1098/rsta.2012.0128. PubMed DOI
Akhimie R. N.; White J. K.; Turro C. Dual Photoreactivity of a New Rh2(II, II) Complex for Biological Applications. Inorg. Chim. Acta 2017, 454, 149–154. 10.1016/j.ica.2016.04.001. PubMed DOI PMC
Bednarski P. J.; Mackay F. S.; Sadler P. J. Photoactivatable Platinum Complexes. Anti-Cancer Agents Med. Chem. 2007, 7, 75–93. 10.2174/187152007779314053. PubMed DOI
Wilson J. J.; Lippard S. J. Synthetic Methods for the Preparation of Platinum Anticancer Complexes. Chem. Rev. 2014, 114, 4470–4495. 10.1021/cr4004314. PubMed DOI PMC
Farrer N. J.; Woods J. A.; Salassa L.; Zhao Y.; Robinson K. S.; Clarkson G.; Mackay F. S.; Sadler P. J. A Potent Trans-Diimine Platinum Anticancer Complex Photoactivated by Visible Light. Angew. Chem., Int. Ed. 2010, 49, 8905–8908. 10.1002/anie.201003399. PubMed DOI
Zhao Y.; Woods J. A.; Farrer N. J.; Robinson K. S.; Pracharova J.; Kasparkova J.; Novakova O.; Li H. L.; Salassa L.; Pizarro A. M.; Clarkson G. J.; Song L. J.; Brabec V.; Sadler P. J. Diazido Mixed-Amine Platinum(IV) Anticancer Complexes Activatable by Visible-Light Form Novel DNA Adducts. Chem. - Eur. J. 2013, 19, 9578–9591. 10.1002/chem.201300374. PubMed DOI PMC
Zhao Y.; Farrer N. J.; Li H. L.; Butler J. S.; McQuitty R. J.; Habtemariam A.; Wang F. Y.; Sadler P. J. De Novo Generation of Singlet Oxygen and Ammine Ligands by Photoactivation of a Platinum Anticancer Complex. Angew. Chem., Int. Ed. 2013, 52, 13633–13637. 10.1002/anie.201307505. PubMed DOI PMC
Butler J. S.; Woods J. A.; Farrer N. J.; Newton M. E.; Sadler P. J. Tryptophan Switch for a Photoactivated Platinum Anticancer Complex. J. Am. Chem. Soc. 2012, 134, 16508–16511. 10.1021/ja3074159. PubMed DOI
Venkatesh V.; Mishra N. K.; Romero-Canelón I.; Vernooij R. R.; Shi H.; Coverdale J. P. C.; Habtemariam A.; Verma S.; Sadler P. J. Supramolecular Photoactivatable Anticancer Hydrogels. J. Am. Chem. Soc. 2017, 139, 5656–5659. 10.1021/jacs.7b00186. PubMed DOI
Yao K.; Bertran A.; Howarth A.; Goicoechea J. M.; Hare S. M.; Rees N. H.; Foroozandeh M.; Bowen A. M.; Farrer N. J. A Visible-Light Photoactivatable di-Nuclear PtIV Triazolato Azido Complex. Chem. Commun. 2019, 55, 11287–11290. 10.1039/C9CC05310G. PubMed DOI PMC
Deng Z.; Wang N.; Liu Y.; Xu Z.; Wang Z.; Lau T.-C.; Zhu G. A Photocaged, Water-Oxidizing, and Nucleolus-Targeted Pt(IV) Complex with a Distinct Anticancer Mechanism. J. Am. Chem. Soc. 2020, 142, 7803–7812. 10.1021/jacs.0c00221. PubMed DOI
Mitra K.; Gautam S.; Kondaiah P.; Chakravarty A. R. The cis-Diammineplatinum(II) Complex of Curcumin: A Dual Action DNA Crosslinking and Photochemotherapeutic Agent. Angew. Chem., Int. Ed. 2015, 54, 13989–13993. 10.1002/anie.201507281. PubMed DOI
Mitra K.; Gautam S.; Kondaiah P.; Chakravarty A. R. Platinum(II) Complexes of Curcumin Showing Photocytotoxicity in Visible Light. Eur. J. Inorg. Chem. 2017, 2017, 1753–1763. 10.1002/ejic.201601078. DOI
Bhattacharyya A.; Dixit A.; Mitra K.; Banerjee S.; Karande A. A.; Chakravarty A. R. BODIPY Appended Copper(II) Complexes of Curcumin Showing Mitochondria Targeted Remarkable Photocytotoxicity in Visible Light. MedChemComm 2015, 6, 846–851. 10.1039/C4MD00425F. DOI
Ramu V.; Gautam S.; Garai A.; Kondaiah P.; Chakravarty A. R. Glucose-Appended Platinum(II)-BODIPY Conjugates for Targeted Photodynamic Therapy in Red Light. Inorg. Chem. 2018, 57, 1717–1726. 10.1021/acs.inorgchem.7b02249. PubMed DOI
Mitra K.; Shettar A.; Kondaiah P.; Chakravarty A. R. Biotinylated Platinum(II) Ferrocenylterpyridine Complexes for Targeted Photoinduced Cytotoxicity. Inorg. Chem. 2016, 55, 5612–5622. 10.1021/acs.inorgchem.6b00680. PubMed DOI
Mitra K.; Lyons C. E.; Hartman M. C. T. A Platinum(II) Complex of Heptamethine Cyanine for Photoenhanced Cytotoxicity and Cellular Imaging in Near-IR Light. Angew. Chem., Int. Ed. 2018, 57, 10263–10267. 10.1002/anie.201806911. PubMed DOI PMC
Downward A. M.; Moore E. G.; Hartshorn R. M. Photoinduced Ligand Release in a Ruthenium(II)-Cobalt(III) Heterodinuclear Systembasic Understanding of the Lanthanide Related Upconversion Emissions. Chem. Commun. 2011, 47, 7692–7694. 10.1039/c1cc12729b. PubMed DOI
Garai A.; Pant I.; Banerjee S.; Banik B.; Kondaiah P.; Chakravarty A. R. Photorelease and Cellular Delivery of Mitocurcumin from Its Cytotoxic Cobalt(III) Complex in Visible Light. Inorg. Chem. 2016, 55, 6027–6035. 10.1021/acs.inorgchem.6b00554. PubMed DOI
Jana A.; Verma B. K.; Garai A.; Kondaiah P.; Chakravarty A. R. Mitochondria Localizing High-Spin Iron Complexes of Curcumin for Photo-Induced Drug Release. Inorg. Chim. Acta 2018, 483, 571–578. 10.1016/j.ica.2018.09.008. DOI
Giammanco G. E.; Sosnofsky C. T.; Ostrowski A. D. Light-Responsive Iron(III)-Polysaccharide Coordination Hydrogels for Controlled Delivery. ACS Appl. Mater. Interfaces 2015, 7, 3068–3076. 10.1021/am506772x. PubMed DOI
Donald J. A.Chapter 103 - Gasotransmitter Family. Handbook of Hormones; Takei Y., Ando H., Tsutsui K., Eds.; Academic Press: San Diego, 2016.
Wareham L. K.; Southam H. M.; Poole R. K. Do Nitric Oxide, Carbon Monoxide and Hydrogen Sulfide Really Qualify as ‘Gasotransmitters’ in Bacteria?. Biochem. Soc. Trans. 2018, 46, 1107–1118. 10.1042/BST20170311. PubMed DOI PMC
Thorup C.; Jones C. L.; Gross S. S.; Moore L. C.; Goligorsky M. S. Carbon Monoxide Induces Vasodilation and Nitric Oxide Release but Suppresses Endothelial NOS. Am. J. Physiol.-Renal 1999, 277, F882–F889. 10.1152/ajprenal.1999.277.6.F882. PubMed DOI
Romao C. C.; Blattler W. A.; Seixas J. D.; Bernardes G. J. L. Developing Drug Molecules for Therapy With Carbon Monoxide. Chem. Soc. Rev. 2012, 41, 3571–3583. 10.1039/c2cs15317c. PubMed DOI
Queiroga C. S. F.; Tomasi S.; Widerøe M.; Alves P. M.; Vercelli A.; Vieira H. L. A. Preconditioning Triggered by Carbon Monoxide (CO) Provides Neuronal Protection Following Perinatal Hypoxia-Ischemia. PLoS One 2012, 7, e4263210.1371/journal.pone.0042632. PubMed DOI PMC
Otterbein L. E.; Bach F. H.; Alam J.; Soares M.; Tao Lu H.; Wysk M.; Davis R. J.; Flavell R. A.; Choi A. M. K. Carbon Monoxide has Anti-Inflammatory Effects Involving the Mitogen-Activated Protein Kinase Pathway. Nat. Med. 2000, 6, 422–428. 10.1038/74680. PubMed DOI
Brandi C.; Grimaldi L.; Nisi G.; Brafa A.; Campa A.; Calabrò M.; Campana M.; D’Aniello C. The Role of Carbon Dioxide Therapy in the Treatment of Chronic Wounds. In Vivo 2010, 24, 223–226. PubMed
Schäffer M. R.; Tantry U.; Gross S. S.; Wasserkrug H. L.; Barbul A. Nitric Oxide Regulates Wound Healing. J. Surg. Res. 1996, 63, 237–240. 10.1006/jsre.1996.0254. PubMed DOI
Radomski M. W.; Palmer R. M. J.; Moncada S. The Role of Nitric Oxide and cGMP in Platelet Adhesion to Vascular Endothelium. Biochem. Biophys. Res. Commun. 1987, 148, 1482–1489. 10.1016/S0006-291X(87)80299-1. PubMed DOI
Garthwaite J.; Boulton C. L. Nitric Oxide Signaling in the Central Nervous System. Annu. Rev. Physiol. 1995, 57, 683–706. 10.1146/annurev.ph.57.030195.003343. PubMed DOI
Gullotta F.; Masi A. d.; Ascenzi P. Carbon Monoxide: An Unusual Drug. IUBMB Life 2012, 64, 378–386. 10.1002/iub.1015. PubMed DOI
Bloch K. D.; Ichinose F.; Roberts J. D. Jr.; Zapol W. M. Inhaled NO as a Therapeutic Agent. Cardiovasc. Res. 2007, 75, 339–348. 10.1016/j.cardiores.2007.04.014. PubMed DOI PMC
Motterlini R.; Otterbein L. E. The Therapeutic Potential of Carbon Monoxide. Nat. Rev. Drug Discovery 2010, 9, 728–U724. 10.1038/nrd3228. PubMed DOI
Heinemann S. H.; Hoshi T.; Westerhausen M.; Schiller A. Carbon Monoxide - Physiology, Detection and Controlled Release. Chem. Commun. 2014, 50, 3644–3660. 10.1039/C3CC49196J. PubMed DOI PMC
Yang X.-X.; Ke B.-W.; Lu W.; Wang B.-H. CO as a Therapeutic Agent: Discovery and Delivery Forms. Chin. J. Nat. Medicines 2020, 18, 284–295. 10.1016/S1875-5364(20)30036-4. PubMed DOI
Zhou Y.; Yu W.; Cao J.; Gao H. Harnessing Carbon Monoxide-Releasing Platforms for Cancer Therapy. Biomaterials 2020, 255, 120193.10.1016/j.biomaterials.2020.120193. PubMed DOI
Stucki D.; Stahl W. Carbon Monoxide – Beyond Toxicity?. Toxicol. Lett. 2020, 333, 251–260. 10.1016/j.toxlet.2020.08.010. PubMed DOI
Russo M.; Štacko P.; Nachtigallová D.; Klán P. Mechanisms of Orthogonal Photodecarbonylation Reactions of 3-Hydroxyflavone-Based Acid–Base Forms. J. Org. Chem. 2020, 85, 3527–3537. 10.1021/acs.joc.9b03248. PubMed DOI
Anderson S. N.; Richards J. M.; Esquer H. J.; Benninghoff A. D.; Arif A. M.; Berreau L. M. A Structurally-Tunable 3-Hydroxyflavone Motif for Visible Light-Induced Carbon Monoxide-Releasing Molecules (CORMs). ChemistryOpen 2015, 4, 590–594. 10.1002/open.201500167. PubMed DOI PMC
Ieda N.; Hotta Y.; Miyata N.; Kimura K.; Nakagawa H. Photomanipulation of Vasodilation with a Blue-Light-Controllable Nitric Oxide Releaser. J. Am. Chem. Soc. 2014, 136, 7085–7091. 10.1021/ja5020053. PubMed DOI
Zhang Z.; Wu J.; Shang Z.; Wang C.; Cheng J.; Qian X.; Xiao Y.; Xu Z.; Yang Y. Photocalibrated NO Release from N-Nitrosated Napthalimides upon One-Photon or Two-Photon Irradiation. Anal. Chem. 2016, 88, 7274–7280. 10.1021/acs.analchem.6b01603. PubMed DOI
Gonzalez M. A.; Carrington S. J.; Fry N. L.; Martinez J. L.; Mascharak P. K. Syntheses, Structures, and Properties of New Manganese Carbonyls as Photoactive CO-Releasing Molecules: Design Strategies that Lead to CO Photolability in the Visible Region. Inorg. Chem. 2012, 51, 11930–11940. 10.1021/ic3018216. PubMed DOI
Carrington S. J.; Chakraborty I.; Mascharak P. K. Exceptionally Rapid CO Release from a Manganese(I) Tricarbonyl Complex Derived from Bis(4-chloro-phenylimino)acenaphthene upon Exposure to Visible Light. Dalton Trans. 2015, 44, 13828–13834. 10.1039/C5DT01007A. PubMed DOI
Eroy-Reveles A. A.; Leung Y.; Beavers C. M.; Olmstead M. M.; Mascharak P. K. Near-Infrared Light Activated Release of Nitric Oxide from Designed Photoactive Manganese Nitrosyls: Strategy, Design, and Potential as NO Donors. J. Am. Chem. Soc. 2008, 130, 4447–4458. 10.1021/ja710265j. PubMed DOI
Hoffman-Luca C. G.; Eroy-Reveles A. A.; Alvarenga J.; Mascharak P. K. Syntheses, Structures, and Photochemistry of Manganese Nitrosyls Derived from Designed Schiff Base Ligands: Potential NO Donors That Can Be Activated by Near-Infrared Light. Inorg. Chem. 2009, 48, 9104–9111. 10.1021/ic900604j. PubMed DOI PMC
Woods J. J.; Cao J.; Lippert A. R.; Wilson J. J. Characterization and Biological Activity of a Hydrogen Sulfide-Releasing Red Light-Activated Ruthenium(II) Complex. J. Am. Chem. Soc. 2018, 140, 12383–12387. 10.1021/jacs.8b08695. PubMed DOI PMC
Jimenez R.; Kable S. H.; Loison J. C.; Simpson C. J. S. M.; Adam W.; Houston P. L. Photodissociation Dynamics of 3-Cyclopentenone: Using the Impact Parameter Distribution as a Criterion for Concertedness. J. Phys. Chem. 1992, 96, 4188–4195. 10.1021/j100190a018. DOI
Mondal R.; Okhrimenko A. N.; Shah B. K.; Neckers D. C. Photodecarbonylation of α-Diketones: A Mechanistic Study of Reactions Leading to Acenes. J. Phys. Chem. B 2008, 112, 11–15. 10.1021/jp076738l. PubMed DOI
Michael E.; Abeyrathna N.; Patel A. V.; Liao Y.; Bashur C. A. Incorporation of Photo-Carbon Monoxide Releasing Materials into Electrospun Scaffolds for Vascular Tissue Engineering. Biomed. Mater. 2016, 11, 025009.10.1088/1748-6041/11/2/025009. PubMed DOI
Peng P.; Wang C.; Shi Z.; Johns V. K.; Ma L.; Oyer J.; Copik A.; Igarashi R.; Liao Y. Visible-Light Activatable Organic CO-Releasing Molecules (PhotoCORMs) That Simultaneously Generate Fluorophores. Org. Biomol. Chem. 2013, 11, 6671–6674. 10.1039/c3ob41385c. PubMed DOI
Elgattar A.; Washington K. S.; Talebzadeh S.; Alwagdani A.; Khalil T.; Alghazwat O.; Alshammri S.; Pal H.; Bashur C.; Liao Y. Poly(butyl Cyanoacrylate) Nanoparticle Containing an Organic PhotoCORM. Photochem. Photobiol. Sci. 2019, 18, 2666–2672. 10.1039/C9PP00287A. PubMed DOI
Thapaliya E. R.; Swaminathan S.; Captain B.; Raymo F. M. Autocatalytic Fluorescence Photoactivation. J. Am. Chem. Soc. 2014, 136, 13798–13804. 10.1021/ja5068383. PubMed DOI
Aotake T.; Suzuki M.; Tahara K.; Kuzuhara D.; Aratani N.; Tamai N.; Yamada H. An Optically and Thermally Switchable Electronic Structure Based on an Anthracene–BODIPY Conjugate. Chem. - Eur. J. 2015, 21, 4966–4974. 10.1002/chem.201406384. PubMed DOI
Mondal R.; Shah B. K.; Neckers D. C. Photogeneration of Heptacene in a Polymer Matrix. J. Am. Chem. Soc. 2006, 128, 9612–9613. 10.1021/ja063823i. PubMed DOI
Mondal R.; Adhikari R. M.; Shah B. K.; Neckers D. C. Revisiting the Stability of Hexacenes. Org. Lett. 2007, 9, 2505–2508. 10.1021/ol0709376. PubMed DOI
Gilbert B. C.; Hodges G. R.; Smith J. R. L.; MacFaul P.; Taylor P. Photodecarboxylation of Substituted Alkylcarboxylic Acids Brought about by Visible Light and Iron(III) tetra(2-N-Methylpyridyl)porphyrin in Aqueous Solution. J. Chem. Soc., Perkin Trans. 2 1996, 2, 519–524. 10.1039/p29960000519. DOI
Griffiths H. R.; Gao D.; Pararasa C. Redox Regulation in Metabolic Programming and Inflammation. Redox Biol. 2017, 12, 50–57. 10.1016/j.redox.2017.01.023. PubMed DOI PMC
Banerjee R. Redox outside the Box: Linking Extracellular Redox Remodeling with Intracellular Redox Metabolism. J. Biol. Chem. 2012, 287, 4397–4402. 10.1074/jbc.R111.287995. PubMed DOI PMC
Matsuura T.; Matsushima H.; Sakamoto H. Photosensitized Oxygenation of 3-Hydroxyflavones. Possible Model for Biological Oxygenation. J. Am. Chem. Soc. 1967, 89, 6370–6371. 10.1021/ja01000a078. PubMed DOI
Studer S. L.; Brewer W. E.; Martinez M. L.; Chou P. T. Time-Resolved Study of the Photooxygenation of 3-Hydroxyflavone. J. Am. Chem. Soc. 1989, 111, 7643–7644. 10.1021/ja00201a071. DOI
Tournaire C.; Croux S.; Maurette M.-T.; Beck I.; Hocquaux M.; Braun A. M.; Oliveros E. Antioxidant Activity of Flavonoids: Efficiency of Singlet Oxygen (1Δg) Quenching. J. Photochem. Photobiol., B 1993, 19, 205–215. 10.1016/1011-1344(93)87086-3. PubMed DOI
Protti S.; Mezzetti A.; Lapouge C.; Cornard J.-P. Photochemistry of Metal Complexes of 3-Hydroxyflavone: Towards a Better Understanding of the Influence of Solar Light on the Metal–Soil Organic Matter Interactions. Photochem. Photobiol. Sci. 2008, 7, 109–119. 10.1039/B709682H. PubMed DOI
Matsuura T.; Takemoto T.; Nakashima R. Photoinduced Reactions-LXXI: Photorearrangement of 3-Hydroxyflavones to 3-Aryl-3-Hydroxy-1,2-Indandiones. Tetrahedron 1973, 29, 3337–3340. 10.1016/S0040-4020(01)93485-4. DOI
Szakács Z.; Bojtár M.; Drahos L.; Hessz D.; Kállay M.; Vidóczy T.; Bitter I.; Kubinyi M. The Kinetics and Mechanism of Photooxygenation of 4′-Diethylamino-3-hydroxyflavone. Photochem. Photobiol. Sci. 2016, 15, 219–227. 10.1039/C5PP00358J. PubMed DOI
Mierziak J.; Kostyn K.; Kulma A. Flavonoids as Important Molecules of Plant Interactions with the Environment. Molecules 2014, 19, 16240–16265. 10.3390/molecules191016240. PubMed DOI PMC
Anderson S. N.; Noble M.; Grubel K.; Marshall B.; Arif A. M.; Berreau L. M. Influence of Supporting Ligand Microenvironment on the Aqueous Stability and Visible Light-Induced CO-Release Reactivity of Zinc Flavonolato Species. J. Coord. Chem. 2014, 67, 4061–4075. 10.1080/00958972.2014.977272. DOI
Su Y.; Yang W.; Yang X.; Zhang R.; Zhao J. Visible Light-Induced CO-Release Reactivity of a Series of ZnII–Flavonolate Complexes. Aust. J. Chem. 2018, 71, 549–558. 10.1071/CH18192. DOI
Sorenson S.; Popova M.; Arif A. M.; Berreau L. M. A Bipyridine-Ligated Zinc(II) Complex with Bridging Flavonolate Ligation: Synthesis, Characterization, and Visible-Light-Induced CO Release Reactivity. Acta Crystallogr., Sect. C: Struct. Chem. 2017, 73, 703–709. 10.1107/S2053229617011366. PubMed DOI
Saraf S. L.; Fish T. J.; Benninghoff A. D.; Buelt A. A.; Smith R. C.; Berreau L. M. Photochemical Reactivity of RuII(η6-p-cymene) Flavonolato Compounds. Organometallics 2014, 33, 6341–6351. 10.1021/om5006337. DOI
Han X.; Klausmeyer K. K.; Farmer P. J. Characterization of the Initial Intermediate Formed during Photoinduced Oxygenation of the Ruthenium(II) Bis(bipyridyl)flavonolate Complex. Inorg. Chem. 2016, 55, 7320–7322. 10.1021/acs.inorgchem.6b00852. PubMed DOI
Han X.; Kumar M. R.; Hoogerbrugge A.; Klausmeyer K. K.; Ghimire M. M.; Harris L. M.; Omary M. A.; Farmer P. J. Mechanistic Investigations of Photoinduced Oxygenation of Ru(II) Bis-bipyridyl Flavonolate Complexes. Inorg. Chem. 2018, 57, 2416–2424. 10.1021/acs.inorgchem.7b01384. PubMed DOI
Grubel K.; Laughlin B. J.; Maltais T. R.; Smith R. C.; Arif A. M.; Berreau L. M. Photochemically-Induced Dioxygenase-Type CO-Release Reactivity of Group 12 Metal Flavonolate Complexes. Chem. Commun. 2011, 47, 10431–10433. 10.1039/c1cc13961d. PubMed DOI
Popova M.; Soboleva T.; Arif A. M.; Berreau L. M. Properties of a Flavonol-Based PhotoCORM in Aqueous Buffered Solutions: Influence of Metal Ions, Surfactants and Proteins on Visible Light-Induced CO Release. RSC Adv. 2017, 7, 21997–22007. 10.1039/C7RA02653F. DOI
Soboleva T.; Benninghoff A. D.; Berreau L. M. An H2S-Sensing/CO-Releasing Flavonol That Operates via Logic Gates. ChemPlusChem 2017, 82, 1408–1412. 10.1002/cplu.201700524. PubMed DOI PMC
Soboleva T.; Esquer H. J.; Benninghoff A. D.; Berreau L. M. Sense and Release: A Thiol-Responsive Flavonol-Based Photonically Driven Carbon Monoxide-Releasing Molecule That Operates via a Multiple-Input AND Logic Gate. J. Am. Chem. Soc. 2017, 139, 9435–9438. 10.1021/jacs.7b04077. PubMed DOI
Popova M.; Soboleva T.; Benninghoff A. D.; Berreau L. M. CO Sense and Release Flavonols: Progress toward the Development of an Analyte Replacement PhotoCORM for Use in Living Cells. ACS Omega 2020, 5, 10021–10033. 10.1021/acsomega.0c00409. PubMed DOI PMC
Li Y.; Shu Y.; Liang M.; Xie X.; Jiao X.; Wang X.; Tang B. A Two-Photon H2O2-Activated CO Photoreleaser. Angew. Chem., Int. Ed. 2018, 57, 12415–12519. 10.1002/anie.201805806. PubMed DOI
Cheng J.; Zheng B.; Cheng S.; Zhang G.; Hu J. Metal-Free Carbon Monoxide-Releasing Micelles Undergo Tandem Photochemical Reactions for Cutaneous Wound Healing. Chem. Sci. 2020, 11, 4499–4507. 10.1039/D0SC00135J. PubMed DOI PMC
Zhang M.; Cheng J.; Huang X.; Zhang G.; Ding S.; Hu J.; Qiao R. Photo-Degradable Micelles Capable of Releasing of Carbon Monoxide under Visible Light Irradiation. Macromol. Rapid Commun. 2020, 41, 2000323.10.1002/marc.202000323. PubMed DOI
Soboleva T.; Esquer H. J.; Anderson S. N.; Berreau L. M.; Benninghoff A. D. Mitochondrial-Localized Versus Cytosolic Intracellular CO-Releasing Organic PhotoCORMs: Evaluation of CO Effects Using Bioenergetics. ACS Chem. Biol. 2018, 13, 2220–2228. 10.1021/acschembio.8b00387. PubMed DOI PMC
Soboleva T.; Simons C. R.; Arcidiacono A.; Benninghoff A. D.; Berreau L. M. Extracellular vs Intracellular Delivery of CO: Does It Matter for a Stable, Diffusible Gasotransmitter?. J. Med. Chem. 2019, 62, 9990–9995. 10.1021/acs.jmedchem.9b01254. PubMed DOI PMC
Popova M.; Soboleva T.; Ayad S.; Benninghoff A. D.; Berreau L. M. Visible-Light-Activated Quinolone Carbon-Monoxide-Releasing Molecule: Prodrug and Albumin-Assisted Delivery Enables Anticancer and Potent Anti-Inflammatory Effects. J. Am. Chem. Soc. 2018, 140, 9721–9729. 10.1021/jacs.8b06011. PubMed DOI PMC
Feng W.; Feng S.; Feng G. CO Release with Ratiometric Fluorescence Changes: a Promising Visible-Light-Triggered Metal-Free CO-Releasing Molecule. Chem. Commun. 2019, 55, 8987–8990. 10.1039/C9CC04026A. PubMed DOI
Schwartz B. J.; Peteanu L. A.; Harris C. B. Direct Observation of Fast Proton Transfer: Femtosecond Photophysics of 3-Hydroxyflavone. J. Phys. Chem. 1992, 96, 3591–3598. 10.1021/j100188a009. DOI
Dick B.; Ernsting N. P. Excited-State Intramolecular Proton Transfer in 3-Hydroxylflavone Isolated in Solid Argon: Fluoroescence and Fluorescence-Excitation Spectra and Tautomer Fluorescence Rise Time. J. Phys. Chem. 1987, 91, 4261–4265. 10.1021/j100300a012. DOI
Dávila Y. A.; Sancho M. I.; Almandoz M. C.; Blanco S. E. Solvent Effects on the Dissociation Constants of Hydroxyflavones in Organic–Water Mixtures. Determination of the Thermodynamic pKa Values by UV–Visible Spectroscopy and DFT Calculations. J. Chem. Eng. Data 2013, 58, 1706–1716. 10.1021/je400153r. DOI
Štacková L.; Russo M.; Muchová L.; Orel V.; Vítek L.; Štacko P.; Klán P. Cyanine-Flavonol Hybrid for Near-Infrared Light-Activated Delivery of Carbon Monoxide. Chem. - Eur. J. 2020, 26, 13184–13190. 10.1002/chem.202003272. PubMed DOI PMC
Anderson S. N.; Larson M. T.; Berreau L. M. Solution or Solid – It Doesn’t Matter: Visible Light-Induced CO Release Reactivity of Zinc Flavonolato Complexes. Dalton Trans. 2016, 45, 14570–14580. 10.1039/C6DT01709F. PubMed DOI
An S.-Y.; Su Y.-Y.; Qi X.; Zhang R.-L.; Ma Y.-L.; Zhao J.-S. Photoinduced Reactivity and Cytotoxicity of a Series of Zinc(II)–Flavonolate Derivative Complexes. Transition Met. Chem. 2020, 45, 253–266. 10.1007/s11243-020-00377-w. DOI
Poloukhtine A.; Popik V. V. Highly Efficient Photochemical Generation of a Triple Bond: Synthesis, Properties, and Photodecarbonylation of Cyclopropenones. J. Org. Chem. 2003, 68, 7833–7840. 10.1021/jo034869m. PubMed DOI
Urdabayev N. K.; Poloukhtine A.; Popik V. V. Two-Photon Induced Photodecarbonylation Reaction of Cyclopropenones. Chem. Commun. 2006, 454–456. 10.1039/B513248G. PubMed DOI
Wadsworth D. H.; Donatelli B. A. Preparation of Diarylacetylenes via Cyclopropenones. Synthesis 1981, 1981, 285–286. 10.1055/s-1981-29417. DOI
Becker H. D.; Andersson K. On the Relationship between Molecular Geometry and Photochemical Properties of 1,2-Substituted 1,2-Di-9-anthrylethylenes. J. Org. Chem. 1987, 52, 5205–5213. 10.1021/jo00232a027. DOI
Kuzmanich G.; Gard M. N.; Garcia-Garibay M. A. Photonic Amplification by a Singlet-State Quantum Chain Reaction in the Photodecarbonylation of Crystalline Diarylcyclopropenones. J. Am. Chem. Soc. 2009, 131, 11606–11614. 10.1021/ja9043449. PubMed DOI
L’Abbé G. Heterocyclic Analogues of Methylenecyclopropanes. Angew. Chem., Int. Ed. Engl. 1980, 19, 276–289. 10.1002/anie.198002761. DOI
Showalter B. M.; Toscano J. P. Time-Resolved IR Studies of α-Lactones. J. Phys. Org. Chem. 2004, 17, 743–748. 10.1002/poc.789. DOI
Mula S.; Ray A. K.; Banerjee M.; Chaudhuri T.; Dasgupta K.; Chattopadhyay S. Design and Development of a New Pyrromethene Dye with Improved Photostability and Lasing Efficiency: Theoretical Rationalization of Photophysical and Photochemical Properties. J. Org. Chem. 2008, 73, 2146–2154. 10.1021/jo702346s. PubMed DOI
Costela A.; García-Moreno I.; Pintado-Sierra M.; Amat-Guerri F.; Liras M.; Sastre R.; Arbeloa F. L.; Prieto J. B.; Arbeloa I. L. New Laser Dye Based on the 3-Styryl Analog of the BODIPY Dye PM567. J. Photochem. Photobiol., A 2008, 198, 192–199. 10.1016/j.jphotochem.2008.03.010. DOI
Ortiz M. J.; Garcia-Moreno I.; Agarrabeitia A. R.; Duran-Sampedro G.; Costela A.; Sastre R.; López Arbeloa F.; Bañuelos Prieto J.; López Arbeloa I. Red-Edge-Wavelength Finely-Tunable Laser Action from New BODIPY Dyes. Phys. Chem. Chem. Phys. 2010, 12, 7804–7811. 10.1039/b925561c. PubMed DOI
Saito F.; Tobita S.; Shizuka H. Photoionization of Aniline in Aqueous Solution and its Photolysis in Cyclohexane. J. Chem. Soc., Faraday Trans. 1996, 92, 4177–4185. 10.1039/ft9969204177. DOI
Šolomek T.; Heger D.; Ngoy B. P.; Givens R. S.; Klán P. The Pivotal Role of Oxyallyl Diradicals in Photo-Favorskii Rearrangements: Transient Spectroscopic and Computational Studies. J. Am. Chem. Soc. 2013, 135, 15209–15215. 10.1021/ja407588p. PubMed DOI
Chakraborty I.; Carrington S. J.; Mascharak P. K. Design Strategies To Improve the Sensitivity of Photoactive Metal Carbonyl Complexes (photoCORMs) to Visible Light and Their Potential as CO-Donors to Biological Targets. Acc. Chem. Res. 2014, 47, 2603–2611. 10.1021/ar500172f. PubMed DOI
Rudolf P.; Kanal F.; Knorr J.; Nagel C.; Niesel J.; Brixner T.; Schatzschneider U.; Nuernberger P. Ultrafast Photochemistry of a Manganese-Tricarbonyl CO-Releasing Molecule (CORM) in Aqueous Solution. J. Phys. Chem. Lett. 2013, 4, 596–602. 10.1021/jz302061q. PubMed DOI
Garino C.; Salassa L. The Photochemistry of Transition Metal Complexes Using Density Functional Theory. Philos. Trans. R. Soc., A 2013, 371, 20120134.10.1098/rsta.2012.0134. PubMed DOI
Sunderlin L. S.; Wang D.; Squires R. R. Bond Strengths in First-Row-Metal Carbonyl Anions. J. Am. Chem. Soc. 1993, 115, 12060–12070. 10.1021/ja00078a051. DOI
Rimmer R. D.; Richter H.; Ford P. C. A Photochemical Precursor for Carbon Monoxide Release in Aerated Aqueous Media. Inorg. Chem. 2010, 49, 1180–1185. 10.1021/ic902147n. PubMed DOI
Motterlini R.; Clark J. E.; Foresti R.; Sarathchandra P.; Mann B. E.; Green C. J. Carbon Monoxide-Releasing Molecules. Circ. Res. 2002, 90, e17-e2410.1161/hh0202.104530. PubMed DOI
Zhang W.-Q.; Atkin A. J.; Fairlamb I. J. S.; Whitwood A. C.; Lynam J. M. Synthesis and Reactivity of Molybdenum Complexes Containing Functionalized Alkynyl Ligands: A Photochemically Activated CO-Releasing Molecule (PhotoCO-RM). Organometallics 2011, 30, 4643–4654. 10.1021/om200495h. DOI
Chakraborty I.; Carrington S. J.; Mascharak P. K. Photodelivery of CO by Designed PhotoCORMs: Correlation between Absorption in the Visible Region and Metal-CO Bond Labilization in Carbonyl Complexes. ChemMedChem 2014, 9, 1266–1274. 10.1002/cmdc.201402007. PubMed DOI
Carrington S. J.; Chakraborty I.; Mascharak P. K. Rapid CO Release from a Mn(I) Carbonyl Complex Derived from Azopyridine upon Exposure to Visible Light and Its Phototoxicity Toward Malignant Cells. Chem. Commun. 2013, 49, 11254–11256. 10.1039/c3cc46558f. PubMed DOI
Jimenez J.; Chakraborty I.; Carrington S. J.; Mascharak P. K. Light-Triggered CO Delivery by a Water-Soluble and Biocompatible Manganese PhotoCORM. Dalton Trans. 2016, 45, 13204–13213. 10.1039/C6DT01358A. PubMed DOI PMC
Mansour A. M. Green-Light-Induced PhotoCORM: Lysozyme Binding Affinity towards MnI and ReI Carbonyl Complexes and Biological Activity Evaluation. Eur. J. Inorg. Chem. 2018, 2018, 4805–4811. 10.1002/ejic.201801055. DOI
Kottelat E.; Ruggi A.; Zobi F. Red-Light Activated PhotoCORMs of Mn(I) Species Bearing Electron Deficient 2,2′-Azopyridines. Dalton Trans. 2016, 45, 6920–6927. 10.1039/C6DT00858E. PubMed DOI
Mansour A. M.; Steiger C.; Nagel C.; Schatzschneider U. Wavelength-Dependent Control of the CO Release Kinetics of Manganese(I) Tricarbonyl PhotoCORMs with Benzimidazole Coligands. Eur. J. Inorg. Chem. 2019, 2019, 4572–4581. 10.1002/ejic.201900894. DOI
Atkin A. J.; Lynam J. M.; Moulton B. E.; Sawle P.; Motterlini R.; Boyle N. M.; Pryce M. T.; Fairlamb I. J. S. Modification of the Deoxy-Myoglobin/Carbonmonoxy-Myoglobin UV-vis Assay for Reliable Determination of CO-Release Rates from Organometallic Carbonyl Complexes. Dalton Trans. 2011, 40, 5755–5761. 10.1039/c0dt01809k. PubMed DOI
Yempally V.; Kyran S. J.; Raju R. K.; Fan W. Y.; Brothers E. N.; Darensbourg D. J.; Bengali A. A. Thermal and Photochemical Reactivity of Manganese Tricarbonyl and Tetracarbonyl Complexes with a Bulky Diazabutadiene Ligand. Inorg. Chem. 2014, 53, 4081–4088. 10.1021/ic500025k. PubMed DOI
Kianfar E.; Apaydin D. H.; Knor G. Spin-Forbidden Excitation: A New Approach for Triggering Photopharmacological Processes with Low-Intensity NIR Light. ChemPhotoChem. 2017, 1, 378–382. 10.1002/cptc.201700086. PubMed DOI PMC
Yuan J.; Chen R.; Tang X.; Tao Y.; Xu S.; Jin L.; Chen C.; Zhou X.; Zheng C.; Huang W. Direct Population of Triplet Excited States through Singlet–Triplet Transition for Visible-Light Excitable Organic Afterglow. Chem. Sci. 2019, 10, 5031–5038. 10.1039/C8SC05198D. PubMed DOI PMC
Mansour A. M.; Friedrich A. Blue-Light Induced CO Releasing Properties of Thiourea Based Manganese(I) Carbonyl Complexes. Polyhedron 2017, 131, 13–21. 10.1016/j.poly.2017.04.021. DOI
Mansour A. M.; Shehab O. R. Reactivity of Visible-Light Induced CO Releasing Thiourea-Based Mn(I) Tricarbonyl Bromide (CORM-NS1) towards Lysozyme. Inorg. Chim. Acta 2018, 480, 159–165. 10.1016/j.ica.2018.05.009. DOI
Govender P.; Pai S.; Schatzschneider U.; Smith G. S. Next Generation PhotoCORMs: Polynuclear Tricarbonylmanganese(I)-Functionalized Polypyridyl Metallodendrimers. Inorg. Chem. 2013, 52, 5470–5478. 10.1021/ic400377k. PubMed DOI
Pierri A. E.; Huang P. J.; Garcia J. V.; Stanfill J. G.; Chui M.; Wu G.; Zheng N.; Ford P. C. A photoCORM Nanocarrier for CO Release Using NIR Light. Chem. Commun. 2015, 51, 2072–2075. 10.1039/C4CC06766E. PubMed DOI
Henke W. C.; Otolski C. J.; Moore W. N. G.; Elles C. G.; Blakemore J. D. Ultrafast Spectroscopy of [Mn(CO)3] Complexes: Tuning the Kinetics of Light-Driven CO Release and Solvent Binding. Inorg. Chem. 2020, 59, 2178–2187. 10.1021/acs.inorgchem.9b02758. PubMed DOI PMC
Pordel S.; White J. K. Impact of Mn(I) PhotoCORM Ligand Set on Photochemical Intermediate Formation During Visible Light-Activated CO Release. Inorg. Chim. Acta 2020, 500, 119206.10.1016/j.ica.2019.119206. DOI
Kottelat E.; Lucarini F.; Crochet A.; Ruggi A.; Zobi F. Correlation of MLCTs of Group 7 fac-[M(CO)3]+ Complexes (M = Mn, Re) with Bipyridine, Pyridinylpyrazine, Azopyridine, and Pyridin-2-ylmethanimine Type Ligands for Rational photoCORM Design. Eur. J. Inorg. Chem. 2019, 2019, 3758–3768. 10.1002/ejic.201900568. DOI
Ruggi A.; Zobi F. Quantum-CORMs: Quantum Dot Sensitized CO Releasing Molecules. Dalton Trans. 2015, 44, 10928–10931. 10.1039/C5DT01681A. PubMed DOI
Diring S.; Carné-Sánchez A.; Zhang J.; Ikemura S.; Kim C.; Inaba H.; Kitagawa S.; Furukawa S. Light Responsive Metal–Organic Frameworks as Controllable CO-Releasing Cell Culture Substrates. Chem. Sci. 2017, 8, 2381–2386. 10.1039/C6SC04824B. PubMed DOI PMC
Hyodo F.; Sho T.; Maity B.; Fujita K.; Tachibana Y.; Akashi S.; Mano M.; Hishikawa Y.; Matsuo M.; Ueno T. Photoinduced in Vivo Magnetic Resonance Imaging (MRI) with Rapid CO Release from an MnCO-Protein Needle Composite. Chem. - Eur. J. 2018, 24, 11578–11583. 10.1002/chem.201802445. PubMed DOI
Sakla R.; Singh A.; Kaushik R.; Kumar P.; Jose D. A. Allosteric Regulation in Carbon Monoxide (CO) Release: Anion Responsive CO-Releasing Molecule (CORM) Derived from (Terpyridine)phenol Manganese Tricarbonyl Complex with Colorimetric and Fluorescence Monitoring. Inorg. Chem. 2019, 58, 10761–10768. 10.1021/acs.inorgchem.9b00984. PubMed DOI
Jiang Q.; Xia Y.; Barrett J.; Mikhailovsky A.; Wu G.; Wang D.; Shi P.; Ford P. C. Near-Infrared and Visible Photoactivation to Uncage Carbon Monoxide from an Aqueous-Soluble PhotoCORM. Inorg. Chem. 2019, 58, 11066–11075. 10.1021/acs.inorgchem.9b01581. PubMed DOI
Mansour A. M.; Ragab M. S. Spectroscopic and DFT Studies of Photoactivatable Mn(I) Tricarbonyl Complexes. Appl. Organomet. Chem. 2019, 33, e494410.1002/aoc.4944. DOI
Carrington S. J.; Chakraborty I.; Bernard J. M. L.; Mascharak P. K. Synthesis and Characterization of a “Turn-On” photoCORM for Trackable CO Delivery to Biological Targets. ACS Med. Chem. Lett. 2014, 5, 1324–1328. 10.1021/ml500399r. PubMed DOI PMC
Mansour A. M. Rapid Green and Blue Light-Induced CO Release from Bromazepam Mn(I) and Ru(II) Carbonyls: Synthesis, Density Functional Theory and Biological Activity Evaluation. Appl. Organomet. Chem. 2017, 31, e356410.1002/aoc.3564. DOI
Musib D.; Raza M. K.; Martina K.; Roy M. Mn(I)-Based PhotoCORMs for Trackable, Visible Light-Induced CO Release and Photocytotoxicity to Cancer Cells. Polyhedron 2019, 172, 125–131. 10.1016/j.poly.2019.04.008. DOI
Mede R.; Gläser S.; Suchland B.; Schowtka B.; Mandel M.; Görls H.; Krieck S.; Schiller A.; Westerhausen M. Manganese(I)-Based CORMs with 5-Substituted 3-(2-Pyridyl)Pyrazole Ligands. Inorganics 2017, 5, 8.10.3390/inorganics5010008. DOI
Mede R.; Hoffmann P.; Neumann C.; Gorls H.; Schmitt M.; Popp J.; Neugebauer U.; Westerhausen M. Acetoxymethyl Concept for Intracellular Administration of Carbon Monoxide with Mn(CO)3-Based PhotoCORMs. Chem. - Eur. J. 2018, 24, 3321–3329. 10.1002/chem.201705686. PubMed DOI
Ward J. S.; De Palo A.; Aucott B. J.; Moir J. W. B.; Lynam J. M.; Fairlamb I. J. S. A Biotin-Conjugated Photo-Activated CO-Releasing Molecule (BiotinCORM): Efficient CO-Release from an Avidin–BiotinCORM Protein Adduct. Dalton Trans. 2019, 48, 16233–16241. 10.1039/C9DT03429C. PubMed DOI
Jimenez J.; Chakraborty I.; Dominguez A.; Martinez-Gonzalez J.; Sameera W. M. C.; Mascharak P. K. A Luminescent Manganese PhotoCORM for CO Delivery to Cellular Targets under the Control of Visible Light. Inorg. Chem. 2018, 57, 1766–1773. 10.1021/acs.inorgchem.7b02480. PubMed DOI
Jimenez J.; Pinto M. N.; Martinez-Gonzalez J.; Mascharak P. K. Photo-Induced Eradication of Human Colorectal Adenocarcinoma HT-29 Cells by Carbon Monoxide (CO) Delivery from a Mn-Based Green Luminescent PhotoCORM. Inorg. Chim. Acta 2019, 485, 112–117. 10.1016/j.ica.2018.09.088. DOI
Pinto M. N.; Chakraborty I.; Jimenez J.; Murphy K.; Wenger J.; Mascharak P. K. Therapeutic Potential of Two Visible Light Responsive Luminescent photoCORMs: Enhanced Cellular Internalization Driven by Lipophilicity. Inorg. Chem. 2019, 58, 14522–14531. 10.1021/acs.inorgchem.9b02121. PubMed DOI
Ramu V.; Upendar Reddy G.; Liu J.; Hoffmann P.; Sollapur R.; Wyrwa R.; Kupfer S.; Spielmann C.; Bonnet S.; Neugebauer U.; Schiller A. Two-Photon-Induced CO-Releasing Molecules as Molecular Logic Systems in Solution, Polymers, and Cells. Chem. - Eur. J. 2019, 25, 8453–8458. 10.1002/chem.201901396. PubMed DOI
Gandra U. R.; Sinopoli A.; Moncho S.; NandaKumar M.; Ninković D. B.; Zarić S. D.; Sohail M.; Al-Meer S.; Brothers E. N.; Mazloum N. A.; Al-Hashimi M.; Bazzi H. S. Green Light-Responsive CO-Releasing Polymeric Materials Derived from Ring-Opening Metathesis Polymerization. ACS Appl. Mater. Interfaces 2019, 11, 34376–34384. 10.1021/acsami.9b12628. PubMed DOI
Reddy G U.; Liu J.; Hoffmann P.; Steinmetzer J.; Görls H.; Kupfer S.; Askes S. H. C.; Neugebauer U.; Gräfe S.; Schiller A. Light-Responsive Paper Strips as CO-Releasing Material with a Colourimetric Response. Chem. Sci. 2017, 8, 6555–6560. 10.1039/C7SC01692A. PubMed DOI PMC
Liu J.; Hoffmann P.; Steinmetzer J.; Askes S. H. C.; Kupfer S.; Görls H.; Gräfe S.; Neugebauer U.; Gandra U. R.; Schiller A. Visible Light-Activated Biocompatible Photo-CORM for CO-Release with Colorimetric and Fluorometric Dual Turn-On Response. Polyhedron 2019, 172, 175–181. 10.1016/j.poly.2019.04.031. DOI
Tabe H.; Shimoi T.; Boudes M.; Abe S.; Coulibaly F.; Kitagawa S.; Mori H.; Ueno T. Photoactivatable CO Release from Engineered Protein Crystals to Modulate NF-κB Activation. Chem. Commun. 2016, 52, 4545–4548. 10.1039/C5CC10440H. PubMed DOI
Mansour A. M.; Shehab O. R. Experimental and Quantum Chemical Calculations of Novel Photoactivatable Manganese(I) Tricarbonyl Complexes. J. Organomet. Chem. 2016, 822, 91–99. 10.1016/j.jorganchem.2016.08.018. DOI
Divya D.; Nagarajaprakash R.; Vidhyapriya P.; Sakthivel N.; Manimaran B. Single-Pot Self-Assembly of Heteroleptic Mn(I)-Based Aminoquinonato-Bridged Ester/Amide-Functionalized Dinuclear Metallastirrups: Potential Anticancer and Visible-Light-Triggered CORMs. ACS Omega 2019, 4, 12790–12802. 10.1021/acsomega.9b01438. PubMed DOI PMC
Ward J. S.; Lynam J. M.; Moir J.; Fairlamb I. J. S. Visible-Light-Induced CO Release from a Therapeutically Viable Tryptophan-Derived Manganese(I) Carbonyl (TryptoCORM) Exhibiting Potent Inhibition against E. coli. Chem. - Eur. J. 2014, 20, 15061–15068. 10.1002/chem.201403305. PubMed DOI
Aucott B. J.; Eastwood J. B.; Anders Hammarback L.; Clark I. P.; Sazanovich I. V.; Towrie M.; Fairlamb I. J. S.; Lynam J. M. Insight into the Mechanism of CO-Release from Trypto-CORM Using Ultra-Fast Spectroscopy and Computational Chemistry. Dalton Trans. 2019, 48, 16426–16436. 10.1039/C9DT03343B. PubMed DOI
Dessent C. E. H.; Cercola R.; Fischer K. C.; Sherman S. L.; Garand E.; Wong N. G. K.; Hammerback L. A.; Lynam J. M.; Fairlamb I. J. S. Direct Measurement of the Visible to UV Photodissociation Processes for the PhotoCORM TryptoCORM. Chem. - Eur. J. 2020, 26, 10297–10306. 10.1002/chem.202001077. PubMed DOI PMC
Zobi F.; Quaroni L.; Santoro G.; Zlateva T.; Blacque O.; Sarafimov B.; Schaub M. C.; Bogdanova A. Y. Live-Fibroblast IR Imaging of a Cytoprotective PhotoCORM Activated with Visible Light. J. Med. Chem. 2013, 56, 6719–6731. 10.1021/jm400527k. PubMed DOI
Mede R.; Hoffmann P.; Klein M.; Görls H.; Schmitt M.; Neugebauer U.; Gessner G.; Heinemann S. H.; Popp J.; Westerhausen M. A Water-Soluble Mn(CO)3-Based and Non-Toxic PhotoCORM for Administration of Carbon Monoxide Inside of Cells. Z. Anorg. Allg. Chem. 2017, 643, 2057–2062. 10.1002/zaac.201700349. DOI
Weiss V. C.; Amorim A. L.; Xavier F. R.; Bortoluzzi A. J.; Neves A.; Peralta R. A. Light Response of Three Water-Soluble MnI PhotoCORMs: Spectroscopic Features and CO Release Investigation. J. Braz. Chem. Soc. 2019, 30, 2649–2659. 10.21577/0103-5053.20190183. DOI
Mede R.; Klein M.; Claus R. A.; Krieck S.; Quickert S.; Görls H.; Neugebauer U.; Schmitt M.; Gessner G.; Heinemann S. H.; Popp J.; Bauer M.; Westerhausen M. CORM-EDE1: A Highly Water-Soluble and Nontoxic Manganese-Based photoCORM with a Biogenic Ligand Sphere. Inorg. Chem. 2016, 55, 104–113. 10.1021/acs.inorgchem.5b01904. PubMed DOI
Bohlender C.; Gläser S.; Klein M.; Weisser J.; Thein S.; Neugebauer U.; Popp J.; Wyrwa R.; Schiller A. Light-Triggered CO Release from Nanoporous Non-Wovens. J. Mater. Chem. B 2014, 2, 1454–1463. 10.1039/C3TB21649G. PubMed DOI
Gläser S.; Mede R.; Görls H.; Seupel S.; Bohlender C.; Wyrwa R.; Schirmer S.; Dochow S.; Reddy G. U.; Popp J.; Westerhausen M.; Schiller A. Remote-Controlled Delivery of CO via Photoactive CO-Releasing Materials on a Fiber Optical Device. Dalton Trans. 2016, 45, 13222–13233. 10.1039/C6DT02011A. PubMed DOI
Li Z.; Pierri A. E.; Huang P. J.; Wu G.; Iretskii A. V.; Ford P. C. Dinuclear PhotoCORMs: Dioxygen-Assisted Carbon Monoxide Uncaging from Long-Wavelength -Absorbing Metal-Metal-Bonded Carbonyl Complexes. Inorg. Chem. 2017, 56, 6094–6104. 10.1021/acs.inorgchem.6b03138. PubMed DOI
Askes S. H. C.; Reddy G. U.; Wyrwa R.; Bonnet S.; Schiller A. Red Light-Triggered CO Release from Mn2(CO)10 Using Triplet Sensitization in Polymer Nonwoven Fabrics. J. Am. Chem. Soc. 2017, 139, 15292–15295. 10.1021/jacs.7b07427. PubMed DOI PMC
Gonzalez M. A.; Carrington S. J.; Chakraborty I.; Olmstead M. M.; Mascharak P. K. Photoactivity of Mono- and Dicarbonyl Complexes of Ruthenium(II) Bearing an N,N,S-Donor Ligand: Role of Ancillary Ligands on the Capacity of CO Photorelease. Inorg. Chem. 2013, 52, 11320–11331. 10.1021/ic4016004. PubMed DOI
Kubeil M.; Joshi T.; Wood B. R.; Stephan H. Synthesis, Structural Characterization and Photodecarbonylation Study of a Dicarbonyl Ruthenium(II)-Bisquinoline Complex. ChemistryOpen 2019, 8, 637–642. 10.1002/open.201900111. PubMed DOI PMC
Akatsuka K.; Abe R.; Takase T.; Oyama D. Coordination Chemistry of Ru(II) Complexes of an Asymmetric Bipyridine Analogue: Synergistic Effects of Supporting Ligand and Coordination Geometry on Reactivities. Molecules 2020, 25, 27.10.3390/molecules25010027. PubMed DOI PMC
Takács J.; Soós E.; Nagy-Magos Z.; Markó L.; Gervasio G.; Hoffmann T. Synthesis and Molecular Structure of Carbonyl Derivatives of Iron(II) Thiolates Containing Nitrogen-Donor Ligands. Inorg. Chim. Acta 1989, 166, 39–46. 10.1016/S0020-1693(00)80784-7. DOI
Kretschmer R.; Gessner G.; Görls H.; Heinemann S. H.; Westerhausen M. Dicarbonyl-Bis(cysteamine)iron(II): A Light Induced Carbon Monoxide Releasing Molecule Based on Iron (CORM-S1). J. Inorg. Biochem. 2011, 105, 6–9. 10.1016/j.jinorgbio.2010.10.006. PubMed DOI
Poh H. T.; Sim B. T.; Chwee T. S.; Leong W. K.; Fan W. Y. The Dithiolate-Bridged Diiron Hexacarbonyl Complex Na2[(μ-SCH2CH2COO)Fe(CO)3]2 as a Water-Soluble PhotoCORM. Organometallics 2014, 33, 959–963. 10.1021/om401013a. DOI
Marhenke J.; Pierri A. E.; Lomotan M.; Damon P. L.; Ford P. C.; Works C. Flash and Continuous Photolysis Kinetic Studies of the Iron–Iron Hydrogenase Model (μ-pdt)[Fe(CO)3]2 in Different Solvents. Inorg. Chem. 2011, 50, 11850–11852. 10.1021/ic201523r. PubMed DOI
Nakae T.; Hirotsu M.; Nakajima H. CO Release from N, C, S-Pincer Iron(III) Carbonyl Complexes Induced by Visible-to-NIR Light Irradiation: Mechanistic Insight into Effects of Axial Phosphorus Ligands. Inorg. Chem. 2018, 57, 8615–8626. 10.1021/acs.inorgchem.8b01407. PubMed DOI
Kawatani M.; Kamiya M.; Takahashi H.; Urano Y. Factors Affecting the Ucaging Eficiency of 500nm Lght-Ativatable BODIPY Caging Group. Bioorg. Med. Chem. Lett. 2018, 28, 1–5. 10.1016/j.bmcl.2017.11.030. PubMed DOI
Wright M. A.; Wooldridge T.; O’Connell M. A.; Wright J. A. Ferracyclic Carbonyl Complexes as Anti-inflammatory Agents. Chem. Commun. 2020, 56, 4300–4303. 10.1039/D0CC01449D. PubMed DOI
Pierri A. E.; Pallaoro A.; Wu G.; Ford P. C. A Luminescent and Biocompatible PhotoCORM. J. Am. Chem. Soc. 2012, 134, 18197–18200. 10.1021/ja3084434. PubMed DOI
Pierri A. E.; Pallaoro A.; Wu G.; Ford P. C. Correction to “A Luminescent and Biocompatible PhotoCORM. J. Am. Chem. Soc. 2018, 140, 525–525. 10.1021/jacs.7b11882. PubMed DOI
Rosselli M.; Keller R.; Dubey R. Role of Nitric Oxide in the Biology, Physiology and Pathophysiology of Reproduction. Hum. Reprod. Update 1998, 4, 3–24. 10.1093/humupd/4.1.3. PubMed DOI
Arnold W. P.; Mittal C. K.; Katsuki S.; Murad F. Nitric Oxide Activates Guanylate Cyclase and Increases Guanosine 3′:5′-Cyclic Monophosphate Levels in Various Tissue Preparations. Proc. Natl. Acad. Sci. U. S. A. 1977, 74, 3203–3207. 10.1073/pnas.74.8.3203. PubMed DOI PMC
Furchgott R. F.; Zawadzki J. V. The Obligatory Role of Endothelial Cells in the Relaxation of Arterial Smooth Muscle by Acetylcholine. Nature 1980, 288, 373–376. 10.1038/288373a0. PubMed DOI
Ignarro L. J.; Buga G. M.; Wood K. S.; Byrns R. E.; Chaudhuri G. Endothelium-Derived Relaxing Factor Produced and Released from Artery and Vein Is Nitric Oxide. Proc. Natl. Acad. Sci. U. S. A. 1987, 84, 9265–9269. 10.1073/pnas.84.24.9265. PubMed DOI PMC
Palmer R. M. J.; Ferrige A. G.; Moncada S. Nitric Oxide Release Accounts for the Biological Activity of Endothelium-Derived Relaxing Factor. Nature 1987, 327, 524–526. 10.1038/327524a0. PubMed DOI
Hermann M.; Flammer A.; Lüscher T. F. Nitric Oxide in Hypertension. J. Clin. Hypertens. 2006, 8, 17–29. 10.1111/j.1524-6175.2006.06032.x. PubMed DOI PMC
Qiu S.; Guo C.; Wang M.; Sun Z.; Li H.; Qian X.; Yang Y. Mild Dealkylative N-Nitrosation of N,N-Dialkylaniline Derivatives for Convenient Preparation of Photo-Triggered and Photo-Calibrated NO Donors. Org. Chem. Front. 2018, 5, 3206–3209. 10.1039/C8QO00818C. DOI
Piech K.; Bally T.; Sikora A.; Marcinek A. Mechanistic Aspects of the Oxidative and Reductive Fragmentation of N-Nitrosoamines: A New Method for Generating Nitrenium Cations, Amide Anions, and Aminyl Radicals. J. Am. Chem. Soc. 2007, 129, 3211–3217. 10.1021/ja066855e. PubMed DOI
He H.; He T.; Zhang Z.; Xu X.; Yang H.; Qian X.; Yang Y. Ring-Restricted N-Nitrosated Rhodamine as a Green-Light Triggered, Orange-Emission Calibrated and Fast-Releasing Nitric Oxide Donor. Chin. Chem. Lett. 2018, 29, 1497–1499. 10.1016/j.cclet.2018.08.019. DOI
Yanagimoto T.; Toyota T.; Matsuki N.; Makino Y.; Uchiyama S.; Ohwada T. Transnitrosation of Thiols from Aliphatic N-Nitrosamines: S-Nitrosation and Indirect Generation of Nitric Oxide. J. Am. Chem. Soc. 2007, 129, 736–737. 10.1021/ja0658259. PubMed DOI
Zhou E. Y.; Knox H. J.; Reinhardt C. J.; Partipilo G.; Nilges M. J.; Chan J. Near-Infrared Photoactivatable Nitric Oxide Donors with Integrated Photoacoustic Monitoring. J. Am. Chem. Soc. 2018, 140, 11686–11697. 10.1021/jacs.8b05514. PubMed DOI PMC
Okuno H.; Ieda N.; Hotta Y.; Kawaguchi M.; Kimura K.; Nakagawa H. A Yellowish-Green-Light-Controllable Nitric Oxide Donor Based on N-Nitrosoaminophenol Applicable for Photocontrolled Vasodilation. Org. Biomol. Chem. 2017, 15, 2791–2796. 10.1039/C7OB00245A. PubMed DOI
Ieda N.; Oka Y.; Yoshihara T.; Tobita S.; Sasamori T.; Kawaguchi M.; Nakagawa H. Structure-Efficiency Relationship of Photoinduced Electron Transfer-Triggered Nitric Oxide Releasers. Sci. Rep. 2019, 9, 1430.10.1038/s41598-018-38252-5. PubMed DOI PMC
Ieda N.; Hotta Y.; Kawaguchi M.; Kimura K.; Nakagawa H. In Cellullo and ex Vivo Availability of a Yellowish-Green-Light-Controllable NO Releaser. Chem. Pharm. Bull. 2019, 67, 576–579. 10.1248/cpb.c19-00112. PubMed DOI
He H.; Liu Y.; Zhou Z.; Guo C.; Wang H.-Y.; Wang Z.; Wang X.; Zhang Z.; Wu F.-G.; Wang H.; Chen D.; Yang D.; Liang X.; Chen J.; Zhou S.; Liang X.; Qian X.; Yang Y. A Photo-Triggered and Photo-Calibrated Nitric Oxide Donor: Rational Design, Spectral Characterizations, and Biological Applications. Free Radical Biol. Med. 2018, 123, 1–7. 10.1016/j.freeradbiomed.2018.04.563. PubMed DOI
He H.; Xia Y.; Qi Y.; Wang H.-Y.; Wang Z.; Bao J.; Zhang Z.; Wu F.-G.; Wang H.; Chen D.; Yang D.; Liang X.; Chen J.; Zhou S.; Liang X.; Qian X.; Yang Y. A Water-Soluble, Green-Light Triggered, and Photo-Calibrated Nitric Oxide Donor for Biological Applications. Bioconjugate Chem. 2018, 29, 1194–1198. 10.1021/acs.bioconjchem.7b00821. PubMed DOI
Shen R.; Qian Y. A Turn-on and Lysosome-Targeted Fluorescent NO Releaser in Water Media and Its Application in Living Cells and Zebrafishes. Spectrochim. Acta, Part A 2020, 230, 118024.10.1016/j.saa.2019.118024. PubMed DOI
Shen R.; Qian Y. A Efficient Light-Controlled Nitric Oxide Releaser in Aqueous Solution and Its Red Fluorescence Imaging in Lysosome. Dyes Pigm. 2020, 176, 108247.10.1016/j.dyepig.2020.108247. DOI
Zhang S.; Wang Q.; Yang J.; Yang X.-F.; Li Z.; Li H. A Photocalibrated NO Donor Based on N-Nitrosorhodamine 6G upon UV Irradiation. Chin. Chem. Lett. 2019, 30, 454–456. 10.1016/j.cclet.2018.03.011. DOI
He H.; Ye Z.; Xiao Y.; Yang W.; Qian X.; Yang Y. Super-Resolution Monitoring of Mitochondrial Dynamics upon Time-Gated Photo-Triggered Release of Nitric Oxide. Anal. Chem. 2018, 90, 2164–2169. 10.1021/acs.analchem.7b04510. PubMed DOI
Xie X.; Fan J.; Liang M.; Li Y.; Jiao X.; Wang X.; Tang B. A Two-Photon Excitable and Ratiometric Fluorogenic Nitric Oxide Photoreleaser and Its Biological Applications. Chem. Commun. 2017, 53, 11941–11944. 10.1039/C7CC06820D. PubMed DOI
Saavedra J. E.; Billiar T. R.; Williams D. L.; Kim Y.-M.; Watkins S. C.; Keefer L. K. Targeting Nitric Oxide (NO) Delivery in Vivo. Design of a Liver-Selective NO Donor Prodrug That Blocks Tumor Necrosis Factor-α-Induced Apoptosis and Toxicity in the Liver. J. Med. Chem. 1997, 40, 1947–1954. 10.1021/jm9701031. PubMed DOI
Kauser N. I.; Weisel M.; Zhong Y.-L.; Lo M. M.-C.; Ali A. Calcium Dialkylamine Diazeniumdiolates: Synthesis, Stability, and Nitric Oxide Generation. J. Org. Chem. 2020, 85, 4807–4812. 10.1021/acs.joc.0c00020. PubMed DOI
Miller M. R.; Megson I. L. Recent Developments in Nitric Oxide Donor Drugs. Br. J. Pharmacol. 2007, 151, 305–321. 10.1038/sj.bjp.0707224. PubMed DOI PMC
Keefer L. K. Progress Toward Clinical Application of the Nitric Oxide–Releasing Diazeniumdiolates. Annu. Rev. Pharmacol. Toxicol. 2003, 43, 585–607. 10.1146/annurev.pharmtox.43.100901.135831. PubMed DOI
Brilli R. J.; Krafte-Jacobs B.; Smith D. J.; Roselle D.; Passerini D.; Vromen A.; Moore L.; Szabó C.; Salzman A. L. Intratracheal Instillation of a Novel NO/Nucleophile Adduct Selectively Reduces Pulmonary Hypertension. J. Appl. Physiol. 1997, 83, 1968–1975. 10.1152/jappl.1997.83.6.1968. PubMed DOI
Makings L. R.; Tsien R. Y. Caged Nitric Oxide. Stable Organic Molecules from which Nitric Oxide can be Photoreleased. J. Biol. Chem. 1994, 269, 6282–6285. PubMed
Caruso E. B.; Petralia S.; Conoci S.; Giuffrida S.; Sortino S. Photodelivery of Nitric Oxide from Water-Soluble Platinum Nanoparticles. J. Am. Chem. Soc. 2007, 129, 480–481. 10.1021/ja067568d. PubMed DOI
Sharma N.; Dhyani A. K.; Marepally S.; Jose D. A. Nanoscale Lipid Vesicles Functionalized with a Nitro-Aniline Derivative for Photoinduced Nitric Oxide (NO) Delivery. Nanoscale Adv. 2020, 2, 463–469. 10.1039/C9NA00532C. PubMed DOI PMC
Vittorino E.; Sciortino M. T.; Siracusano G.; Sortino S. Light-Activated Release of Nitric Oxide with Fluorescence Reporting in Living Cells. ChemMedChem 2011, 6, 1551–1554. 10.1002/cmdc.201100198. PubMed DOI
Fraix A.; Kirejev V.; Malanga M.; Fenyvesi É.; Béni S.; Ericson M. B.; Sortino S. A Three-Color Fluorescent Supramolecular Nanoassembly of Phototherapeutics Activable by Two-Photon Excitation with Near-Infrared Light. Chem. - Eur. J. 2019, 25, 7091–7095. 10.1002/chem.201900917. PubMed DOI
Marino N.; Perez-Lloret M.; Blanco A. R.; Venuta A.; Quaglia F.; Sortino S. Photo-Antimicrobial Polymeric Films Releasing Nitric Oxide with Fluorescence Reporting under Visible Light. J. Mater. Chem. B 2016, 4, 5138–5143. 10.1039/C6TB01388K. PubMed DOI
Wang Y.; Huang X.; Tang Y.; Zou J.; Wang P.; Zhang Y.; Si W.; Huang W.; Dong X. A Light-Induced Nitric Oxide Controllable Release Nano-Platform Based on Diketopyrrolopyrrole Derivatives for pH-Responsive Photodynamic/Photothermal Synergistic Cancer Therapy. Chem. Sci. 2018, 9, 8103–8109. 10.1039/C8SC03386B. PubMed DOI PMC
Suzuki T.; Nagae O.; Kato Y.; Nakagawa H.; Fukuhara K.; Miyata N. Photoinduced Nitric Oxide Release from Nitrobenzene Derivatives. J. Am. Chem. Soc. 2005, 127, 11720–11726. 10.1021/ja0512024. PubMed DOI
Hishikawa K.; Nakagawa H.; Furuta T.; Fukuhara K.; Tsumoto H.; Suzuki T.; Miyata N. Photoinduced Nitric Oxide Release from a Hindered Nitrobenzene Derivative by Two-Photon Excitation. J. Am. Chem. Soc. 2009, 131, 7488–7489. 10.1021/ja8093668. PubMed DOI
Nakagawa H.; Hishikawa K.; Eto K.; Ieda N.; Namikawa T.; Kamada K.; Suzuki T.; Miyata N.; Nabekura J.-i. Fine Spatiotemporal Control of Nitric Oxide Release by Infrared Pulse-Laser Irradiation of a Photolabile Donor. ACS Chem. Biol. 2013, 8, 2493–2500. 10.1021/cb400361m. PubMed DOI
Ieda N.; Hishikawa K.; Eto K.; Kitamura K.; Kawaguchi M.; Suzuki T.; Fukuhara K.; Miyata N.; Furuta T.; Nabekura J.; Nakagawa H. A Double Bond-Conjugated Dimethylnitrobenzene-Type Photolabile Nitric Oxide Donor with Improved Two-Photon Cross Section. Bioorg. Med. Chem. Lett. 2015, 25, 3172–3175. 10.1016/j.bmcl.2015.05.095. PubMed DOI
Kitamura K.; Kawaguchi M.; Ieda N.; Miyata N.; Nakagawa H. Visible Light-Controlled Nitric Oxide Release from Hindered Nitrobenzene Derivatives for Specific Modulation of Mitochondrial Dynamics. ACS Chem. Biol. 2016, 11, 1271–1278. 10.1021/acschembio.5b00962. PubMed DOI
Kitamura K.; Ieda N.; Hishikawa K.; Suzuki T.; Miyata N.; Fukuhara K.; Nakagawa H. Visible Light-Induced Nitric Oxide Release from a Novel Nitrobenzene Derivative Cross-Conjugated with a Coumarin Fluorophore. Bioorg. Med. Chem. Lett. 2014, 24, 5660–5662. 10.1016/j.bmcl.2014.10.075. PubMed DOI
Parisi C.; Failla M.; Fraix A.; Rolando B.; Gianquinto E.; Spyrakis F.; Gazzano E.; Riganti C.; Lazzarato L.; Fruttero R.; Gasco A.; Sortino S. Fluorescent Nitric Oxide Photodonors Based on BODIPY and Rhodamine Antennae. Chem. - Eur. J. 2019, 25, 11080–11084. 10.1002/chem.201902062. PubMed DOI
Parisi C.; Failla M.; Fraix A.; Rescifina A.; Rolando B.; Lazzarato L.; Cardile V.; Graziano A. C. E.; Fruttero R.; Gasco A.; Sortino S. A Molecular Hybrid Producing Simultaneously Singlet Oxygen and Nitric Oxide by Single Photon Excitation with Green Light. Bioorg. Chem. 2019, 85, 18–22. 10.1016/j.bioorg.2018.12.027. PubMed DOI
Butler A. R.; Glidewell C. Recent Chemical Studies of Sodium Nitroprusside Relevant to its Hypotensive Action. Chem. Soc. Rev. 1987, 16, 361–380. 10.1039/cs9871600361. DOI
Shishido S. M.; de Oliveira M. G. Photosensitivity of Aqueous Sodium Nitroprusside Solutions: Nitric Oxide Release versus Cyanide Toxicity. Prog. React. Kinet. Mech. 2001, 26, 239–261. 10.3184/007967401103165271. DOI
Feelisch M.; Noack E. Nitric Oxide (NO) Formation from Nitrovasodilators Occurs Independently of Hemoglobin or Non-Heme Iron. Eur. J. Pharmacol. 1987, 142, 465–469. 10.1016/0014-2999(87)90090-2. PubMed DOI
Holloway L. R.; Li L.. The Preparation, Structural Characteristics, and Physical Chemical Properties of Metal-Nitrosyl Complexes. Nitrosyl Complexes in Inorganic Chemistry, Biochemistry and Medicine II; Mingos D. M. P., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2014.
Xiang H.-J.; Guo M.; Liu J.-G. Transition-Metal Nitrosyls for Photocontrolled Nitric Oxide Delivery. Eur. J. Inorg. Chem. 2017, 2017, 1586–1595. 10.1002/ejic.201601135. DOI
Ostrowski A. D.; Absalonson R. O.; Leo M. A. D.; Wu G.; Pavlovich J. G.; Adamson J.; Azhar B.; Iretskii A. V.; Megson I. L.; Ford P. C. Photochemistry of trans-Cr(cyclam)(ONO)2+, a Nitric Oxide Precursor. Inorg. Chem. 2011, 50, 4453–4462. 10.1021/ic200094x. PubMed DOI
DeRosa F.; Bu X.; Ford P. C. Chromium(III) Complexes for Photochemical Nitric Oxide Generation from Coordinated Nitrite: Synthesis and Photochemistry of Macrocyclic Complexes with Pendant Chromophores, trans-[Cr(L)(ONO)2]BF4. Inorg. Chem. 2005, 44, 4157–4165. 10.1021/ic048311o. PubMed DOI
Ostrowski A. D.; Lin B. F.; Tirrell M. V.; Ford P. C. Liposome Encapsulation of a Photochemical NO Precursor for Controlled Nitric Oxide Release and Simultaneous Fluorescence Imaging. Mol. Pharmaceutics 2012, 9, 2950–2955. 10.1021/mp300139y. PubMed DOI
Huang P.-J.; Garcia J. V.; Fenwick A.; Wu G.; Ford P. C. Nitric Oxide Uncaging from a Hydrophobic Chromium(III) PhotoNORM: Visible and Near-Infrared Photochemistry in Biocompatible Polymer Disks. ACS Omega 2019, 4, 9181–9187. 10.1021/acsomega.9b00592. PubMed DOI PMC
Burks P. T.; Garcia J. V.; GonzalezIrias R.; Tillman J. T.; Niu M. T.; Mikhailovsky A. A.; Zhang J. P.; Zhang F.; Ford P. C. Nitric Oxide Releasing Materials Triggered by Near-Infrared Excitation Through Tissue Filters. J. Am. Chem. Soc. 2013, 135, 18145–18152. 10.1021/ja408516w. PubMed DOI
San Miguel V.; Alvarez M.; Filevich O.; Etchenique R.; del Campo A. Multiphoton Reactive Surfaces Using Ruthenium(II) Photocleavable Cages. Langmuir 2012, 28, 1217–1221. 10.1021/la2033687. PubMed DOI
Wecksler S. R.; Mikhailovsky A.; Korystov D.; Ford P. C. A Two-Photon Antenna for Photochemical Delivery of Nitric Oxide from a Water-Soluble, Dye-Derivatized Iron Nitrosyl Complex Using NIR Light. J. Am. Chem. Soc. 2006, 128, 3831–3837. 10.1021/ja057977u. PubMed DOI
Conrado C. L.; Wecksler S.; Egler C.; Magde D.; Ford P. C. Synthesis and Photochemical Properties of a Novel Iron-Sulfur-Nitrosyl Cluster Derivatized with the Pendant Chromophore Protoporphyrin IX. Inorg. Chem. 2004, 43, 5543–5549. 10.1021/ic049459a. PubMed DOI
Conrado C. L.; Bourassa J. L.; Egler C.; Wecksler S.; Ford P. C. Photochemical Investigation of Roussin’s Red Salt Esters: Fe2(μ-SR)2(NO)4. Inorg. Chem. 2003, 42, 2288–2293. 10.1021/ic020309e. PubMed DOI
Zheng Q.; Bonoiu A.; Ohulchanskyy T. Y.; He G. S.; Prasad P. N. Water-Soluble Two-Photon Absorbing Nitrosyl Complex for Light-Activated Therapy through Nitric Oxide Release. Mol. Pharmaceutics 2008, 5, 389–398. 10.1021/mp700117s. PubMed DOI
Wecksler S. R.; Mikhailovsky A.; Korystov D.; Buller F.; Kannan R.; Tan L.-S.; Ford P. C. Single- and Two-Photon Properties of a Dye-Derivatized Roussin’s Red Salt Ester (Fe2(μ-RS)2(NO)4) with a Large TPA Cross Section. Inorg. Chem. 2007, 46, 395–402. 10.1021/ic0607336. PubMed DOI
Patra A. K.; Afshar R.; Olmstead M. M.; Mascharak P. K. The First Non-Heme Iron(III) Complex with a Ligated Carboxamido Group That Exhibits Photolability of a Bound NO Ligand. Angew. Chem., Int. Ed. 2002, 41, 2512–2515. 10.1002/1521-3773(20020715)41:14<2512::AID-ANIE2512>3.0.CO;2-7. PubMed DOI
Patra A. K.; Rowland J. M.; Marlin D. S.; Bill E.; Olmstead M. M.; Mascharak P. K. Iron Nitrosyls of a Pentadentate Ligand Containing a Single Carboxamide Group: Syntheses, Structures, Electronic Properties, and Photolability of NO. Inorg. Chem. 2003, 42, 6812–6823. 10.1021/ic0301627. PubMed DOI
Chiang C.-K.; Chu K.-T.; Lin C.-C.; Xie S.-R.; Liu Y.-C.; Demeshko S.; Lee G.-H.; Meyer F.; Tsai M.-L.; Chiang M.-H.; Lee C.-M. Photoinduced NO and HNO Production from Mononuclear {FeNO}6 Complex Bearing a Pendant Thiol. J. Am. Chem. Soc. 2020, 142, 8649–8661. 10.1021/jacs.9b13837. PubMed DOI
Ghosh K.; Eroy-Reveles A. A.; Avila B.; Holman T. R.; Olmstead M. M.; Mascharak P. K. Reactions of NO with Mn(II) and Mn(III) Centers Coordinated to Carboxamido Nitrogen: Synthesis of a Manganese Nitrosyl with Photolabile NO. Inorg. Chem. 2004, 43, 2988–2997. 10.1021/ic030331n. PubMed DOI
Eroy-Reveles A. A.; Leung Y.; Mascharak P. K. Release of Nitric Oxide From a Sol-Gel Hybrid Material Containing a Photoactive Manganese Nitrosyl Upon Illumination With Visible Light. J. Am. Chem. Soc. 2006, 128, 7166–7167. 10.1021/ja061852n. PubMed DOI
Hitomi Y.; Iwamoto Y.; Kodera M. Electronic Tuning of Nitric Oxide Release from Manganese Nitrosyl Complexes by Visible Light Irradiation: Enhancement of Nitric Oxide Release Efficiency by the Nitro-Substituted Quinoline Ligand. Dalton Trans. 2014, 43, 2161–2167. 10.1039/C3DT51719E. PubMed DOI
Rose M. J.; Mascharak P. K. Photoactive Ruthenium Nitrosyls: Effects of Light and Potential Application as NO Donors. Coord. Chem. Rev. 2008, 252, 2093–2114. 10.1016/j.ccr.2007.11.011. PubMed DOI PMC
Fry N. L.; Mascharak P. K. Photoactive Ruthenium Nitrosyls as NO Donors: How To Sensitize Them toward Visible Light. Acc. Chem. Res. 2011, 44, 289–298. 10.1021/ar100155t. PubMed DOI
de Lima R. G.; Sauaia M. G.; Bonaventura D.; Tedesco A. C.; Bendhack L. M.; da Silva R. S. Influence of Ancillary Ligand L in the Nitric Oxide Photorelease by the [Ru(L)(tpy)NO]3+ Complex and its Vasodilator Activity Based on visible Light Irradiation. Inorg. Chim. Acta 2006, 359, 2543–2549. 10.1016/j.ica.2006.02.020. DOI
Frasconi M.; Liu Z.; Lei J.; Wu Y.; Strekalova E.; Malin D.; Ambrogio M. W.; Chen X.; Botros Y. Y.; Cryns V. L.; Sauvage J.-P.; Stoddart J. F. Photoexpulsion of Surface-Grafted Ruthenium Complexes and Subsequent Release of Cytotoxic Cargos to Cancer Cells from Mesoporous Silica Nanoparticles. J. Am. Chem. Soc. 2013, 135, 11603–11613. 10.1021/ja405058y. PubMed DOI PMC
Bordini J.; Hughes D. L.; Da Motta Neto J. D.; Jorge da Cunha C. Nitric Oxide Photorelease from Ruthenium Salen Complexes in Aqueous and Organic Solutions. Inorg. Chem. 2002, 41, 5410–5416. 10.1021/ic011273d. PubMed DOI
Carlos R. M.; Ferro A. A.; Silva H. A. S.; Gomes M. G.; Borges S. S. S.; Ford P. C.; Tfouni E.; Franco D. W. Photochemical Reactions of trans-[Ru(NH3)4L(NO)]3+ Complexes. Inorg. Chim. Acta 2004, 357, 1381–1388. 10.1016/j.ica.2003.11.023. DOI
Paula Q. A.; Batista A. A.; Castellano E. E.; Ellena J. On the Lability of Dimethylsulfoxide (DMSO) Coordinated to the {RuII–NO+} Species: X-Ray Structures of mer-[RuCl3(DMSO)2(NO)] and mer-[RuCl3(CD3CN)(DMSO)(NO)]. J. Inorg. Biochem. 2002, 90, 144–148. 10.1016/S0162-0134(02)00409-9. PubMed DOI
Miranda K. M.; Bu X.; Lorković I.; Ford P. C. Synthesis and Structural Characterization of Several Ruthenium Porphyrin Nitrosyl Complexes. Inorg. Chem. 1997, 36, 4838–4848. 10.1021/ic970065b. PubMed DOI
Ferreira K. Q.; Tfouni E. Chemical and Photochemical Properties of a Ruthenium Nitrosyl Complex with the N-Monosubstituted Cyclam 1-(3-Propylammonium)-1,4,8,11-Tetraazacyclotetradecane. J. Braz. Chem. Soc. 2010, 21, 1349–1358. 10.1590/S0103-50532010000700022. DOI
Oliveira F. d. S.; Togniolo V.; Pupo T. T.; Tedesco A. C.; da Silva R. S. Nitrosyl Ruthenium Complex as Nitric Oxide Delivery Agent: Synthesis, Characterization and Photochemical Properties. Inorg. Chem. Commun. 2004, 7, 160–164. 10.1016/j.inoche.2003.10.025. DOI
Sauaia M. G.; de Lima R. G.; Tedesco A. C.; da Silva R. S. Photoinduced NO Release by Visible Light Irradiation from Pyrazine-Bridged Nitrosyl Ruthenium Complexes. J. Am. Chem. Soc. 2003, 125, 14718–14719. 10.1021/ja0376801. PubMed DOI
Marquele-Oliveira F.; de Almeida Santana D. C.; Taveira S. F.; Vermeulen D. M.; Moraes de Oliveira A. R.; da Silva R. S.; Lopez R. F. V. Development of Nitrosyl Ruthenium Complex-Loaded Lipid Carriers for Topical Administration: Improvement in Skin Stability and in Nitric Oxide Release by Visible Light Irradiation. J. Pharm. Biomed. Anal. 2010, 53, 843–851. 10.1016/j.jpba.2010.06.007. PubMed DOI
Works C. F.; Jocher C. J.; Bart G. D.; Bu X.; Ford P. C. Photochemical Nitric Oxide Precursors: Synthesis, Photochemistry, and Ligand Substitution Kinetics of Ruthenium Salen Nitrosyl and Ruthenium Salophen Nitrosyl Complexes. Inorg. Chem. 2002, 41, 3728–3739. 10.1021/ic020248k. PubMed DOI
Tfouni E.; Krieger M.; McGarvey B. R.; Franco D. W. Structure, Chemical and Photochemical Reactivity and Biological Activity of Some Ruthenium Amine Nitrosyl Complexes. Coord. Chem. Rev. 2003, 236, 57–69. 10.1016/S0010-8545(02)00177-7. DOI
Lorković I. M.; Miranda K. M.; Lee B.; Bernhard S.; Schoonover J. R.; Ford P. C. Flash Photolysis Studies of the Ruthenium(II) Porphyrins Ru(P)(NO)(ONO). Multiple Pathways Involving Reactions of Intermediates with Nitric Oxide. J. Am. Chem. Soc. 1998, 120, 11674–11683. 10.1021/ja981907o. DOI
Vorobyev V.; Budkina D. S.; Tarnovsky A. N. Femtosecond Excited-State Dynamics and Nitric Oxide Photorelease in a Prototypical Ruthenium Nitrosyl Complex. J. Phys. Chem. Lett. 2020, 11, 4639–4643. 10.1021/acs.jpclett.0c01105. PubMed DOI
Oliveira F. d. S.; Ferreira K. Q.; Bonaventura D.; Bendhack L. M.; Tedesco A. C.; Machado S. d. P.; Tfouni E.; Silva R. S. d. The Macrocyclic Effect and Vasodilation Response Based on the Photoinduced Nitric Oxide Release from trans-[RuCl(tetraazamacrocycle)NO]2+. J. Inorg. Biochem. 2007, 101, 313–320. 10.1016/j.jinorgbio.2006.10.008. PubMed DOI
Bordini J.; Ford P. C.; Tfouni E. Photochemical Release of Nitric Oxide from a Regenerable, Sol-Gel Encapsulated Ru–Salen–Nitrosyl Complex. Chem. Commun. 2005, 4169–4171. 10.1039/b507407j. PubMed DOI
Fry N. L.; Heilman B. J.; Mascharak P. K. Dye-Tethered Ruthenium Nitrosyls Containing Planar Dicarboxamide Tetradentate N4 Ligands: Effects of In-Plane Ligand Twist on NO Photolability. Inorg. Chem. 2011, 50, 317–324. 10.1021/ic1019873. PubMed DOI
Patra A. K.; Rose M. J.; Murphy K. A.; Olmstead M. M.; Mascharak P. K. Photolabile Ruthenium Nitrosyls with Planar Dicarboxamide Tetradentate N4 Ligands: Effects of In-Plane and Axial Ligand Strength on NO Release. Inorg. Chem. 2004, 43, 4487–4495. 10.1021/ic040030t. PubMed DOI
Kumar R.; Kumar S.; Bala M.; Ratnam A.; Singh U. P.; Ghosh K. Unprecedented Oxidation of Aldimine to Carboxamido Function During Reactivity Studies on Ruthenium Complex with Acidified Nitrite Solution: Synthesis of Ruthenium Nitrosyl Complex Having {RuNO}6 Moiety and Photorelease of Coordinated NO. J. Organomet. Chem. 2018, 863, 77–83. 10.1016/j.jorganchem.2018.02.010. DOI
Rose M. J.; Olmstead M. M.; Mascharak P. K. Photoactive Ruthenium Nitrosyls Derived from Quinoline- and Pyridine-Based Ligands: Accelerated Photorelease of NO Due to Quinoline Ligation. Polyhedron 2007, 26, 4713–4718. 10.1016/j.poly.2007.03.010. DOI
Bukhanko V.; Lacroix P. G.; Sasaki I.; Tassé M.; Mallet-Ladeira S.; Voitenko Z.; Malfant I. Mechanism and Oxidation State Involved in the Nitric Oxide (NO) Photorelease in a Terpyridine-Bipyridine-Based Ruthenium Nitrosyl Complex. Inorg. Chim. Acta 2018, 482, 195–205. 10.1016/j.ica.2018.05.038. DOI
Amabilino S.; Tasse M.; Lacroix P. G.; Mallet-Ladeira S.; Pimienta V.; Akl J.; Sasaki I.; Malfant I. Photorelease of Nitric Oxide (NO) on Ruthenium Nitrosyl Complexes with Phenyl Substituted Terpyridines. New J. Chem. 2017, 41, 7371–7383. 10.1039/C7NJ00866J. DOI
Roose M.; Sasaki I.; Bukhanko V.; Mallet-Ladeira S.; Barba-Barba R. M.; Ramos-Ortiz G.; Enriquez-Cabrera A.; Farfán N.; Lacroix P. G.; Malfant I. Nitric Oxide Photo-Release from a Ruthenium Nitrosyl Complex with a 4,4′-Bisfluorenyl-2,2′-Bipyridine Ligand. Polyhedron 2018, 151, 100–111. 10.1016/j.poly.2018.05.028. DOI
Enriquez-Cabrera A.; Lacroix P. G.; Sasaki I.; Mallet-Ladeira S.; Farfán N.; Barba-Barba R. M.; Ramos-Ortiz G.; Malfant I. Comparison of Carbazole and Fluorene Donating Effects on the Two-Photon Absorption and Nitric Oxide Photorelease Capabilities of a Ruthenium–Nitrosyl Complex. Eur. J. Inorg. Chem. 2018, 2018, 531–543. 10.1002/ejic.201700895. DOI
Roose M.; Tassé M.; Lacroix P. G.; Malfant I. Nitric Oxide (NO) Photo-Release in a Series of Ruthenium–Nitrosyl Complexes: New Experimental Insights in the Search for a Comprehensive Mechanism. New J. Chem. 2019, 43, 755–767. 10.1039/C8NJ03907K. DOI
Sasaki I.; Amabilino S.; Mallet-Ladeira S.; Tassé M.; Sournia-Saquet A.; Lacroix P. G.; Malfant I. Further Studies on the Photoreactivities of Ruthenium–Nitrosyl Complexes with Terpyridyl Ligands. New J. Chem. 2019, 43, 11241–11250. 10.1039/C9NJ02398D. DOI
Xiang H.-J.; An L.; Tang W.-W.; Yang S.-P.; Liu J.-G. Photo-Controlled Targeted Intracellular Delivery of Both Nitric Oxide and Singlet Oxygen Using a Fluorescence-Trackable Ruthenium Nitrosyl Functional Nanoplatform. Chem. Commun. 2015, 51, 2555–2558. 10.1039/C4CC09869B. PubMed DOI
Xiang H.-J.; Deng Q.; An L.; Guo M.; Yang S.-P.; Liu J.-G. Tumor Cell Specific and Lysosome-Targeted Delivery of Nitric Oxide for Enhanced Photodynamic Therapy Triggered by 808 nm Near-Infrared Light. Chem. Commun. 2016, 52, 148–151. 10.1039/C5CC07006F. PubMed DOI
Giri B.; Kumbhakar S.; Kalai Selvan K.; Muley A.; Maji S. Formation, Reactivity, Photorelease, and Scavenging of NO in Ruthenium Nitrosyl Complexes. Inorg. Chim. Acta 2020, 502, 119360.10.1016/j.ica.2019.119360. PubMed DOI
De Candia A. G.; Marcolongo J. P.; Etchenique R.; Slep L. D. Widely Differing Photochemical Behavior in Related Octahedral (Ru-NO)6 Compounds: Intramolecular Redox Isomerism of the Excited State Controlling the Photodelivery of NO. Inorg. Chem. 2010, 49, 6925–6930. 10.1021/ic100491g. PubMed DOI
Carneiro Z. A.; Biazzotto J. C.; Alexiou A. D. P.; Nikolaou S. Nitric Oxide Photorelease from a Trinuclear Ruthenium Nitrosyl Complex and its in Vitro Cytotoxicity Against Melanoma Cells. J. Inorg. Biochem. 2014, 134, 36–38. 10.1016/j.jinorgbio.2014.01.012. PubMed DOI
Shin S.; Choe J.; Park Y.; Jeong D.; Song H.; You Y.; Seo D.; Cho J. Artificial Control of Cell Signaling Using a Photocleavable Cobalt(III)–Nitrosyl Complex. Angew. Chem., Int. Ed. 2019, 58, 10126–10131. 10.1002/anie.201903106. PubMed DOI
Ford P. C. Photochemical Delivery of Nitric Oxide. Nitric Oxide 2013, 34, 56–64. 10.1016/j.niox.2013.02.001. PubMed DOI
Fraix A.; Sortino S. Combination of PDT Photosensitizers with NO Photodononors. Photochem. Photobiol. Sci. 2018, 17, 1709–1727. 10.1039/C8PP00272J. PubMed DOI
Neuman D.; Ostrowski A. D.; Absalonson R. O.; Strouse G. F.; Ford P. C. Photosensitized NO Release from Water-Soluble Nanoparticle Assemblies. J. Am. Chem. Soc. 2007, 129, 4146–4147. 10.1021/ja070490w. PubMed DOI
Rose M. J.; Fry N. L.; Marlow R.; Hinck L.; Mascharak P. K. Sensitization of Ruthenium Nitrosyls to Visible Light via Direct Coordination of the Dye Resorufin: Trackable NO Donors for Light-Triggered NO Delivery to Cellular Targets. J. Am. Chem. Soc. 2008, 130, 8834–8846. 10.1021/ja801823f. PubMed DOI
Rose M. J.; Mascharak P. K. Photosensitization of Ruthenium Nitrosyls to Red Light with an Isoelectronic Series of Heavy-Atom Chromophores: Experimental and Density Functional Theory Studies on the Effects of O-, S- and Se-Substituted Coordinated Dyes. Inorg. Chem. 2009, 48, 6904–6917. 10.1021/ic900899j. PubMed DOI
Fry N. L.; Wei J.; Mascharak P. K. Triggered Dye Release via Photodissociation of Nitric Oxide from Designed Ruthenium Nitrosyls: Turn-ON Fluorescence Signaling of Nitric Oxide Delivery. Inorg. Chem. 2011, 50, 9045–9052. 10.1021/ic201242d. PubMed DOI
Rose M. J.; Mascharak P. K. A Photosensitive {Ru–NO}6 Nitrosyl Bearing Dansyl Chromophore: Novel NO Donor with a Fluorometric On/Off Switch. Chem. Commun. 2008, 3933–3935. 10.1039/b805332d. PubMed DOI
Becker T.; Kupfer S.; Wolfram M.; Görls H.; Schubert U. S.; Anslyn E. V.; Dietzek B.; Gräfe S.; Schiller A. Sensitization of NO-Releasing Ruthenium Complexes to Visible Light. Chem. - Eur. J. 2015, 21, 15554–15563. 10.1002/chem.201502091. PubMed DOI
Wecksler S. R.; Hutchinson J.; Ford P. C. Toward Development of Water Soluble Dye Derivatized Nitrosyl Compounds for Photochemical Delivery of NO. Inorg. Chem. 2006, 45, 1192–1200. 10.1021/ic051723s. PubMed DOI
Levy E. S.; Morales D. P.; Garcia J. V.; Reich N. O.; Ford P. C. Near-IR Mediated Intracellular Uncaging of NO from Cell Targeted Hollow Gold Nanoparticles. Chem. Commun. 2015, 51, 17692–17695. 10.1039/C5CC07989F. PubMed DOI
Li Y.-H.; Guo M.; Shi S.-W.; Zhang Q.-L.; Yang S.-P.; Liu J.-G. A Ruthenium-Nitrosyl-Functionalized Nanoplatform for the Targeting of Liver Cancer Cells and NIR-Light-Controlled Delivery of Nitric Oxide Combined with Photothermal Therapy. J. Mater. Chem. B 2017, 5, 7831–7838. 10.1039/C7TB02059G. PubMed DOI
Guo M.; Xiang H.-J.; Wang Y.; Zhang Q.-L.; An L.; Yang S.-P.; Ma Y.; Wang Y.; Liu J.-G. Ruthenium Nitrosyl Functionalized Graphene Quantum Dots as an Efficient Nanoplatform for NIR-Light-Controlled and Mitochondria-Targeted Delivery of Nitric Oxide Combined with Photothermal Therapy. Chem. Commun. 2017, 53, 3253–3256. 10.1039/C7CC00670E. PubMed DOI
Yu Y.-T.; Shi S.-W.; Wang Y.; Zhang Q.-L.; Gao S.-H.; Yang S.-P.; Liu J.-G. A Ruthenium Nitrosyl-Functionalized Magnetic Nanoplatform with Near-Infrared Light-Controlled Nitric Oxide Delivery and Photothermal Effect for Enhanced Antitumor and Antibacterial Therapy. ACS Appl. Mater. Interfaces 2020, 12, 312–321. 10.1021/acsami.9b18865. PubMed DOI
Deng Q.; Xiang H.-J.; Tang W.-W.; An L.; Yang S.-P.; Zhang Q.-L.; Liu J.-G. Ruthenium Nitrosyl Grafted Carbon Dots as a Fluorescence-Trackable Nanoplatform for Visible Light-Controlled Nitric Oxide Release and Targeted Intracellular Delivery. J. Inorg. Biochem. 2016, 165, 152–158. 10.1016/j.jinorgbio.2016.06.011. PubMed DOI
Shi S.-W.; Li Y.-H.; Zhang Q.-L.; Yang S.-P.; Liu J.-G. Targeted and NIR Light-Controlled Delivery of Nitric Oxide Combined with a Platinum(IV) Prodrug for Enhanced Anticancer Therapy. J. Mater. Chem. B 2019, 7, 1867–1874. 10.1039/C8TB02743A. PubMed DOI
Neuman D.; Ostrowski A. D.; Mikhailovsky A. A.; Absalonson R. O.; Strouse G. F.; Ford P. C. Quantum Dot Fluorescence Quenching Pathways with Cr(III) Complexes. Photosensitized NO Production from trans-Cr(cyclam)(ONO)2+. J. Am. Chem. Soc. 2008, 130, 168–175. 10.1021/ja074164s. PubMed DOI PMC
Tan L.; Wan A.; Zhu X.; Li H. Nitric Oxide Release Triggered by Two-Photon Excited Photoluminescence of Engineered Nanomaterials. Chem. Commun. 2014, 50, 5725–5728. 10.1039/c4cc01126k. PubMed DOI
Tan L.; Wan A.; Zhu X.; Li H. Visible Light-Triggered Nitric Oxide Release from Near-Infrared Fluorescent Nanospheric Vehicles. Analyst 2014, 139, 3398–3406. 10.1039/c4an00275j. PubMed DOI
Heilman B. J.; St. John J.; Oliver S. R. J.; Mascharak P. K. Light-Triggered Eradication of Acinetobacter baumannii by Means of NO Delivery from a Porous Material with an Entrapped Metal Nitrosyl. J. Am. Chem. Soc. 2012, 134, 11573–11582. 10.1021/ja3022736. PubMed DOI
Chen G.; Qiu H.; Prasad P. N.; Chen X. Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics. Chem. Rev. 2014, 114, 5161–5214. 10.1021/cr400425h. PubMed DOI PMC
Liu Y.; Tu D.; Zhu H.; Chen X. Lanthanide-Doped Luminescent Nanoprobes: Controlled Synthesis, Optical Spectroscopy, and Bioapplications. Chem. Soc. Rev. 2013, 42, 6924–6958. 10.1039/c3cs60060b. PubMed DOI
Mase J. D.; Razgoniaev A. O.; Tschirhart M. K.; Ostrowski A. D. Light-Controlled Release of Nitric Oxide from Solid Polymer Composite Materials using Visible and Near Infra-Red Light. Photochem. Photobiol. Sci. 2015, 14, 775–785. 10.1039/C4PP00441H. PubMed DOI
Welbes L. L.; Borovik A. S. Confinement of Metal Complexes within Porous Hosts: Development of Functional Materials for Gas Binding and Catalysis. Acc. Chem. Res. 2005, 38, 765–774. 10.1021/ar0402513. PubMed DOI
Halpenny G. M.; Olmstead M. M.; Mascharak P. K. Incorporation of a Designed Ruthenium Nitrosyl in PolyHEMA Hydrogel and Light-Activated Delivery of NO to Myoglobin. Inorg. Chem. 2007, 46, 6601–6606. 10.1021/ic700694b. PubMed DOI
Robbins M. E.; Schoenfisch M. H. Surface-Localized Release of Nitric Oxide via Sol-Gel Chemistry. J. Am. Chem. Soc. 2003, 125, 6068–6069. 10.1021/ja034019o. PubMed DOI
Heilman B. J.; Halpenny G. M.; Mascharak P. K. Synthesis, Characterization, and Light-Controlled Antibiotic Application of a Composite Material Derived from Polyurethane and Silica Xerogel with Embedded Photoactive Manganese Nitrosyl. J. Biomed. Mater. Res., Part B 2011, 99B, 328–337. 10.1002/jbm.b.31904. PubMed DOI
Duan Y.; Wang Y.; Li X.; Zhang G.; Zhang G.; Hu J. Light-Triggered Nitric Oxide (NO) Release From Photoresponsive Polymersomes for Corneal Wound Healing. Chem. Sci. 2020, 11, 186–194. 10.1039/C9SC04039K. PubMed DOI PMC
Nocito G.; Petralia S.; Malanga M.; Béni S.; Calabrese G.; Parenti R.; Conoci S.; Sortino S. Biofriendly Route to Near-Infrared-Active Gold Nanotriangles and Nanoflowers through Nitric Oxide Photorelease for Photothermal Applications. ACS Appl. Nano Mater. 2019, 2, 7916–7923. 10.1021/acsanm.9b01925. DOI
Chen Z.; Thiramanas R.; Schwendy M.; Xie C.; Parekh S. H.; Mailänder V.; Wu S. Upconversion Nanocarriers Encapsulated with Photoactivatable Ru Complexes for Near-Infrared Light-Regulated Enzyme Activity. Small 2017, 13, 1700997.10.1002/smll.201700997. PubMed DOI
Diring S.; Wang D. O.; Kim C.; Kondo M.; Chen Y.; Kitagawa S.; Kamei K.-i.; Furukawa S. Localized Cell Stimulation by Nitric Oxide Using a Photoactive Porous Coordination Polymer Platform. Nat. Commun. 2013, 4, 2684.10.1038/ncomms3684. PubMed DOI PMC
Kabil O.; Banerjee R. Enzymology of H2S Biogenesis, Decay and Signaling. Antioxid. Redox Signaling 2014, 20, 770–782. 10.1089/ars.2013.5339. PubMed DOI PMC
Wallace J. L.; Wang R. Hydrogen Sulfide-Based Therapeutics: Exploiting a Unique but Ubiquitous Gasotransmitter. Nat. Rev. Drug Discovery 2015, 14, 329–345. 10.1038/nrd4433. PubMed DOI
Lefer D. J. A New Gaseous Signaling Molecule Emerges: Cardioprotective Role of Hydrogen Sulfide. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 17907–17908. 10.1073/pnas.0709010104. PubMed DOI PMC
Polhemus D. J.; Lefer D. J. Emergence of Hydrogen Sulfide as an Endogenous Gaseous Signaling Molecule in Cardiovascular Disease. Circ. Res. 2014, 114, 730–737. 10.1161/CIRCRESAHA.114.300505. PubMed DOI PMC
Kang J.; Li Z.; Organ C. L.; Park C.-M.; Yang C.-t.; Pacheco A.; Wang D.; Lefer D. J.; Xian M. pH-Controlled Hydrogen Sulfide Release for Myocardial Ischemia-Reperfusion Injury. J. Am. Chem. Soc. 2016, 138, 6336–6339. 10.1021/jacs.6b01373. PubMed DOI
Benavides G. A.; Squadrito G. L.; Mills R. W.; Patel H. D.; Isbell T. S.; Patel R. P.; Darley-Usmar V. M.; Doeller J. E.; Kraus D. W. Hydrogen Sulfide Mediates the Vasoactivity of Garlic. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 17977–17982. 10.1073/pnas.0705710104. PubMed DOI PMC
Li H.; Yao Y.; Shi H.; Lei Y.; Huang Y.; Wang K.; He X.; Liu J. A Near-Infrared Light-Responsive Nanocomposite for Photothermal Release of H2S and Suppression of Cell Viability. J. Mater. Chem. B 2019, 7, 5992–5997. 10.1039/C9TB01611B. PubMed DOI
Huang Y.; Li H.; He X.; Yang X.; Li L.; Liu S.; Zou Z.; Wang K.; Liu J. Near-Infrared Photothermal Release of Hydrogen Sulfide from Nanocomposite Hydrogels for Anti-Inflammation Applications. Chin. Chem. Lett. 2020, 31, 787–791. 10.1016/j.cclet.2019.05.025. DOI
Levinn C. M.; Cerda M. M.; Pluth M. D. Development and Application of Carbonyl Sulfide-Based Donors for H2S Delivery. Acc. Chem. Res. 2019, 52, 2723–2731. 10.1021/acs.accounts.9b00315. PubMed DOI PMC
Devarie-Baez N. O.; Bagdon P. E.; Peng B.; Zhao Y.; Park C.-M.; Xian M. Light-Induced Hydrogen Sulfide Release from “Caged” gem-Dithiols. Org. Lett. 2013, 15, 2786–2789. 10.1021/ol401118k. PubMed DOI PMC
Fukushima N.; Ieda N.; Sasakura K.; Nagano T.; Hanaoka K.; Suzuki T.; Miyata N.; Nakagawa H. Synthesis of a Photocontrollable Hydrogen Sulfide Donor Using Ketoprofenate Photocages. Chem. Commun. 2014, 50, 587–589. 10.1039/C3CC47421F. PubMed DOI
Fukushima N.; Ieda N.; Kawaguchi M.; Sasakura K.; Nagano T.; Hanaoka K.; Miyata N.; Nakagawa H. Development of Photo-Controllable Hydrogen Sulfide Donor Applicable in Live Cells. Bioorg. Med. Chem. Lett. 2015, 25, 175–178. 10.1016/j.bmcl.2014.11.084. PubMed DOI
Fox M. A.; Triebel C. A. A New Pathway for Cleavage of Some Phenacyl and Styryl Thioethers. J. Org. Chem. 1983, 48, 835–840. 10.1021/jo00154a017. DOI
Xiao Z.; Bonnard T.; Shakouri-Motlagh A.; Wylie R. A. L.; Collins J.; White J.; Heath D. E.; Hagemeyer C. E.; Connal L. A. Triggered and Tunable Hydrogen Sulfide Release from Photogenerated Thiobenzaldehydes. Chem. - Eur. J. 2017, 23, 11294–11300. 10.1002/chem.201701206. PubMed DOI
Tron A.; Peyret A.; Thevenot J.; Bofinger R.; Lecommandoux S.; McClenaghan N. D. A Prototype Reversible Polymersome-Stabilized H2S Photoejector Operating under Pseudophysiological Conditions. Org. Biomol. Chem. 2016, 14, 6394–6397. 10.1039/C6OB01155A. PubMed DOI
Chen W.; Chen M.; Zang Q.; Wang L.; Tang F.; Han Y.; Yang C.; Deng L.; Liu Y.-N. NIR Light Controlled Release of Caged Hydrogen Sulfide Based on Upconversion Nanoparticles. Chem. Commun. 2015, 51, 9193–9196. 10.1039/C5CC02508G. PubMed DOI
Chaudhuri A.; Venkatesh Y.; Das J.; Gangopadhyay M.; Maiti T. K.; Singh N. D. P. One- and Two-Photon-Activated Cysteine Persulfide Donors for Biological Targeting. J. Org. Chem. 2019, 84, 11441–11449. 10.1021/acs.joc.9b01224. PubMed DOI
Supuran C. T.; Scozzafava A. Carbonic Anhydrases as Targets for Medicinal Chemistry. Bioorg. Med. Chem. 2007, 15, 4336–4350. 10.1016/j.bmc.2007.04.020. PubMed DOI
Zhao Y.; Bolton S. G.; Pluth M. D. Light-Activated COS/H2S Donation from Photocaged Thiocarbamates. Org. Lett. 2017, 19, 2278–2281. 10.1021/acs.orglett.7b00808. PubMed DOI
Parthiban C.; M P.; Reddy L. V. K.; Sen D.; Samuel S M.; Singh N. D. P. Tetraphenylethylene Conjugated p-Hydroxyphenacyl: Fluorescent Organic Nanoparticles for the Release of Hydrogen Sulfide under Visible Light with Real-Time Cellular Imaging. Org. Biomol. Chem. 2018, 16, 7903–7909. 10.1039/C8OB01629A. PubMed DOI
Venkatesh Y.; Das J.; Chaudhuri A.; Karmakar A.; Maiti T. K.; Singh N. D. P. Light Triggered Uncaging of Hydrogen Sulfide (H2S) with Real-Time Monitoring. Chem. Commun. 2018, 54, 3106–3109. 10.1039/C8CC01172A. PubMed DOI
Chaudhuri A.; Venkatesh Y.; Jena B. C.; Behara K. K.; Mandal M.; Singh N. D. P. Real-Time Monitoring of a Photoactivated Hydrogen Persulfide Donor for Biological Entities. Org. Biomol. Chem. 2019, 17, 8800–8805. 10.1039/C9OB01982K. PubMed DOI
Yi S. Y.; Moon Y. K.; Kim S.; Kim S.; Park G.; Kim J. J.; You Y. Visible Light-Driven Photogeneration of Hydrogen Sulfide. Chem. Commun. 2017, 53, 11830–11833. 10.1039/C7CC06990A. PubMed DOI
Li L.; Whiteman M.; Guan Y. Y.; Neo K. L.; Cheng Y.; Lee S. W.; Zhao Y.; Baskar R.; Tan C.-H.; Moore P. K. Characterization of a Novel, Water-Soluble Hydrogen Sulfide-Releasing Molecule (GYY4137). Circulation 2008, 117, 2351–2360. 10.1161/CIRCULATIONAHA.107.753467. PubMed DOI
Alexander B. E.; Coles S. J.; Fox B. C.; Khan T. F.; Maliszewski J.; Perry A.; Pitak M. B.; Whiteman M.; Wood M. E. Investigating the Generation of Hydrogen Sulfide from the Phosphonamidodithioate Slow-Release Donor GYY4137. MedChemComm 2015, 6, 1649–1655. 10.1039/C5MD00170F. DOI
DeMartino A. W.; Zigler D. F.; Fukuto J. M.; Ford P. C. Carbon Disulfide. Just Toxic or Also Bioregulatory and/or Therapeutic?. Chem. Soc. Rev. 2017, 46, 21–39. 10.1039/C6CS00585C. PubMed DOI
Bernt C. M.; Burks P. T.; DeMartino A. W.; Pierri A. E.; Levy E. S.; Zigler D. F.; Ford P. C. Photocatalytic Carbon Disulfide Production via Charge Transfer Quenching of Quantum Dots. J. Am. Chem. Soc. 2014, 136, 2192–2195. 10.1021/ja4083599. PubMed DOI
Zivic N.; Kuroishi P. K.; Dumur F.; Gigmes D.; Dove A. P.; Sardon H. Recent Advances and Challenges in the Design of Organic Photoacid and Photobase Generators for Polymerizations. Angew. Chem., Int. Ed. 2019, 58, 10410–10422. 10.1002/anie.201810118. PubMed DOI
Sun X.; Jin M.; Wu X.; Pan H.; Wan D.; Pu H. Bis-Substituted Thiophene-Containing Oxime Sulfonates Photoacid Generators for Cationic Polymerization Under UV–Visible LED Irradiation. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 776–782. 10.1002/pola.28951. DOI
Sambath K.; Wan Z.; Wang Q.; Chen H.; Zhang Y. BODIPY-Based Photoacid Generators for Light-Induced Cationic Polymerization. Org. Lett. 2020, 22, 1208–1212. 10.1021/acs.orglett.0c00118. PubMed DOI
Fu C.; Xu J.; Boyer C. Photoacid-Mediated Ring Opening Polymerization Driven by Visible Light. Chem. Commun. 2016, 52, 7126–7129. 10.1039/C6CC03084J. PubMed DOI
Hayes C. O.; Bell W. K.; Cassidy B. R.; Willson C. G. Synthesis and Characterization of a Two Stage, Nonlinear Photobase Generator. J. Org. Chem. 2015, 80, 7530–7535. 10.1021/acs.joc.5b01078. PubMed DOI
Kaye W. Near-Infrared Spectroscopy: I. Spectral Identification and Analytical Applications. Spectrochim. Acta 1954, 6, 257.10.1016/0371-1951(54)80011-7. DOI
Pansare V. J.; Hejazi S.; Faenza W. J.; Prud’homme R. K. Review of Long-Wavelength Optical and NIR Imaging Materials: Contrast Agents, Fluorophores, and Multifunctional Nano Carriers. Chem. Mater. 2012, 24, 812–827. 10.1021/cm2028367. PubMed DOI PMC
Pawlicki M.; Collins H. A.; Denning R. G.; Anderson H. L. Two-Photon Absorption and the Design of Two-Photon Dyes. Angew. Chem., Int. Ed. 2009, 48, 3244–3266. 10.1002/anie.200805257. PubMed DOI
Klausen M.; Dubois V.; Verlhac J.-B.; Blanchard-Desce M. Tandem Systems for Two-Photon Uncaging of Bioactive Molecules. ChemPlusChem 2019, 84, 589–598. 10.1002/cplu.201900139. PubMed DOI
Speiser S. Photophysics and Mechanisms of Intramolecular Electronic Energy Transfer in Bichromophoric Molecular Systems: Solution and Supersonic Jet Studies. Chem. Rev. 1996, 96, 1953–1976. 10.1021/cr941193+. PubMed DOI
Dietliker K.; Broillet S.; Hellrung B.; Rzadek P.; Rist G.; Wirz J.; Neshchadin D.; Gescheidt G. Photophysical Investigations on Photoinitiators with Covalently Linked Thioxanthone Sensitizer Moieties. Helv. Chim. Acta 2006, 89, 2211–2225. 10.1002/hlca.200690207. DOI
Wagner P. J.; Klán P. Intramolecular Triplet Energy Transfer in Flexible Molecules: Electronic, Dynamic, and Structural Aspects. J. Am. Chem. Soc. 1999, 121, 9626–9635. 10.1021/ja990224l. DOI
Falvey D. E.; Sundararajan C. Photoremovable Protecting Groups Based on Electron Transfer Chemistry. Photochem. Photobiol. Sci. 2004, 3, 831–838. 10.1039/b406866a. PubMed DOI
Houmam A. Electron Transfer Initiated Reactions: Bond Formation and Bond Dissociation. Chem. Rev. 2008, 108, 2180–2237. 10.1021/cr068070x. PubMed DOI
Dougherty T. J.; Gomer C. J.; Henderson B. W.; Jori G.; Kessel D.; Korbelik M.; Moan J.; Peng Q. Photodynamic Therapy. JNCI-J. Natl. Cancer Inst. 1998, 90, 889–905. 10.1093/jnci/90.12.889. PubMed DOI PMC
DeRosa M. C.; Crutchley R. J. Photosensitized Singlet Oxygen and Its Applications. Coord. Chem. Rev. 2002, 233, 351–371. 10.1016/S0010-8545(02)00034-6. DOI
Detty M. R.; Gibson S. L.; Wagner S. J. Current Clinical and Preclinical Photosensitizers for Use in Photodynamic Therapy. J. Med. Chem. 2004, 47, 3897–3915. 10.1021/jm040074b. PubMed DOI
Ormond A. B.; Freeman H. S. Dye Sensitizers for Photodynamic Therapy. Materials 2013, 6, 817–840. 10.3390/ma6030817. PubMed DOI PMC
Klán P.; Wagner P. J. Intramolecular Triplet Energy Transfer in Bichromophores With Long Flexible Tethers. J. Am. Chem. Soc. 1998, 120, 2198–2199. 10.1021/ja974016+. DOI
Vrbka L.; Klán P.; Kříž Z.; Koča J.; Wagner P. J. Computer Modeling and Simulations on Flexible Bifunctional Systems: Intramolecular Energy Transfer Implications. J. Phys. Chem. A 2003, 107, 3404–3413. 10.1021/jp026890h. DOI
Papageorgiou G.; Corrie J. E. T. Optimised Synthesis and Photochemistry of Antenna-Sensitised 1-Acyl-7-Nitroindolines. Tetrahedron 2005, 61, 609–616. 10.1016/j.tet.2004.10.094. DOI
Papageorgiou G.; Lukeman M.; Wan P.; Corrie J. E. T. An Antenna Triplet Sensitiser for 1-Acyl-7-Nitroindolines Improves the Efficiency of Carboxylic Acid Photorelease. Photochem. Photobiol. Sci. 2004, 3, 366–373. 10.1039/b316251f. PubMed DOI
Papageorgiou G.; Ogden D.; Corrie J. E. T. An Antenna-Sensitized Nitroindoline Precursor to Enable Photorelease of l-Glutamate in High Concentrations. J. Org. Chem. 2004, 69, 7228–7233. 10.1021/jo049071x. PubMed DOI
Papageorgiou G.; Ogden D.; Corrie J. E. T. An Antenna-Sensitised 1-Acyl-7-Nitroindoline That Has Good Solubility Properties in the Presence of Calcium Ions and Is Suitable for Use as a Caged L-Glutamate in Neuroscience. Photochem. Photobiol. Sci. 2008, 7, 423–432. 10.1039/b800683k. PubMed DOI
Wöll D.; Laimgruber S.; Galetskaya M.; Smirnova J.; Pfleiderer W.; Heinz B.; Gilch P.; Steiner U. E. On the Mechanism of Intramolecular Sensitization of Photocleavage of the 2-(2-Nitrophenyl)propoxycarbonyl (NPPOC) Protecting Group. J. Am. Chem. Soc. 2007, 129, 12148–12158. 10.1021/ja072355p. PubMed DOI
Röthlingshöfer M.; Gorska K.; Winssinger N. Nucleic Acid-Templated Energy Transfer Leading to a Photorelease Reaction and its Application to a System Displaying a Nonlinear Response. J. Am. Chem. Soc. 2011, 133, 18110–18113. 10.1021/ja2086504. PubMed DOI
Ndzeidze G. N.; Li L.; Steinmetz M. G. Reversible Triplet Excitation Transfer in a Trimethylene-Linked Thioxanthone and Benzothiophene-2-Carboxanilide that Photochemically Expels Leaving Group Anions. J. Org. Chem. 2018, 83, 8995–9007. 10.1021/acs.joc.8b01173. PubMed DOI
Lv W.; Wang W. One-Photon Upconversion-Like Photolysis: A New Strategy to Achieve Long-Wavelength Light-Excitable Photolysis. Synlett 2020, 31, 1129–1134. 10.1055/s-0040-1707100. DOI
Rehm D.; Weller A. Kinetik und Mechanismus der Elektronübertragung bei der Fluoreszenzlöschung in Acetonitril. Berich. Bunsen. Gesell. 1969, 73, 834–839.
Hoffmann N. Efficient Photochemical Electron Transfer Sensitization of Homogeneous Organic Reactions. J. Photochem. Photobiol., C 2008, 9, 43–60. 10.1016/j.jphotochemrev.2008.04.002. DOI
Romero N. A.; Nicewicz D. A. Organic Photoredox Catalysis. Chem. Rev. 2016, 116, 10075–10166. 10.1021/acs.chemrev.6b00057. PubMed DOI
Banerjee A.; Falvey D. E. Protecting Groups That Can Be Removed through Photochemical Electron Transfer: Mechanistic and Product Studies on Photosensitized Release of Carboxylates from Phenacyl Esters. J. Org. Chem. 1997, 62, 6245–6251. 10.1021/jo970495j. DOI
Lee K.; Falvey D. E. Photochemically Removable Protecting Groups Based on Covalently Linked Electron Donor-Acceptor Systems. J. Am. Chem. Soc. 2000, 122, 9361–9366. 10.1021/ja9939441. DOI
Banerjee A.; Lee K.; Falvey D. E. Photoreleasable Protecting Groups Based on Electron Transfer Chemistry. Donor Sensitized Release of Phenacyl Groups From Alcohols, Phosphates and Diacids. Tetrahedron 1999, 55, 12699–12710. 10.1016/S0040-4020(99)00754-1. DOI
Sundararajan C.; Falvey D. E. Photorelease of Carboxylic and Amino Acids From N-Methyl-4-Picolinium Esters by Mediated Electron Transfer. Photochem. Photobiol. Sci. 2006, 5, 116–121. 10.1039/B511269A. PubMed DOI
Sundararajan C.; Falvey D. E. Photolytic Release of Carboxylic Acids Using Linked Donor-Acceptor Molecules: Direct versus Mediated Photoinduced Electron Transfer to N-Alkyl-4-picolinium Esters. Org. Lett. 2005, 7, 2631–2634. 10.1021/ol050744n. PubMed DOI
Zeppuhar A. N.; Hill-Byrne K.; Falvey D. E. Mechanism of the Photorelease of Alcohols From the 9-Phenyl-9-Tritylone Protecting Group. Photochem. Photobiol. Sci. 2019, 18, 1990–1995. 10.1039/C9PP00183B. PubMed DOI
Banerjee A.; Lee K.; Yu Q.; Fang A. G.; Falvey D. E. Protecting Group Release Through Photoinduced Electron Transfer: Wavelength Control Through Sensitized Irradiation. Tetrahedron Lett. 1998, 39, 4635–4638. 10.1016/S0040-4039(98)00857-0. DOI
Speckmeier E.; Zeitler K. Desyl and Phenacyl as Versatile, Photocatalytically Cleavable Protecting Groups: A Classic Approach in a Different (Visible) Light. ACS Catal. 2017, 7, 6821–6826. 10.1021/acscatal.7b02117. DOI
Sundararajan C.; Falvey D. E. Photorelease of Carboxylic Acids, Amino Acids, and Phosphates from N-Alkylpicolinium Esters Using Photosensitization by High Wavelength Laser Dyes. J. Am. Chem. Soc. 2005, 127, 8000–8001. 10.1021/ja050760f. PubMed DOI
Borak J. B.; Falvey D. E. A New Photolabile Protecting Group for Release of Carboxylic Acids by Visible-Light-Induced Direct and Mediated Electron Transfer. J. Org. Chem. 2009, 74, 3894–3899. 10.1021/jo900182x. PubMed DOI
Borak J. B.; Falvey D. E. Ketocoumarin Dyes as Electron Mediators for Visible Light Induced Carboxylate Photorelease. Photochem. Photobiol. Sci. 2010, 9, 854–860. 10.1039/c0pp00072h. PubMed DOI
Kunsberg D. J.; Kipping A. H.; Falvey D. E. Visible Light Photorelease of Carboxylic Acids via Charge-Transfer Excitation of N-Methylpyridinium Iodide Esters. Org. Lett. 2015, 17, 3454–3457. 10.1021/acs.orglett.5b01490. PubMed DOI
Thum M. D.; Falvey D. E. Photoreleasable Protecting Groups Triggered by Sequential Two-Photon Absorption of Visible Light: Release of Carboxylic Acids from a Linked Anthraquinone-N-Alkylpicolinium Ester Molecule. J. Phys. Chem. A 2018, 122, 3204–3210. 10.1021/acs.jpca.8b00657. PubMed DOI
Edson J. B.; Spencer L. P.; Boncella J. M. Photorelease of Primary Aliphatic and Aromatic Amines by Visible-Light-Induced Electron Transfer. Org. Lett. 2011, 13, 6156–6159. 10.1021/ol202456d. PubMed DOI
Yu Y.; Kang X.; Yang X.; Yuan L.; Feng W.; Cui S. Surface Charge Inversion of Self-Assembled Monolayers by Visible Light Irradiation: Cargo Loading and Release by Photoreactions. Chem. Commun. 2013, 49, 3431–3433. 10.1039/c3cc39081k. PubMed DOI
Ciuciu A. I.; Korzycka K. A.; Lewis W. J. M.; Bennett P. M.; Anderson H. L.; Flamigni L. Model Dyads for 2PA Uncaging of a Protecting Group via Photoinduced Electron Transfer. Phys. Chem. Chem. Phys. 2015, 17, 6554–6564. 10.1039/C4CP05812G. PubMed DOI
Denning D. M.; Pedowitz N. J.; Thum M. D.; Falvey D. E. Uncaging Alcohols Using UV or Visible Light Photoinduced Electron Transfer to 9-Phenyl-9-tritylone Ethers. Org. Lett. 2015, 17, 5986–5989. 10.1021/acs.orglett.5b02924. PubMed DOI
Heymann R. R.; Thum M. D.; Hardee A. L.; Falvey D. E. Visible Light Initiated Release of Calcium Ions Through Photochemical Electron Transfer Reactions. Photochem. Photobiol. Sci. 2017, 16, 1003–1008. 10.1039/C6PP00469E. PubMed DOI
Wang H.; Li W.-G.; Zeng K.; Wu Y.-J.; Zhang Y.; Xu T.-L.; Chen Y. Photocatalysis Enables Visible-Light Uncaging of Bioactive Molecules in Live Cells. Angew. Chem., Int. Ed. 2019, 58, 561–565. 10.1002/anie.201811261. PubMed DOI
Gorska K.; Manicardi A.; Barluenga S.; Winssinger N. DNA-Templated Release of Functional Molecules With an Azide-Reduction-Triggered Immolative Linker. Chem. Commun. 2011, 47, 4364–4366. 10.1039/c1cc10222b. PubMed DOI
Rothlingshofer M.; Gorska K.; Winssinger N. Nucleic Acid Templated Uncaging of Fluorophores Using Ru-Catalyzed Photoreduction with Visible Light. Org. Lett. 2012, 14, 482–485. 10.1021/ol203029t. PubMed DOI
Dariva C. G.; Coelho J. F. J.; Serra A. C. Near Infrared Light-Triggered Nanoparticles Using Singlet Oxygen Photocleavage for Drug Delivery Systems. J. Controlled Release 2019, 294, 337–354. 10.1016/j.jconrel.2018.12.042. PubMed DOI
Shim G.; Ko S.; Kim D.; Le Q.-V.; Park G. T.; Lee J.; Kwon T.; Choi H.-G.; Kim Y. B.; Oh Y.-K. Light-Switchable Systems for Remotely Controlled Drug Delivery. J. Controlled Release 2017, 267, 67–79. 10.1016/j.jconrel.2017.09.009. PubMed DOI
Zamadar M.; Ghosh G.; Mahendran A.; Minnis M.; Kruft B. I.; Ghogare A.; Aebisher D.; Greer A. Photosensitizer Drug Delivery via an Optical Fiber. J. Am. Chem. Soc. 2011, 133, 7882–7891. 10.1021/ja200840p. PubMed DOI PMC
Ghosh G.; Belh S. J.; Chiemezie C.; Walalawela N.; Ghogare A. A.; Vignoni M.; Thomas A. H.; McFarland S. A.; Greer E. M.; Greer A. S, S-Chiral Linker Induced U Shape with a Syn-facial Sensitizer and Photocleavable Ethene Group. Photochem. Photobiol. 2019, 95, 293–305. 10.1111/php.13000. PubMed DOI PMC
Anderson V. C.; Thompson D. H. Triggered Release of Hydrophilic Agents From Plasmologen Liposomes Using Visible Light or Acid. Biochim. Biophys. Acta, Biomembr. 1992, 1109, 33–42. 10.1016/0005-2736(92)90183-M. PubMed DOI
Murthy R. S.; Bio M.; You Y. Low Energy Light-Triggered Oxidative Cleavage of Olefins. Tetrahedron Lett. 2009, 50, 1041–1044. 10.1016/j.tetlet.2008.12.069. DOI
Baugh S. D. P.; Yang Z.; Leung D. K.; Wilson D. M.; Breslow R. Cyclodextrin Dimers as Cleavable Carriers of Photodynamic Sensitizers. J. Am. Chem. Soc. 2001, 123, 12488–12494. 10.1021/ja011709o. PubMed DOI
Ruebner A.; Yang Z.; Leung D.; Breslow R. A Cyclodextrin Dimer With a Photocleavable Linker as a Possible Carrier for the Photosensitizer in Photodynamic Tumor Therapy. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 14692–14693. 10.1073/pnas.96.26.14692. PubMed DOI PMC
Jiang M. Y.; Dolphin D. Site-Specific Prodrug Release Using Visible Light. J. Am. Chem. Soc. 2008, 130, 4236–4237. 10.1021/ja800140g. PubMed DOI
Liu J.; Yang G.; Zhu W.; Dong Z.; Yang Y.; Chao Y.; Liu Z. Light-Controlled Drug Release From Singlet-Oxygen Sensitive Nanoscale Coordination Polymers Enabling Cancer Combination Therapy. Biomaterials 2017, 146, 40–48. 10.1016/j.biomaterials.2017.09.007. PubMed DOI
Wang H.; Han R.-l.; Yang L.-m.; Shi J.-h.; Liu Z.-j.; Hu Y.; Wang Y.; Liu S.-j.; Gan Y. Design and Synthesis of Core–Shell–Shell Upconversion Nanoparticles for NIR-Induced Drug Release, Photodynamic Therapy, and Cell Imaging. ACS Appl. Mater. Interfaces 2016, 8, 4416–4423. 10.1021/acsami.5b11197. PubMed DOI
Chai S.; Guo Y.; Zhang Z.; Chai Z.; Ma Y.; Qi L. Cyclodextrin-Gated Mesoporous Silica Nanoparticles as Drug Carriers for Red Light-Induced Drug Release. Nanotechnology 2017, 28, 145101.10.1088/1361-6528/aa5e74. PubMed DOI
Yang G.; Sun X.; Liu J.; Feng L.; Liu Z. Light-Responsive, Singlet-Oxygen-Triggered On-Demand Drug Release from Photosensitizer-Doped Mesoporous Silica Nanorods for Cancer Combination Therapy. Adv. Funct. Mater. 2016, 26, 4722–4732. 10.1002/adfm.201600722. DOI
Ghosh G.; Minnis M.; Ghogare A. A.; Abramova I.; Cengel K. A.; Busch T. M.; Greer A. Photoactive Fluoropolymer Surfaces That Release Sensitizer Drug Molecules. J. Phys. Chem. B 2015, 119, 4155–4164. 10.1021/acs.jpcb.5b00808. PubMed DOI PMC
Li J.; Huang J.; Lyu Y.; Huang J.; Jiang Y.; Xie C.; Pu K. Photoactivatable Organic Semiconducting Pro-Nanoenzymes. J. Am. Chem. Soc. 2019, 141, 4073–4079. 10.1021/jacs.8b13507. PubMed DOI
Bartusik D.; Aebisher D.; Ghosh G.; Minnis M.; Greer A. Fluorine End-Capped Optical Fibers for Photosensitizer Release and Singlet Oxygen Production. J. Org. Chem. 2012, 77, 4557–4565. 10.1021/jo3006107. PubMed DOI PMC
Lee J.; Park J.; Singha K.; Kim W. J. Mesoporous Silica Nanoparticle Facilitated Drug Release Through Cascade Photosensitizer Activation and Cleavage of Singlet Oxygen Sensitive Linker. Chem. Commun. 2013, 49, 1545–1547. 10.1039/c2cc38510d. PubMed DOI
Dinache A.; Smarandache A.; Simon A.; Nastasa V.; Tozar T.; Pascu A.; Enescu M.; Khatyr A.; Sima F.; Pascu M. L.; Staicu A. Photosensitized Cleavage of Some Olefins as Potential Linkers to Be Used in Drug Delivery. Appl. Surf. Sci. 2017, 417, 136–142. 10.1016/j.apsusc.2017.03.177. DOI
Saravanakumar G.; Lee J.; Kim J.; Kim W. J. Visible Light-Induced Singlet Oxygen-Mediated Intracellular Disassembly of Polymeric Micelles Co-loaded With a Photosensitizer and an Anticancer Drug for Enhanced Photodynamic Therapy. Chem. Commun. 2015, 51, 9995–9998. 10.1039/C5CC01937K. PubMed DOI
Thapa P.; Li M.; Karki R.; Bio M.; Rajaputra P.; Nkepang G.; Woo S.; You Y. Folate-PEG Conjugates of a Far-Red Light-Activatable Paclitaxel Prodrug to Improve Selectivity toward Folate Receptor-Positive Cancer Cells. ACS Omega 2017, 2, 6349–6360. 10.1021/acsomega.7b01105. PubMed DOI PMC
Nkepang G.; Bio M.; Rajaputra P.; Awuah S. G.; You Y. Folate Receptor-Mediated Enhanced and Specific Delivery of Far-Red Light-Activatable Prodrugs of Combretastatin A-4 to FR-Positive Tumor. Bioconjugate Chem. 2014, 25, 2175–2188. 10.1021/bc500376j. PubMed DOI PMC
Bio M.; Rajaputra P.; Nkepang G.; You Y. Far-Red Light Activatable, Multifunctional Prodrug for Fluorescence Optical Imaging and Combinational Treatment. J. Med. Chem. 2014, 57, 3401–3409. 10.1021/jm5000722. PubMed DOI PMC
Bio M.; Nkepang G.; You Y. Click and Photo-Unclick Chemistry of Aminoacrylate for Visible Light-Triggered Drug Release. Chem. Commun. 2012, 48, 6517–6519. 10.1039/c2cc32373g. PubMed DOI
Hossion A. M. L.; Bio M.; Nkepang G.; Awuah S. G.; You Y. Visible Light Controlled Release of Anticancer Drug through Double Activation of Prodrug. ACS Med. Chem. Lett. 2013, 4, 124–127. 10.1021/ml3003617. PubMed DOI PMC
Yavlovich A.; Smith B.; Gupta K.; Blumenthal R.; Puri A. Light-Sensitive Lipid-Based Nanoparticles for Drug Delivery: Design Principles and Future Considerations for Biological Applications. Mol. Membr. Biol. 2010, 27, 364–381. 10.3109/09687688.2010.507788. PubMed DOI PMC
Chitgupi U.; Shao S.; Carter K. A.; Huang W.-C.; Lovell J. F. Multicolor Liposome Mixtures for Selective and Selectable Cargo Release. Nano Lett. 2018, 18, 1331–1336. 10.1021/acs.nanolett.7b05025. PubMed DOI
Carter K. A.; Shao S.; Hoopes M. I.; Luo D.; Ahsan B.; Grigoryants V. M.; Song W.; Huang H.; Zhang G.; Pandey R. K.; Geng J.; Pfeifer B. A.; Scholes C. P.; Ortega J.; Karttunen M.; Lovell J. F. Porphyrin–Phospholipid Liposomes Permeabilized by Near-Infrared Light. Nat. Commun. 2014, 5, 3546.10.1038/ncomms4546. PubMed DOI PMC
Miranda D.; Carter K.; Luo D.; Shao S.; Geng J.; Li C.; Chitgupi U.; Turowski S. G.; Li N.; Atilla-Gokcumen G. E.; Spernyak J. A.; Lovell J. F. Multifunctional Liposomes for Image-Guided Intratumoral Chemo-Phototherapy. Adv. Healthcare Mater. 2017, 6, 1700253.10.1002/adhm.201700253. PubMed DOI PMC
Luo D.; Geng J.; Li N.; Carter K. A.; Shao S.; Atilla-Gokcumen G. E.; Lovell J. F. Vessel-Targeted Chemophototherapy with Cationic Porphyrin-Phospholipid Liposomes. Mol. Cancer Ther. 2017, 16, 2452–2461. 10.1158/1535-7163.MCT-17-0276. PubMed DOI PMC
Luo D.; Carter K. A.; Razi A.; Geng J.; Shao S.; Giraldo D.; Sunar U.; Ortega J.; Lovell J. F. Doxorubicin Encapsulated in Stealth Liposomes Conferred With Light-Triggered Drug Release. Biomaterials 2016, 75, 193–202. 10.1016/j.biomaterials.2015.10.027. PubMed DOI PMC
Carter K. A.; Wang S.; Geng J.; Luo D.; Shao S.; Lovell J. F. Metal Chelation Modulates Phototherapeutic Properties of Mitoxantrone-Loaded Porphyrin–Phospholipid Liposomes. Mol. Pharmaceutics 2016, 13, 420–427. 10.1021/acs.molpharmaceut.5b00653. PubMed DOI PMC
Peng P.-C.; Hong R.-L.; Tsai Y.-J.; Li P.-T.; Tsai T.; Chen C.-T. Dual-Effect Liposomes Encapsulated With Doxorubicin and Chlorin e6 Augment the Therapeutic Effect of Tumor Treatment. Lasers Surg. Med. 2015, 47, 77–87. 10.1002/lsm.22312. PubMed DOI
Luo D.; Li N.; Carter K. A.; Lin C.; Geng J.; Shao S.; Huang W.-C.; Qin Y.; Atilla-Gokcumen G. E.; Lovell J. F. Rapid Light-Triggered Drug Release in Liposomes Containing Small Amounts of Unsaturated and Porphyrin–Phospholipids. Small 2016, 12, 3039–3047. 10.1002/smll.201503966. PubMed DOI PMC
Meyer A.; Mokhir A. RNA Interference Controlled by Light of Variable Wavelength. Angew. Chem., Int. Ed. 2014, 53, 12840–12843. 10.1002/anie.201405885. PubMed DOI
Brega V.; Scaletti F.; Zhang X.; Wang L.-S.; Li P.; Xu Q.; Rotello V. M.; Thomas S. W. Polymer Amphiphiles for Photoregulated Anticancer Drug Delivery. ACS Appl. Mater. Interfaces 2019, 11, 2814–2820. 10.1021/acsami.8b18099. PubMed DOI PMC
Lyu Y.; He S.; Li J.; Jiang Y.; Sun H.; Miao Y.; Pu K. A Photolabile Semiconducting Polymer Nanotransducer for Near-Infrared Regulation of CRISPR/Cas9 Gene Editing. Angew. Chem., Int. Ed. 2019, 58, 18197–18201. 10.1002/anie.201909264. PubMed DOI
Xu X.; Zeng Z.; Huang Z.; Sun Y.; Huang Y.; Chen J.; Ye J.; Yang H.; Yang C.; Zhao C. Near-Infrared Light-Triggered Degradable Hyaluronic Acid Hydrogel for On-Demand Drug Release and Combined Chemo-Photodynamic Therapy. Carbohydr. Polym. 2020, 229, 115394.10.1016/j.carbpol.2019.115394. PubMed DOI
Wang C.; Huang B.; Yang G.; Ouyang Y.; Tian J.; Zhang W. NIR-Triggered Multifunctional and Degradable Nanoplatform Based on an ROS-Sensitive Block Copolymer for Imaging-Guided Chemo-Phototherapy. Biomacromolecules 2019, 20, 4218–4229. 10.1021/acs.biomac.9b01123. PubMed DOI
Wilson D. S.; Dalmasso G.; Wang L.; Sitaraman S. V.; Merlin D.; Murthy N. Orally Delivered Thioketal Nanoparticles Loaded with TNF-α–siRNA Target Inflammation and Inhibit Gene Expression in the Intestines. Nat. Mater. 2010, 9, 923–928. 10.1038/nmat2859. PubMed DOI PMC
Shim M. S.; Xia Y. A Reactive Oxygen Species (ROS)-Responsive Polymer for Safe, Efficient, and Targeted Gene Delivery in Cancer Cells. Angew. Chem., Int. Ed. 2013, 52, 6926–6929. 10.1002/anie.201209633. PubMed DOI PMC
Yuan Y.; Liu J.; Liu B. Conjugated-Polyelectrolyte-Based Polyprodrug: Targeted and Image-Guided Photodynamic and Chemotherapy with On-Demand Drug Release upon Irradiation with a Single Light Source. Angew. Chem., Int. Ed. 2014, 53, 7163–7168. 10.1002/anie.201402189. PubMed DOI
Liu L.-H.; Qiu W.-X.; Li B.; Zhang C.; Sun L.-F.; Wan S.-S.; Rong L.; Zhang X.-Z. A Red Light Activatable Multifunctional Prodrug for Image-Guided Photodynamic Therapy and Cascaded Chemotherapy. Adv. Funct. Mater. 2016, 26, 6257–6269. 10.1002/adfm.201602541. DOI
Pei Q.; Hu X.; Zheng X.; Liu S.; Li Y.; Jing X.; Xie Z. Light-Activatable Red Blood Cell Membrane-Camouflaged Dimeric Prodrug Nanoparticles for Synergistic Photodynamic/Chemotherapy. ACS Nano 2018, 12, 1630–1641. 10.1021/acsnano.7b08219. PubMed DOI
Seah G. L.; Yu J. H.; Yang M. Y.; Kim W. J.; Kim J.-H.; Park K.; Cho J.-W.; Kim J. S.; Nam Y. S. Low-Power and Low-Drug-Dose Photodynamic Chemotherapy via the Breakdown of Tumor-Targeted Micelles by Reactive Oxygen Species. J. Controlled Release 2018, 286, 240–253. 10.1016/j.jconrel.2018.07.046. PubMed DOI
Sun C.-Y.; Zhang B.-B.; Zhou J.-Y. Light-Activated Drug Release from a Hyaluronic Acid Targeted Nanoconjugate for Cancer Therapy. J. Mater. Chem. B 2019, 7, 4843–4853. 10.1039/C9TB01115C. PubMed DOI
Yue C.; Zhang C.; Alfranca G.; Yang Y.; Jiang X.; Yang Y.; Pan F.; Fuente J. M. d. l.; Cui D. Near-Infrared Light Triggered ROS-activated Theranostic Platform based on Ce6-CPT-UCNPs for Simultaneous Fluorescence Imaging and Chemo-Photodynamic Combined Therapy. Theranostics 2016, 6, 456–469. 10.7150/thno.14101. PubMed DOI PMC
Wang X.; Meng G.; Zhang S.; Liu X. A Reactive 1O2 - Responsive Combined Treatment System of Photodynamic and Chemotherapy for Cancer. Sci. Rep. 2016, 6, 29911.10.1038/srep29911. PubMed DOI PMC
Li J.; Wei K.; Zuo S.; Xu Y.; Zha Z.; Ke W.; Chen H.; Ge Z. Light-Triggered Clustered Vesicles with Self-Supplied Oxygen and Tissue Penetrability for Photodynamic Therapy against Hypoxic Tumor. Adv. Funct. Mater. 2017, 27, 1702108.10.1002/adfm.201702108. DOI
Phua S. Z. F.; Xue C.; Lim W. Q.; Yang G.; Chen H.; Zhang Y.; Wijaya C. F.; Luo Z.; Zhao Y. Light-Responsive Prodrug-Based Supramolecular Nanosystems for Site-Specific Combination Therapy of Cancer. Chem. Mater. 2019, 31, 3349–3358. 10.1021/acs.chemmater.9b00439. DOI
Li Y.; Wang S.; Huang Y.; Chen Y.; Wu W.; Liu Y.; Zhang J.; Feng Y.; Jiang X.; Gou M. Light-Activated Drug Release From Prodrug Nanoassemblies by Structure Destruction. Chem. Commun. 2019, 55, 13128–13131. 10.1039/C9CC06673J. PubMed DOI
Li X.; Gao M.; Xin K.; Zhang L.; Ding D.; Kong D.; Wang Z.; Shi Y.; Kiessling F.; Lammers T.; Cheng J.; Zhao Y. Singlet Oxygen-Responsive Micelles for Enhanced Photodynamic Therapy. J. Controlled Release 2017, 260, 12–21. 10.1016/j.jconrel.2017.05.025. PubMed DOI
Watanabe K.; Terao N.; Kii I.; Nakagawa R.; Niwa T.; Hosoya T. Indolizines Enabling Rapid Uncaging of Alcohols and Carboxylic Acids by Red Light-Induced Photooxidation. Org. Lett. 2020, 22, 5434–5438. 10.1021/acs.orglett.0c01799. PubMed DOI
Nunes E. D.; Villela A. D.; Basso L. A.; Teixeira E. H.; Andrade A. L.; Vasconcelos M. A.; do Nascimento Neto L. G.; Gondim A. C. S.; Diógenes I. C. N.; Romo A. I. B.; Nascimento O. R.; Zampieri D.; Paulo T. F.; de Carvalho I. M. M.; de França Lopes L. G.; Sousa E. H. S. Light-Induced Disruption of an Acyl Hydrazone Link as a Novel Strategy for Drug Release and Activation: Isoniazid as a Proof-of-Concept Case. Inorg. Chem. Front. 2020, 7, 859–870. 10.1039/C9QI01172B. DOI
Xu H.; Cao W.; Zhang X. Selenium-Containing Polymers: Promising Biomaterials for Controlled Release and Enzyme Mimics. Acc. Chem. Res. 2013, 46, 1647–1658. 10.1021/ar4000339. PubMed DOI
Cao W.; Li Y.; Yi Y.; Ji S.; Zeng L.; Sun Z.; Xu H. Coordination-Responsive Selenium-Containing Polymer Micelles for Controlled Drug Release. Chem. Sci. 2012, 3, 3403–3408. 10.1039/c2sc21315j. DOI
Deepagan V. G.; Kwon S.; You D. G.; Nguyen V. Q.; Um W.; Ko H.; Lee H.; Jo D.-G.; Kang Y. M.; Park J. H. In situ Diselenide-Crosslinked Polymeric Micelles for ROS-Mediated Anticancer Drug Delivery. Biomaterials 2016, 103, 56–66. 10.1016/j.biomaterials.2016.06.044. PubMed DOI
Han P.; Ma N.; Ren H.; Xu H.; Li Z.; Wang Z.; Zhang X. Oxidation-Responsive Micelles Based on a Selenium-Containing Polymeric Superamphiphile. Langmuir 2010, 26, 14414–14418. 10.1021/la102837a. PubMed DOI
Ma N.; Li Y.; Ren H.; Xu H.; Li Z.; Zhang X. Selenium-Containing Block Copolymers and Their Oxidation-Responsive Aggregates. Polym. Chem. 2010, 1, 1609–1614. 10.1039/c0py00144a. DOI
Zhou W.; Wang L.; Li F.; Zhang W.; Huang W.; Huo F.; Xu H. Selenium-Containing Polymer@Metal-Organic Frameworks Nanocomposites as an Efficient Multiresponsive Drug Delivery System. Adv. Funct. Mater. 2017, 27, 1605465.10.1002/adfm.201605465. DOI
Ren H.; Wu Y.; Ma N.; Xu H.; Zhang X. Side-Chain Selenium-Containing Amphiphilic Block Copolymers: Redox-Controlled Self-Assembly and Disassembly. Soft Matter 2012, 8, 1460–1466. 10.1039/C1SM06673K. DOI
Zhai S.; Hu X.; Hu Y.; Wu B.; Xing D. Visible Light-Induced Crosslinking and Physiological Stabilization of Diselenide-Rich Nanoparticles for Redox-Responsive Drug Release and Combination Chemotherapy. Biomaterials 2017, 121, 41–54. 10.1016/j.biomaterials.2017.01.002. PubMed DOI
Han P.; Li S.; Cao W.; Li Y.; Sun Z.; Wang Z.; Xu H. Red Light Responsive Diselenide-Containing Block Copolymer Micelles. J. Mater. Chem. B 2013, 1, 740–743. 10.1039/C2TB00186A. PubMed DOI
Ren H.; Wu Y.; Li Y.; Cao W.; Sun Z.; Xu H.; Zhang X. Visible-Light-Induced Disruption of Diselenide-Containing Layer-by-Layer Films: Toward Combination of Chemotherapy and Photodynamic Therapy. Small 2013, 9, 3981–3986. 10.1002/smll.201300628. PubMed DOI
Sun C.; Ji S.; Li F.; Xu H. Diselenide-Containing Hyperbranched Polymer with Light-Induced Cytotoxicity. ACS Appl. Mater. Interfaces 2017, 9, 12924–12929. 10.1021/acsami.7b02367. PubMed DOI
Fang R.; Xu H.; Cao W.; Yang L.; Zhang X. Reactive Oxygen Species (ROS)-Responsive Tellurium-Containing Hyperbranched Polymer. Polym. Chem. 2015, 6, 2817–2821. 10.1039/C5PY00050E. DOI
Cao W.; Wang L.; Xu H. Selenium/Tellurium Containing Polymer Materials in Nanobiotechnology. Nano Today 2015, 10, 717–736. 10.1016/j.nantod.2015.11.004. DOI
Li F.; Li T.; Cao W.; Wang L.; Xu H. Near-Infrared Light Stimuli-Responsive Synergistic Therapy Nanoplatforms Based on the Coordination of Tellurium-Containing Block Polymer and Cisplatin for Cancer Treatment. Biomaterials 2017, 133, 208–218. 10.1016/j.biomaterials.2017.04.032. PubMed DOI
Ratanatawanate C.; Chyao A.; Balkus K. J. S-Nitrosocysteine-Decorated PbS QDs/TiO2 Nanotubes for Enhanced Production of Singlet Oxygen. J. Am. Chem. Soc. 2011, 133, 3492–3497. 10.1021/ja109328a. PubMed DOI
Tang J.; Robichaux M. A.; Wu K.-L.; Pei J.; Nguyen N. T.; Zhou Y.; Wensel T. G.; Xiao H. Single-Atom Fluorescence Switch: A General Approach toward Visible-Light-Activated Dyes for Biological Imaging. J. Am. Chem. Soc. 2019, 141, 14699–14706. 10.1021/jacs.9b06237. PubMed DOI PMC
Sun W.; Parowatkin M.; Steffen W.; Butt H.-J.; Mailänder V.; Wu S. Ruthenium-Containing Block Copolymer Assemblies: Red-Light-Responsive Metallopolymers with Tunable Nanostructures for Enhanced Cellular Uptake and Anticancer Phototherapy. Adv. Healthcare Mater. 2016, 5, 467–473. 10.1002/adhm.201500827. PubMed DOI
Kachkovskii A. D. The Nature of Electronic Transitions in Linear Conjugated Systems. Russ. Chem. Rev. 1997, 66, 647–664. 10.1070/RC1997v066n08ABEH000274. DOI
Bricks J. L.; Kachkovskii A. D.; Slominskii Y. L.; Gerasov A. O.; Popov S. V. Molecular Design of Near Infrared Polymethine Dyes: A Review. Dyes Pigm. 2015, 121, 238–255. 10.1016/j.dyepig.2015.05.016. DOI
Frangioni J. V. In Vivo Near-Infrared Fluorescence Imaging. Curr. Opin. Chem. Biol. 2003, 7, 626–634. 10.1016/j.cbpa.2003.08.007. PubMed DOI
Luo S.; Zhang E.; Su Y.; Cheng T.; Shi C. A Review of Nir Dyes in Cancer Targeting and Imaging. Biomaterials 2011, 32, 7127–7138. 10.1016/j.biomaterials.2011.06.024. PubMed DOI
Shi C.; Wu J. B.; Pan D. Review on Near-Infrared Heptamethine Cyanine Dyes as Theranostic Agents for Tumor Imaging, Targeting, and Photodynamic Therapy. J. Biomed. Opt. 2016, 21, 50901.10.1117/1.JBO.21.5.050901. PubMed DOI
Alander J. T.; Kaartinen I.; Laakso A.; Patila T.; Spillmann T.; Tuchin V. V.; Venermo M.; Valisuo P. A Review of Indocyanine Green Fluorescent Imaging in Surgery. Int. J. Biomed. Imaging 2012, 2012, 940585.10.1155/2012/940585. PubMed DOI PMC
Reinhart M. B.; Huntington C. R.; Blair L. J.; Heniford B. T.; Augenstein V. A. Indocyanine Green: Historical Context, Current Applications, and Future Considerations. Surg. Innov. 2016, 23, 166–175. 10.1177/1553350615604053. PubMed DOI
Gorka A. P.; Yamamoto T.; Zhu J.; Schnermann M. J. Cyanine Photocages Enable Spatial Control of Inducible Cre-Mediated Recombination. ChemBioChem 2018, 19, 1239–1243. 10.1002/cbic.201800061. PubMed DOI PMC
Feng Q.; Tong R. Anticancer Nanoparticulate Polymer-Drug Conjugate. Bioeng. Transl. Med. 2016, 1, 277–296. 10.1002/btm2.10033. PubMed DOI PMC
Kowalik L.; Chen J. K. Illuminating Developmental Biology Through Photochemistry. Nat. Chem. Biol. 2017, 13, 587–598. 10.1038/nchembio.2369. PubMed DOI PMC
Gorka A. P.; Nani R. R.; Schnermann M. J. Cyanine Polyene Reactivity: Scope and Biomedical Applications. Org. Biomol. Chem. 2015, 13, 7584–7598. 10.1039/C5OB00788G. PubMed DOI PMC
Zheng Q.; Juette M. F.; Jockusch S.; Wasserman M. R.; Zhou Z.; Altman R. B.; Blanchard S. C. Ultra-Stable Organic Fluorophores for Single-Molecule Research. Chem. Soc. Rev. 2014, 43, 1044–1056. 10.1039/C3CS60237K. PubMed DOI PMC
Byers G. W.; Gross S.; Henrichs P. M. Direct and Sensitized Photooxidation of Cyanine Dyes. Photochem. Photobiol. 1976, 23, 37–43. 10.1111/j.1751-1097.1976.tb06768.x. PubMed DOI
Chen P.; Li J.; Qian Z.; Zheng D.; Okasaki T.; Hayami M. Study on the Photooxidation of a Near-Infrared-Absorbing Benzothiazolone Cyanine Dye. Dyes Pigm. 1998, 37, 213–222. 10.1016/S0143-7208(97)00059-4. DOI
Chen X.; Peng X.; Cui A.; Wang B.; Wang L.; Zhang R. Photostabilities of Novel Heptamethine 3H-Indolenine Cyanine Dyes with Different N-Substituents. J. Photochem. Photobiol., A 2006, 181, 79–85. 10.1016/j.jphotochem.2005.11.004. DOI
Engel E.; Schraml R.; Maisch T.; Kobuch K.; Koenig B.; Szeimies R. M.; Hillenkamp J.; Baumler W.; Vasold R. Light-Induced Decomposition of Indocyanine Green. Invest. Ophthalmol. Visual Sci. 2008, 49, 1777–1783. 10.1167/iovs.07-0911. PubMed DOI
Henary M.; Mojzych M.. Stability and Reactivity of Polymethine Dyes in Solution. Heterocyclic Polymethine Dyes: Synthesis, Properties and Applications; Strekowski L., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2008.
Lepaja S.; Strub H.; Lougnot D. J. Photophysical Study of a Series of Cyanines. 3. The Direct Photo-Oxidation Reaction. Z. Naturforsch., A: Phys. Sci. 1983, 38, 56–60. 10.1515/zna-1983-0110. DOI
Renikuntla B. R.; Rose H. C.; Eldo J.; Waggoner A. S.; Armitage B. A. Improved Photostability and Fluorescence Properties Through Polyfluorination of a Cyanine Dye. Org. Lett. 2004, 6, 909–912. 10.1021/ol036081w. PubMed DOI
Samanta A.; Vendrell M.; Das R.; Chang Y.-T. Development of Photostable Near-Infrared Cyanine Dyes. Chem. Commun. 2010, 46, 7406–7408. 10.1039/c0cc02366c. PubMed DOI
Toutchkine A.; Kraynov V.; Hahn K. Solvent-Sensitive Dyes to Report Protein Conformational Changes in Living Cells. J. Am. Chem. Soc. 2003, 125, 4132–4145. 10.1021/ja0290882. PubMed DOI
Toutchkine A.; Nguyen D. V.; Hahn K. M. Merocyanine Dyes with Improved Photostability. Org. Lett. 2007, 9, 2775–2777. 10.1021/ol070780h. PubMed DOI
Patel N. J.; Manivannan E.; Joshi P.; Ohulchanskyy T. J.; Nani R. R.; Schnermann M. J.; Pandey R. K. Impact of Substituents in Tumor Uptake and Fluorescence Imaging Ability of Near-Infrared Cyanine-like Dyes. Photochem. Photobiol. 2015, 91, 1219–1230. 10.1111/php.12482. PubMed DOI PMC
Fouassier J. P.; Lougnot D. J.; Faure J. Transient Absorptions in a Polymethine Laser Dye. Chem. Phys. Lett. 1975, 35, 189–194. 10.1016/0009-2614(75)85311-5. DOI
Kuzmin V. A.; Tatikolov A. S.; Borisevich Y. E. Charge-Transfer Complexing in Course of Triplet-State Quenching of Carbo-Cyanine Dyes by Nitroxyl Radical. Chem. Phys. Lett. 1978, 53, 52–55. 10.1016/0009-2614(78)80387-X. DOI
Delaey E.; van Laar F.; De Vos D.; Kamuhabwa A.; Jacobs P.; de Witte P. A Comparative Study of the Photosensitizing Characteristics of Some Cyanine Dyes. J. Photochem. Photobiol., B 2000, 55, 27–36. 10.1016/S1011-1344(00)00021-X. PubMed DOI
Redmond R. W.; Gamlin J. N. A Compilation of Singlet Oxygen Yields From Biologically Relevant Molecules. Photochem. Photobiol. 1999, 70, 391–475. 10.1562/0031-8655(1999)070<0391:ACOSOY>2.3.CO;2. PubMed DOI
Franck B.; Schneider U. Photooxidation Products of Merocyanine 540 Formed Under Preactivation Conditions for Tumor Therapy. Photochem. Photobiol. 1992, 56, 271–276. 10.1111/j.1751-1097.1992.tb02157.x. PubMed DOI
Gorka A. P.; Nani R. R.; Zhu J.; Mackem S.; Schnermann M. J. A Near-IR Uncaging Strategy Based on Cyanine Photochemistry. J. Am. Chem. Soc. 2014, 136, 14153–14159. 10.1021/ja5065203. PubMed DOI PMC
Nani R. R.; Kelley J. A.; Ivanic J.; Schnermann M. J. Reactive Species Involved in the Regioselective Photooxidation of Heptamethine Cyanines. Chem. Sci. 2015, 6, 6556–6563. 10.1039/C5SC02396C. PubMed DOI PMC
Yamamoto T.; Caldwell D. R.; Gandioso A.; Schnermann M. J. A Cyanine Photooxidation/β-Elimination Sequence Enables Near-Infrared Uncaging of Aryl Amine Payloads. Photochem. Photobiol. 2019, 95, 951–958. 10.1111/php.13090. PubMed DOI PMC
Yang S.; Tian H.; Xiao H.; Shang X.; Gong X.; Yao S.; Chen K. Photodegradation of Cyanine and Merocyanine Dyes. Dyes Pigm. 2001, 49, 93–101. 10.1016/S0143-7208(01)00012-2. DOI
Altman R. B.; Zheng Q.; Zhou Z.; Terry D. S.; Warren J. D.; Blanchard S. C. Enhanced Photostability of Cyanine Fluorophores Across the Visible Spectrum. Nat. Methods 2012, 9, 428–429. 10.1038/nmeth.1988. PubMed DOI PMC
van der Velde J. H. M.; Oelerich J.; Huang J.; Smit J. H.; Hiermaier M.; Ploetz E.; Herrmann A.; Roelfes G.; Cordes T. The Power of Two: Covalent Coupling of Photostabilizers for Fluorescence Applications. J. Phys. Chem. Lett. 2014, 5, 3792–3798. 10.1021/jz501874f. PubMed DOI
van der Velde J. H. M.; Ploetz E.; Hiermaier M.; Oelerich J.; de Vries J. W.; Roelfes G.; Cordes T. Mechanism of Intramolecular Photostabilization in Self-Healing Cyanine Fluorophores. ChemPhysChem 2013, 14, 4084–4093. 10.1002/cphc.201300785. PubMed DOI
Widengren J.; Chmyrov A.; Eggeling C.; Löfdahl P.-Å.; Seidel C. A. M. Strategies to Improve Photostabilities in Ultrasensitive Fluorescence Spectroscopy. J. Phys. Chem. A 2007, 111, 429–440. 10.1021/jp0646325. PubMed DOI
Zheng Q.; Jockusch S.; Zhou Z.; Blanchard S. C. The Contribution of Reactive Oxygen Species to the Photobleaching of Organic Fluorophores. Photochem. Photobiol. 2014, 90, 448–454. 10.1111/php.12204. PubMed DOI PMC
Wu X.; Zhu W. Stability Enhancement of Fluorophores for Lighting Up Practical Application in Bioimaging. Chem. Soc. Rev. 2015, 44, 4179–4184. 10.1039/C4CS00152D. PubMed DOI
Oushiki D.; Kojima H.; Terai T.; Arita M.; Hanaoka K.; Urano Y.; Nagano T. Development and Application of a Near-Infrared Fluorescence Probe for Oxidative Stress Based on Differential Reactivity of Linked Cyanine Dyes. J. Am. Chem. Soc. 2010, 132, 2795–2801. 10.1021/ja910090v. PubMed DOI
Sun M.; Yu H.; Zhu H.; Ma F.; Zhang S.; Huang D.; Wang S. Oxidative Cleavage-Based Near-Infrared Fluorescent Probe for Hypochlorous Acid Detection and Myeloperoxidase Activity Evaluation. Anal. Chem. 2014, 86, 671–677. 10.1021/ac403603r. PubMed DOI
Nani R. R.; Gorka A. P.; Nagaya T.; Yamamoto T.; Ivanic J.; Kobayashi H.; Schnermann M. J. In Vivo Activation of Duocarmycin-Antibody Conjugates by Near-Infrared Light. ACS Cent. Sci. 2017, 3, 329–337. 10.1021/acscentsci.7b00026. PubMed DOI PMC
Nani R. R.; Gorka A. P.; Nagaya T.; Kobayashi H.; Schnermann M. J. Near-IR Light-Mediated Cleavage of Antibody-Drug Conjugates Using Cyanine Photocages. Angew. Chem., Int. Ed. 2015, 54, 13635–13638. 10.1002/anie.201507391. PubMed DOI PMC
Reynolds G. A.; Drexhage K. H. Stable Heptamethine Pyrylium Dyes That Absorb in the Infrared. J. Org. Chem. 1977, 42, 885–888. 10.1021/jo00425a027. DOI
Slominskii Y. L.; Radchenko I.; Tolmachev A. Polymethine Dyes with Hydrocarbon Bridges. Effect of Substituents in the Chromophore on the Color of Tricarbocyanines. Zhurnal. Organicheskoi Khimii 1979, 10, 400–407.
Strekowski L.; Lipowska M.; Patonay G. Substitution-Reactions of a Nucleofugal Group in Heptamethine Cyanine Dyes - Synthesis of an Isothiocyanato Derivative for Labeling of Proteins with a Near-Infrared Chromophore. J. Org. Chem. 1992, 57, 4578–4580. 10.1021/jo00043a009. DOI
Lim S. Y.; Hong K. H.; Kim D. I.; Kwon H.; Kim H. J. Tunable Heptamethine-Azo Dye Conjugate as an Nir Fluorescent Probe for the Selective Detection of Mitochondrial Glutathione Over Cysteine and Homocysteine. J. Am. Chem. Soc. 2014, 136, 7018–7025. 10.1021/ja500962u. PubMed DOI
Zaheer A.; Wheat T. E.; Frangioni J. V. IRDye78 Conjugates for Near-Infrared Fluorescence Imaging. Mol. Imaging 2002, 1, 354–364. 10.1162/153535002321093963. PubMed DOI
Nani R. R.; Shaum J. B.; Gorka A. P.; Schnermann M. J. Electrophile-Integrating Smiles Rearrangement Provides Previously Inaccessible C4′-O-Alkyl Heptamethine Cyanine fluorophores. Org. Lett. 2015, 17, 302–305. 10.1021/ol503398f. PubMed DOI PMC
Saari W. S.; Schwering J. E.; Lyle P. A.; Smith S. J.; Engelhardt E. L. Cyclization-Activated Prodrugs - Basic Carbamates of 4-Hydroxyanisole. J. Med. Chem. 1990, 33, 97–101. 10.1021/jm00163a016. PubMed DOI
Dal Corso A.; Borlandelli V.; Corno C.; Perego P.; Belvisi L.; Pignataro L.; Gennari C. Fast Cyclization of a Proline-Derived Self-Immolative Spacer Improves the Efficacy of Carbamate Prodrugs. Angew. Chem., Int. Ed. 2020, 59, 4176–4181. 10.1002/anie.201916394. PubMed DOI
Guo Z.; Ma Y.; Liu Y.; Yan C.; Shi P.; Tian H.; Zhu W.-H. Photocaged Prodrug Under NIR Light-Triggering with Dual-Channel Fluorescence: In Vivo Real-Time Tracking for Precise Drug Delivery. Sci. China: Chem. 2018, 61, 1293–1300. 10.1007/s11426-018-9240-6. DOI
Mujumdar R. B.; Ernst L. A.; Mujumdar S. R.; Lewis C. J.; Waggoner A. S. Cyanine Dye Labeling Reagents - Sulfoindocyanine Succinimidyl Esters. Bioconjugate Chem. 1993, 4, 105–111. 10.1021/bc00020a001. PubMed DOI
Levitz A.; Marmarchi F.; Henary M. Introduction of Various Substitutions to the Methine Bridge of Heptamethine Cyanine Dyes via Substituted Dianil Linkers. Photochem. Photobiol. Sci. 2018, 17, 1409–1416. 10.1039/C8PP00218E. PubMed DOI PMC
Mojzych M.; Henary M.. Synthesis of Cyanine Dyes. Heterocyclic Polymethine Dyes: Synthesis, Properties and Applications; Strekowski L., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2008.
Štacková L.; Štacko P.; Klán P. Approach to a Substituted Heptamethine Cyanine Chain by the Ring Opening of Zincke Salts. J. Am. Chem. Soc. 2019, 141, 7155–7162. 10.1021/jacs.9b02537. PubMed DOI
Hilderbrand S. A.; Kelly K. A.; Weissleder R.; Tung C.-H. Monofunctional Near-Infrared Fluorochromes for Imaging Applications. Bioconjugate Chem. 2005, 16, 1275–1281. 10.1021/bc0501799. PubMed DOI
Lee H.; Mason J. C.; Achilefu S. Heptamethine Cyanine Dyes with a Robust C-C Bond at the Central Position of the Chromophore. J. Org. Chem. 2006, 71, 7862–7865. 10.1021/jo061284u. PubMed DOI
Mahajan S. S.; Deu E.; Lauterwasser E. M.; Leyva M. J.; Ellman J. A.; Bogyo M.; Renslo A. R. A Fragmenting Hybrid Approach for Targeted Delivery of Multiple Therapeutic Agents to the Malaria Parasite. ChemMedChem 2011, 6, 415–419. 10.1002/cmdc.201100002. PubMed DOI PMC
Santi D. V.; Schneider E. L.; Reid R.; Robinson L.; Ashley G. W. Predictable and Tunable Half-Life Extension of Therapeutic Agents by Controlled Chemical Release From Macromolecular Conjugates. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 6211–6216. 10.1073/pnas.1117147109. PubMed DOI PMC
Spangler B.; Morgan C. W.; Fontaine S. D.; Vander Wal M. N.; Chang C. J.; Wells J. A.; Renslo A. R. A Reactivity-Based Probe of the Intracellular Labile Ferrous Iron Pool. Nat. Chem. Biol. 2016, 12, 680.10.1038/nchembio.2116. PubMed DOI PMC
Tu J.; Xu M.; Parvez S.; Peterson R. T.; Franzini R. M. Bioorthogonal Removal of 3-Isocyanopropyl Groups Enables the Controlled Release of Fluorophores and Drugs in Vivo. J. Am. Chem. Soc. 2018, 140, 8410–8414. 10.1021/jacs.8b05093. PubMed DOI
Luciano M. P.; Nourian S.; Gorka A. P.; Nani R. R.; Nagaya T.; Kobayashi H.; Schnermann M. J.. A Near-Infrared Light-Mediated Cleavable Linker Strategy Using the Heptamethine Cyanine Chromophore. Methods Enzymol.; Academic Press, 2020. PubMed PMC
Johnson S. L.; Morrison D. L. Kinetics and Mechanism of Decarboxylation of N-Arylcarbamates - Evidence for Kinetically Important Zwitterionic Carbamic Acid Species of Short Lifetime. J. Am. Chem. Soc. 1972, 94, 1323–1334. 10.1021/ja00759a045. PubMed DOI
Conceição S. D.; Ferreira P. D.; Ferreira F. V. L. Photochemistry and Cytotoxicity Evaluation of Heptamethinecyanine Near Infrared (NIR) Dyes. Int. J. Mol. Sci. 2013, 14, 18557–18571. 10.3390/ijms140918557. PubMed DOI PMC
Morales M.-C.; Freire V.; Asumendi A.; Araiz J.; Herrera I.; Castiella G.; Corcóstegui I.; Corcóstegui G. Comparative Effects of Six Intraocular Vital Dyes on Retinal Pigment Epithelial Cells. Invest. Ophthalmol. Visual Sci. 2010, 51, 6018–6029. 10.1167/iovs.09-4916. PubMed DOI
Yang X.; Shi C.; Tong R.; Qian W.; Zhau H. E.; Wang R.; Zhu G.; Cheng J.; Yang V. W.; Cheng T.; Henary M.; Strekowski L.; Chung L. W. K. Near IR Heptamethine Cyanine Dye–Mediated Cancer Imaging. Clin. Cancer Res. 2010, 16, 2833.10.1158/1078-0432.CCR-10-0059. PubMed DOI PMC
Beck A.; Goetsch L.; Dumontet C.; Corvaïa N. Strategies and Challenges for the Next Generation of Antibody–Drug Conjugates. Nat. Rev. Drug Discovery 2017, 16, 315.10.1038/nrd.2016.268. PubMed DOI
Birrer M. J.; Moore K. N.; Betella I.; Bates R. C. Antibody-Drug Conjugate-Based Therapeutics: State of the Science. J. Natl. Cancer Inst. 2019, 111, 538–549. 10.1093/jnci/djz035. PubMed DOI
Nagaya T.; Gorka A. P.; Nani R. R.; Okuyama S.; Ogata F.; Maruoka Y.; Choyke P. L.; Schnermann M. J.; Kobayashi H. Molecularly Targeted Cancer Combination Therapy with Near-Infrared Photoimmunotherapy and Near-Infrared Photorelease with Duocarmycin-Antibody Conjugate. Mol. Cancer Ther. 2018, 17, 661–670. 10.1158/1535-7163.MCT-17-0851. PubMed DOI PMC
Cao G.; Wang Y.. Nanostructures and Nanomaterials, 2nd ed.; World Scientific Publishing Company, 2010.
Doane T. L.; Burda C. The Unique Role of Nanoparticles in Nanomedicine: Imaging, Drug Delivery and Therapy. Chem. Soc. Rev. 2012, 41, 2885–2911. 10.1039/c2cs15260f. PubMed DOI
Li Y.; Zhang Y.; Wang W. Phototriggered Targeting of Nanocarriers for Drug Delivery. Nano Res. 2018, 11, 5424–5438. 10.1007/s12274-018-2132-7. DOI
Karimi M.; Zangabad P. S.; Baghaee-Ravari S.; Ghazadeh M.; Mirshekari H.; Hamblin M. R. Smart Nanostructures for Cargo Delivery: Uncaging and Activating by Light. J. Am. Chem. Soc. 2017, 139, 4584–4610. 10.1021/jacs.6b08313. PubMed DOI PMC
Lai W.-F.; Rogach A. L.; Wong W.-T. Molecular Design of Upconversion Nanoparticles for Gene Delivery. Chem. Sci. 2017, 8, 7339–7358. 10.1039/C7SC02956J. PubMed DOI PMC
Xiong Q.; Lim Y.; Li D.; Pu K.; Liang L.; Duan H. Photoactive Nanocarriers for Controlled Delivery. Adv. Funct. Mater. 2020, 30, 1903896.10.1002/adfm.201903896. DOI
Alvarez-Lorenzo C.; Bromberg L.; Concheiro A. Light-Sensitive Intelligent Drug Delivery Systems. Photochem. Photobiol. 2009, 85, 848–860. 10.1111/j.1751-1097.2008.00530.x. PubMed DOI
Bansal A.; Zhang Y. Photocontrolled Nanoparticle Delivery Systems for Biomedical Applications. Acc. Chem. Res. 2014, 47, 3052–3060. 10.1021/ar500217w. PubMed DOI
Hou Y.; Zhou Z.; Huang K.; Yang H.; Han G. Long Wavelength Light Activated Prodrug Conjugates for Biomedical Applications. ChemPhotoChem. 2018, 2, 1005–1011. 10.1002/cptc.201800147. DOI
De Jong W. H.; Borm P. J. A. Drug Delivery and Nanoparticles: Applications and Hazards. Int. J. Nanomed. 2008, 3, 133–149. 10.2147/IJN.S596. PubMed DOI PMC
Zhao W.; Zhao Y.; Wang Q.; Liu T.; Sun J.; Zhang R. Remote Light-Responsive Nanocarriers for Controlled Drug Delivery: Advances and Perspectives. Small 2019, 15, 1903060.10.1002/smll.201903060. PubMed DOI
Singh R.; Lillard J. W. Nanoparticle-Based Targeted Drug Delivery. Exp. Mol. Pathol. 2009, 86, 215–223. 10.1016/j.yexmp.2008.12.004. PubMed DOI PMC
Farokhi M.; Mottaghitalab F.; Saeb M. R.; Thomas S. Functionalized Theranostic Nanocarriers With Bio-Inspired Polydopamine for Tumor Imaging and Chemo-Photothermal Therapy. J. Controlled Release 2019, 309, 203–219. 10.1016/j.jconrel.2019.07.036. PubMed DOI
He L.; Liu Y.; Lau J.; Fan W.; Li Q.; Zhang C.; Huang P.; Chen X. Recent Progress in Nanoscale Metal-Organic Frameworks for Drug Release and Cancer Therapy. Nanomedicine 2019, 14, 1343–1365. 10.2217/nnm-2018-0347. PubMed DOI PMC
Zheng F.; Xiong W.; Sun S.; Zhang P.; Zhu Jun J. Recent Advances in Drug Release Monitoring. Nanophotonics 2019, 8, 391–413. 10.1515/nanoph-2018-0219. DOI
Denkova A. G.; de Kruijff R. M.; Serra-Crespo P. Nanocarrier-Mediated Photochemotherapy and Photoradiotherapy. Adv. Healthcare Mater. 2018, 7, 1701211.10.1002/adhm.201701211. PubMed DOI
Xu Y.; Shan Y.; Cong H.; Shen Y.; Yu B. Advanced Carbon-Based Nanoplatforms Combining Drug Delivery and Thermal Therapy for Cancer Treatment. Curr. Pharm. Des. 2019, 24, 4060–4076. 10.2174/1381612825666181120160959. PubMed DOI
Sagar V.; Nair M. Near-Infrared Biophotonics-Based Nanodrug Release Systems and Their Potential Application for Neuro-Disorders. Expert Opin. Drug Delivery 2018, 15, 137–152. 10.1080/17425247.2017.1297794. PubMed DOI PMC
Obaid G.; Broekgaarden M.; Bulin A.-L.; Huang H.-C.; Kuriakose J.; Liu J.; Hasan T. Photonanomedicine: A Convergence of Photodynamic Therapy and Nanotechnology. Nanoscale 2016, 8, 12471–12503. 10.1039/C5NR08691D. PubMed DOI PMC
Blum A. P.; Kammeyer J. K.; Rush A. M.; Callmann C. E.; Hahn M. E.; Gianneschi N. C. Stimuli-Responsive Nanomaterials for Biomedical Applications. J. Am. Chem. Soc. 2015, 137, 2140–2154. 10.1021/ja510147n. PubMed DOI PMC
Rahoui N.; Jiang B.; Taloub N.; Huang Y. D. Spatio-Temporal Control Strategy of Drug Delivery Systems Based Nano Structures. J. Controlled Release 2017, 255, 176–201. 10.1016/j.jconrel.2017.04.003. PubMed DOI
Liu Q.; Zhan C.; Kohane D. S. Phototriggered Drug Delivery Using Inorganic Nanomaterials. Bioconjugate Chem. 2017, 28, 98–104. 10.1021/acs.bioconjchem.6b00448. PubMed DOI PMC
Li L.; Scheiger J. M.; Levkin P. A. Design and Applications of Photoresponsive Hydrogels. Adv. Mater. 2019, 31, 1807333.10.1002/adma.201807333. PubMed DOI PMC
Ding C. D.; Tong L.; Feng J.; Fu J. J. Recent Advances in Stimuli-Responsive Release Function Drug Delivery Systems for Tumor Treatment. Molecules 2016, 21, 1715.10.3390/molecules21121715. PubMed DOI PMC
Raza A.; Hayat U.; Rasheed T.; Bilal M.; Iqbal H. M. N. Smart” Materials-Based Near-Infrared Light-Responsive Drug Delivery Systems for Cancer Treatment: A Review. J. Mater. Res. Technol. 2019, 8, 1497–1509. 10.1016/j.jmrt.2018.03.007. DOI
Yu Z.; Chan W. K.; Tan T. T. Y. Neodymium-Sensitized Nanoconstructs for Near-Infrared Enabled Photomedicine. Small 2020, 16, 1905265.10.1002/smll.201905265. PubMed DOI
Mohamed M. S.; Veeranarayanan S.; Maekawa T.; Kumar D. S. External Stimulus Responsive Inorganic Nanomaterials for Cancer Theranostics. Adv. Drug Delivery Rev. 2019, 138, 18–40. 10.1016/j.addr.2018.10.007. PubMed DOI
Guo M.; Song H.; Li K.; Ma M.; Liu Y.; Fu Q.; He Z. A New Approach to Developing Diagnostics and Therapeutics: Aggregation-Induced Emission-Based Fluorescence Turn-on. Med. Res. Rev. 2020, 40, 27–53. 10.1002/med.21595. PubMed DOI
Swaminathan S.; Garcia-Amoros J.; Fraix A.; Kandoth N.; Sortino S.; Raymo F. M. Photoresponsive Polymer Nanocarriers With Multifunctional Cargo. Chem. Soc. Rev. 2014, 43, 4167–4178. 10.1039/C3CS60324E. PubMed DOI
Tan P.; Jiang Y.; Liu X.-Q.; Sun L.-B. Making Porous Materials Respond to Visible Light. ACS Energy Lett. 2019, 4, 2656–2667. 10.1021/acsenergylett.9b01970. DOI
Wells C. M.; Harris M.; Choi L.; Murali V. P.; Guerra F. D.; Jennings J. A. Stimuli-Responsive Drug Release from Smart Polymers. J. Funct. Biomater. 2019, 10, 34.10.3390/jfb10030034. PubMed DOI PMC
Mehtani D.; Seth A.; Sharma P.; Maheshwari N.; Kapoor D.; Shrivastava S. K.; Tekade R. K.. Biomaterials for Sustained and Controlled Delivery of Small Drug Molecules. Biomaterials and Bionanotechnology; Tekade R. K., Ed.; Academic Press, 2019.
Li J.; Pu K. Semiconducting Polymer Nanomaterials as Near-Infrared Photoactivatable Protherapeutics for Cancer. Acc. Chem. Res. 2020, 53, 752–762. 10.1021/acs.accounts.9b00569. PubMed DOI
Panwar N.; Soehartono A. M.; Chan K. K.; Zeng S.; Xu G.; Qu J.; Coquet P.; Yong K.-T.; Chen X. Nanocarbons for Biology and Medicine: Sensing, Imaging, and Drug Delivery. Chem. Rev. 2019, 119, 9559–9656. 10.1021/acs.chemrev.9b00099. PubMed DOI
Tartakovskii A.Quantum Dots: Optics, Electron Transport and Future Applications; Cambridge University Press: Cambridge, 2012.
Wang Y.; Hu A. Carbon Quantum Dots: Synthesis, Properties and Applications. J. Mater. Chem. C 2014, 2, 6921–6939. 10.1039/C4TC00988F. DOI
Chinnathambi S.; Chen S.; Ganesan S.; Hanagata N. Silicon Quantum Dots for Biological Applications. Adv. Healthcare Mater. 2014, 3, 10–29. 10.1002/adhm.201300157. PubMed DOI
Sansalone L.; Tang S.; Zhang Y.; Thapaliya E. R.; Raymo F. M.; Garcia-Amorós J. Semiconductor Quantum Dots with Photoresponsive Ligands. Top. Curr. Chem. 2016, 374, 73.10.1007/s41061-016-0073-8. PubMed DOI
Michalet X.; Pinaud F. F.; Bentolila L. A.; Tsay J. M.; Doose S.; Li J. J.; Sundaresan G.; Wu A. M.; Gambhir S. S.; Weiss S. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science 2005, 307, 538–544. 10.1126/science.1104274. PubMed DOI PMC
Burks P. T.; Ford P. C. Quantum Dot Photosensitizers. Interactions With Transition Metal Centers. Dalton Trans. 2012, 41, 13030–13042. 10.1039/c2dt30465a. PubMed DOI
Burks P. T.; Ostrowski A. D.; Mikhailovsky A. A.; Chan E. M.; Wagenknecht P. S.; Ford P. C. Quantum Dot Photoluminescence Quenching by Cr(III) Complexes. Photosensitized Reactions and Evidence for a FRET Mechanism. J. Am. Chem. Soc. 2012, 134, 13266–13275. 10.1021/ja300771w. PubMed DOI
Fowley C.; McHale A. P.; McCaughan B.; Fraix A.; Sortino S.; Callan J. F. Carbon Quantum Dot–NO Photoreleaser Nanohybrids for Two-Photon Phototherapy of Hypoxic Tumorsphotochemistry of Metal Nitrosyl Complexes. Delivery of Nitric Oxide to Biological Targets. Chem. Commun. 2015, 51, 81–84. 10.1039/C4CC07827F. PubMed DOI
Karthik S.; Saha B.; Ghosh S. K.; Pradeep Singh N. D. Photoresponsive Quinoline Tethered Fluorescent Carbon Dots for Regulated Anticancer Drug Delivery. Chem. Commun. 2013, 49, 10471–10473. 10.1039/c3cc46078a. PubMed DOI
Liu Z.; Lin Q.; Huang Q.; Liu H.; Bao C.; Zhang W.; Zhong X.; Zhu L. Semiconductor Quantum Dots Photosensitizing Release of Anticancer Drug. Chem. Commun. 2011, 47, 1482–1484. 10.1039/C0CC04676K. PubMed DOI
Franco L. P.; Cicillini S. A.; Biazzotto J. C.; Schiavon M. A.; Mikhailovsky A.; Burks P.; Garcia J.; Ford P. C.; Silva R. S. d. Photoreactivity of a Quantum Dot–Ruthenium Nitrosyl Conjugate. J. Phys. Chem. A 2014, 118, 12184–12191. 10.1021/jp5111218. PubMed DOI
Wijtmans M.; Rosenthal S. J.; Zwanenburg B.; Porter N. A. Visible Light Excitation of CdSe Nanocrystals Triggers the Release of Coumarin from Cinnamate Surface Ligands. J. Am. Chem. Soc. 2006, 128, 11720–11726. 10.1021/ja063562c. PubMed DOI
Han G.; Mokari T.; Ajo-Franklin C.; Cohen B. E. Caged Quantum Dots. J. Am. Chem. Soc. 2008, 130, 15811–15813. 10.1021/ja804948s. PubMed DOI
Impellizzeri S.; McCaughan B.; Callan J. F.; Raymo F. M. Photoinduced Enhancement in the Luminescence of Hydrophilic Quantum Dots Coated with Photocleavable Ligands. J. Am. Chem. Soc. 2012, 134, 2276–2283. 10.1021/ja209873g. PubMed DOI
Miesch C.; Emrick T. Photo-Sensitive Ligands on Nanoparticles for Achieving Triggered Emulsion Inversion. J. Colloid Interface Sci. 2014, 425, 152–158. 10.1016/j.jcis.2014.03.036. PubMed DOI
Ye C.; Zhou L.; Wang X.; Liang Z. Photon Upconversion: From Two-Photon Absorption (TPA) to Triplet–Triplet Annihilation (TTA). Phys. Chem. Chem. Phys. 2016, 18, 10818–10835. 10.1039/C5CP07296D. PubMed DOI
Bonacina L. Nonlinear Nanomedecine: Harmonic Nanoparticles toward Targeted Diagnosis and Therapy. Mol. Pharmaceutics 2013, 10, 783–792. 10.1021/mp300523e. PubMed DOI
Dong H.; Sun L.-D.; Yan C.-H. Basic Understanding of the Lanthanide Related Upconversion Emissions. Nanoscale 2013, 5, 5703–5714. 10.1039/c3nr34069d. PubMed DOI
Zhou J.; Liu Q.; Feng W.; Sun Y.; Li F. Upconversion Luminescent Materials: Advances and Applications. Chem. Rev. 2015, 115, 395–465. 10.1021/cr400478f. PubMed DOI
Jafari M.; Rezvanpour A. Upconversion Nano-Particles From Synthesis to Cancer Treatment: A Review. Adv. Powder Technol. 2019, 30, 1731–1753. 10.1016/j.apt.2019.05.027. DOI
Auzel F. Upconversion and Anti-Stokes Processes with f and d Ions in Solids. Chem. Rev. 2004, 104, 139–174. 10.1021/cr020357g. PubMed DOI
Gulzar A.; Xu J.; Yang P.; He F.; Xu L. Upconversion Processes: Versatile Biological Applications and Biosafety. Nanoscale 2017, 9, 12248–12282. 10.1039/C7NR01836C. PubMed DOI
Lingeshwar Reddy K.; Balaji R.; Kumar A.; Krishnan V. Lanthanide Doped Near Infrared Active Upconversion Nanophosphors: Fundamental Concepts, Synthesis Strategies, and Technological Applications. Small 2018, 14, 1801304.10.1002/smll.201801304. PubMed DOI
Lin M.; Gao Y.; Hornicek F.; Xu F.; Lu T. J.; Amiji M.; Duan Z. Near-Infrared Light Activated Delivery Platform for Cancer Therapy. Adv. Colloid Interface Sci. 2015, 226, 123–137. 10.1016/j.cis.2015.10.003. PubMed DOI PMC
Cho H. J.; Chung M.; Shim M. S. Engineered Photo-Responsive Materials for Near-Infrared-Triggered Drug Delivery. J. Ind. Eng. Chem. 2015, 31, 15–25. 10.1016/j.jiec.2015.07.016. DOI
Yang G. B.; Liu J. J.; Wu Y. F.; Feng L. Z.; Liu Z. Near-Infrared-Light Responsive Nanoscale Drug Delivery Systems for Cancer Treatment. Coord. Chem. Rev. 2016, 320, 100–117. 10.1016/j.ccr.2016.04.004. DOI
Li K.; Hong E.; Wang B.; Wang Z.; Zhang L.; Hu R.; Wang B. Advances in the Application of Upconversion Nanoparticles for Detecting and Treating Cancers. Photodiagn. Photodyn. Ther. 2019, 25, 177–192. 10.1016/j.pdpdt.2018.12.007. PubMed DOI
Bagheri A.; Arandiyan H.; Boyer C.; Lim M. Lanthanide-Doped Upconversion Nanoparticles: Emerging Intelligent Light-Activated Drug Delivery Systems. Adv. Sci. 2016, 3, 1500437.10.1002/advs.201500437. PubMed DOI PMC
González-Béjar M.; Francés-Soriano L.; Pérez-Prieto J. Upconversion Nanoparticles for Bioimaging and Regenerative Medicine. Front. Bioeng. Biotechnol. 2016, 4, 47.10.3389/fbioe.2016.00047. PubMed DOI PMC
Sun L.; Wei R.; Feng J.; Zhang H. Tailored Lanthanide-Doped Upconversion Nanoparticles and Their Promising Bioapplication Prospects. Coord. Chem. Rev. 2018, 364, 10–32. 10.1016/j.ccr.2018.03.007. DOI
Fan W.; Bu W.; Shi J. On The Latest Three-Stage Development of Nanomedicines based on Upconversion Nanoparticles. Adv. Mater. 2016, 28, 3987–4011. 10.1002/adma.201505678. PubMed DOI
Yang D.; Ma P. a.; Hou Z.; Cheng Z.; Li C.; Lin J. Current Advances in Lanthanide Ion (Ln3+)-Based Upconversion Nanomaterials for Drug Delivery. Chem. Soc. Rev. 2015, 44, 1416–1448. 10.1039/C4CS00155A. PubMed DOI
Carling C.-J.; Nourmohammadian F.; Boyer J.-C.; Branda N. R. Remote-Control Photorelease of Caged Compounds Using Near-Infrared Light and Upconverting Nanoparticles. Angew. Chem., Int. Ed. 2010, 49, 3782–3785. 10.1002/anie.201000611. PubMed DOI
Wang Z.; Thang D. C.; Han Q.; Zhao X.; Xie X.; Wang Z.; Lin J.; Xing B. Near-Infrared Photocontrolled Therapeutic Release via Upconversion Nanocomposites. J. Controlled Release 2020, 324, 104–123. 10.1016/j.jconrel.2020.05.011. PubMed DOI
Li H.; Wang X.; Huang D. X.; Chen G. Y. Recent Advances of Lanthanide-Doped Upconversion Nanoparticles for Biological Applications. Nanotechnology 2020, 31, 29.10.1088/1361-6528/ab4f36. PubMed DOI
Jayakumar M. K. G.; Idris N. M.; Zhang Y. Remote Activation of Biomolecules in Deep Tissues Using Near-Infrared-to-UV Upconversion Nanotransducers. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 8483–8488. 10.1073/pnas.1114551109. PubMed DOI PMC
Michael Dcona M.; Yu Q.; Capobianco J. A.; Hartman M. C. T. Near Infrared Light Mediated Release of Doxorubicin Using Upconversion Nanoparticles. Chem. Commun. 2015, 51, 8477–8479. 10.1039/C5CC01795E. PubMed DOI PMC
Fedoryshin L. L.; Tavares A. J.; Petryayeva E.; Doughan S.; Krull U. J. Near-Infrared-Triggered Anticancer Drug Release from Upconverting Nanoparticles. ACS Appl. Mater. Interfaces 2014, 6, 13600–13606. 10.1021/am503039f. PubMed DOI
Chen G.; Jaskula-Sztul R.; Esquibel C. R.; Lou I.; Zheng Q.; Dammalapati A.; Harrison A.; Eliceiri K. W.; Tang W.; Chen H.; Gong S. Neuroendocrine Tumor-Targeted Upconversion Nanoparticle-Based Micelles for Simultaneous NIR-Controlled Combination Chemotherapy and Photodynamic Therapy, and Fluorescence Imaging. Adv. Funct. Mater. 2017, 27, 1604671.10.1002/adfm.201604671. PubMed DOI PMC
Yang Y.; Shao Q.; Deng R.; Wang C.; Teng X.; Cheng K.; Cheng Z.; Huang L.; Liu Z.; Liu X.; Xing B. In Vitro and In Vivo Uncaging and Bioluminescence Imaging by Using Photocaged Upconversion Nanoparticles. Angew. Chem., Int. Ed. 2012, 51, 3125–3129. 10.1002/anie.201107919. PubMed DOI
Chien Y.-H.; Chou Y.-L.; Wang S.-W.; Hung S.-T.; Liau M.-C.; Chao Y.-J.; Su C.-H.; Yeh C.-S. Near-Infrared Light Photocontrolled Targeting, Bioimaging, and Chemotherapy with Caged Upconversion Nanoparticles in Vitro and in Vivo. ACS Nano 2013, 7, 8516–8528. 10.1021/nn402399m. PubMed DOI
Li J.; Leung C. W. T.; Wong D. S. H.; Xu J.; Li R.; Zhao Y.; Yung C. Y. Y.; Zhao E.; Tang B. Z.; Bian L. Photocontrolled SiRNA Delivery and Biomarker-Triggered Luminogens of Aggregation-Induced Emission by Up-Conversion NaYF4:Yb3+Tm3+@SiO2 Nanoparticles for Inducing and Monitoring Stem-Cell Differentiation. ACS Appl. Mater. Interfaces 2019, 11, 22074–22084. 10.1021/acsami.7b00845. PubMed DOI
Pan Y.; Yang J.; Luan X.; Liu X.; Li X.; Yang J.; Huang T.; Sun L.; Wang Y.; Lin Y.; Song Y. Near-Infrared Upconversion-Activated CRISPR-Cas9 System: A Remote-Controlled Gene Editing Platform. Sci. Adv. 2019, 5, eaav719910.1126/sciadv.aav7199. PubMed DOI PMC
Kang H.; Zhang K.; Pan Q.; Lin S.; Wong D. S. H.; Li J.; Lee W. Y.-W.; Yang B.; Han F.; Li G.; Li B.; Bian L. Remote Control of Intracellular Calcium Using Upconversion Nanotransducers Regulates Stem Cell Differentiation In Vivo. Adv. Funct. Mater. 2018, 28, 1802642.10.1002/adfm.201802642. DOI
Xiang J.; Tong X.; Shi F.; Yan Q.; Yu B.; Zhao Y. Near-Infrared Light-Triggered Drug Release From UV-Responsive Diblock Copolymer-Coated Upconversion Nanoparticles With High Monodispersity. J. Mater. Chem. B 2018, 6, 3531–3540. 10.1039/C8TB00651B. PubMed DOI
Li J.; Lee W. Y.-W.; Wu T.; Xu J.; Zhang K.; Hong Wong D. S.; Li R.; Li G.; Bian L. Near-Infrared Light-Triggered Release of Small Molecules for Controlled Differentiation and Long-Term Tracking of Stem Cells in Vivo Using Upconversion Nanoparticles. Biomaterials 2016, 110, 1–10. 10.1016/j.biomaterials.2016.09.011. PubMed DOI
Wong P. T.; Chen D.; Tang S.; Yanik S.; Payne M.; Mukherjee J.; Coulter A.; Tang K.; Tao K.; Sun K.; Baker J. R. Jr.; Choi S. K. Modular Integration of Upconverting Nanocrystal–Dendrimer Composites for Folate Receptor-Specific NIR Imaging and Light-Triggered Drug Release. Small 2015, 11, 6078–6090. 10.1002/smll.201501575. PubMed DOI
Liu G.; Liu N.; Zhou L.; Su Y.; Dong C.-M. NIR-Responsive Polypeptide Copolymer Upconversion Composite Nanoparticles for Triggered Drug Release and Enhanced Cytotoxicity. Polym. Chem. 2015, 6, 4030–4039. 10.1039/C5PY00479A. DOI
Yuan Y.; Min Y.; Hu Q.; Xing B.; Liu B. NIR Photoregulated Chemo- and Photodynamic Cancer Therapy Based on Conjugated Polyelectrolyte–Drug Conjugate Encapsulated Upconversion Nanoparticles. Nanoscale 2014, 6, 11259–11272. 10.1039/C4NR03302G. PubMed DOI
Liu G.; Zhou L.; Su Y.; Dong C.-M. An NIR-Responsive and Sugar-Targeted Polypeptide Composite Nanomedicine for Intracellular Cancer Therapy. Chem. Commun. 2014, 50, 12538–12541. 10.1039/C4CC05983B. PubMed DOI
Zhang Y.; Ren K.; Zhang X.; Chao Z.; Yang Y.; Ye D.; Dai Z.; Liu Y.; Ju H. Photo-Tearable Tape Close-Wrapped Upconversion Nanocapsules for Near-Infrared Modulated Efficient Sirna Delivery and Therapy. Biomaterials 2018, 163, 55–66. 10.1016/j.biomaterials.2018.02.019. PubMed DOI
Wong P. T.; Tang S.; Cannon J.; Chen D.; Sun R.; Lee J.; Phan J.; Tao K.; Sun K.; Chen B.; Baker J. R.; Choi S. K. Photocontrolled Release of Doxorubicin Conjugated through a Thioacetal Photocage in Folate-Targeted Nanodelivery Systems. Bioconjugate Chem. 2017, 28, 3016–3028. 10.1021/acs.bioconjchem.7b00614. PubMed DOI
Zhao H.; Hu W.; Ma H.; Jiang R.; Tang Y.; Ji Y.; Lu X.; Hou B.; Deng W.; Huang W.; Fan Q. Photo-Induced Charge-Variable Conjugated Polyelectrolyte Brushes Encapsulating Upconversion Nanoparticles for Promoted siRNA Release and Collaborative Photodynamic Therapy under NIR Light Irradiation. Adv. Funct. Mater. 2017, 27, 1702592.10.1002/adfm.201702592. DOI
Liu J.; Bu W.; Pan L.; Shi J. NIR-Triggered Anticancer Drug Delivery by Upconverting Nanoparticles with Integrated Azobenzene-Modified Mesoporous Silica. Angew. Chem., Int. Ed. 2013, 52, 4375–4379. 10.1002/anie.201300183. PubMed DOI
Jayakumar M. K. G.; Bansal A.; Huang K.; Yao R.; Li B. N.; Zhang Y. Near-Infrared-Light-Based Nano-Platform Boosts Endosomal Escape and Controls Gene Knockdown in Vivo. ACS Nano 2014, 8, 4848–4858. 10.1021/nn500777n. PubMed DOI
Liu Z.; Shi J.; Wang Y.; Gan Y.; Wan P. Facile Preparation of Pyrenemethyl Ester-Based Nanovalve on Mesoporous Silica Coated Upconversion Nanoparticle for NIR Light-Triggered Drug Release With Potential Monitoring Capability. Colloids Surf., A 2019, 568, 436–444. 10.1016/j.colsurfa.2019.02.027. DOI
Li H.; Lei W.; Wu J.; Li S.; Zhou G.; Liu D.; Yang X.; Wang S.; Li Z.; Zhang J. An Upconverting Nanotheranostic Agent Activated by Hypoxia Combined With NIR Irradiation for Selective Hypoxia Imaging and Tumour Therapy. J. Mater. Chem. B 2018, 6, 2747–2757. 10.1039/C8TB00637G. PubMed DOI
Ruggiero E.; Habtemariam A.; Yate L.; Mareque-Rivas J. C.; Salassa L. Near Infrared Photolysis of a Ru Polypyridyl Complex by Upconverting Nanoparticles. Chem. Commun. 2014, 50, 1715–1718. 10.1039/c3cc47601d. PubMed DOI
Dai Y.; Bi H.; Deng X.; Li C.; He F.; Ma P. a.; Yang P.; Lin J. 808 nm Near-Infrared Light Controlled Dual-Drug Release and Cancer Therapy in Vivo by Upconversion Mesoporous Silica Nanostructures. J. Mater. Chem. B 2017, 5, 2086–2095. 10.1039/C7TB00224F. PubMed DOI
Dai Y.; Xiao H.; Liu J.; Yuan Q.; Ma P. a.; Yang D.; Li C.; Cheng Z.; Hou Z.; Yang P.; Lin J. In Vivo Multimodality Imaging and Cancer Therapy by Near-Infrared Light-Triggered trans-Platinum Pro-Drug-Conjugated Upconverison Nanoparticles. J. Am. Chem. Soc. 2013, 135, 18920–18929. 10.1021/ja410028q. PubMed DOI
Xu Z.; Wu Z.; Sun J.; Gui R. Glutathione Capped Mn2+-Doped ZnSe Quantum Dots-Photodonors Nanocomposites for Two-Photon Excited Fluorescence-Induced Nitric Oxide Release. Mater. Chem. Phys. 2015, 162, 286–290. 10.1016/j.matchemphys.2015.05.069. DOI
Chen Y.; Hao Y.; Huang Y.; Wu W.; Liu X.; Li Y.; Gou M.; Qian Z. An Injectable, Near-Infrared Light-Responsive Click Cross-Linked Azobenzene Hydrogel for Breast Cancer Chemotherapy. J. Biomed. Nanotechnol. 2019, 15, 1923–1936. 10.1166/jbn.2019.2821. PubMed DOI
Yao C.; Wang P.; Li X.; Hu X.; Hou J.; Wang L.; Zhang F. Near-Infrared-Triggered Azobenzene-Liposome/Upconversion Nanoparticle Hybrid Vesicles for Remotely Controlled Drug Delivery to Overcome Cancer Multidrug Resistance. Adv. Mater. 2016, 28, 9341–9348. 10.1002/adma.201503799. PubMed DOI
Zhang Z.; Jayakumar M. K. G.; Zheng X.; Shikha S.; Zhang Y.; Bansal A.; Poon D. J. J.; Chu P. L.; Yeo E. L. L.; Chua M. L. K.; Chee S. K.; Zhang Y. Upconversion Superballs for Programmable Photoactivation of Therapeutics. Nat. Commun. 2019, 10, 4586.10.1038/s41467-019-12506-w. PubMed DOI PMC
Chen S.; Gao Y.; Cao Z.; Wu B.; Wang L.; Wang H.; Dang Z.; Wang G. Nanocomposites of Spiropyran-Functionalized Polymers and Upconversion Nanoparticles for Controlled Release Stimulated by Near-Infrared Light and pH. Macromolecules 2016, 49, 7490–7496. 10.1021/acs.macromol.6b01760. DOI
Yang Z. Z.; Sun Z. R.; Ren Y.; Chen X.; Zhang W.; Zhu X. H.; Mao Z. W.; Shen J. L.; Nie S. N. Advances in Nanomaterials for Use in Photothermal and Photodynamic Therapeutics. Mol. Med. Rep. 2019, 20, 5–15. 10.3892/mmr.2019.10218. PubMed DOI PMC
Xu J. W.; Yao K.; Xu Z. K. Nanomaterials With a Photothermal Effect for Antibacterial Activities: An Overview. Nanoscale 2019, 11, 8680–8691. 10.1039/C9NR01833F. PubMed DOI
Guerrero A. R.; Hassan N.; Escobar C. A.; Albericio F.; Kogan M. J.; Araya E. Gold Nanoparticles for Photothermally Controlled Drug Release. Nanomedicine 2014, 9, 2023–2039. 10.2217/nnm.14.126. PubMed DOI
Liao H.; Nehl C. L.; Hafner J. H. Biomedical Applications of Plasmon Resonant Metal Nanoparticles. Nanomedicine 2006, 1, 201–208. 10.2217/17435889.1.2.201. PubMed DOI
Cobley C. M.; Au L.; Chen J. Y.; Xia Y. N. Targeting Gold Nanocages to Cancer Cells for Photothermal Destruction and Drug Delivery. Expert Opin. Drug Delivery 2010, 7, 577–587. 10.1517/17425240903571614. PubMed DOI PMC
Yavuz M. S.; Cheng Y.; Chen J.; Cobley C. M.; Zhang Q.; Rycenga M.; Xie J.; Kim C.; Song K. H.; Schwartz A. G.; Wang L. V.; Xia Y. Gold Nanocages Covered by Smart Polymers for Controlled Release With Near-Infrared Light. Nat. Mater. 2009, 8, 935–939. 10.1038/nmat2564. PubMed DOI PMC
Borak J. B.; López-Sola S.; Falvey D. E. Photorelease of Carboxylic Acids Mediated by Visible-Light-Absorbing Gold-Nanoparticles. Org. Lett. 2008, 10, 457–460. 10.1021/ol702813w. PubMed DOI
Bergamini L.; Voliani V.; Cappello V.; Nifosì R.; Corni S. Non-Linear Optical Response by Functionalized Gold Nanospheres: Identifying Design Principles to Maximize the Molecular Photorelease. Nanoscale 2015, 7, 13345–13357. 10.1039/C5NR03037D. PubMed DOI
Song J.; Pu L.; Zhou J.; Duan B.; Duan H. Biodegradable Theranostic Plasmonic Vesicles of Amphiphilic Gold Nanorods. ACS Nano 2013, 7, 9947–9960. 10.1021/nn403846v. PubMed DOI
Voliani V.; Ricci F.; Signore G.; Nifosì R.; Luin S.; Beltram F. Multiphoton Molecular Photorelease in Click-Chemistry-Functionalized Gold Nanoparticles. Small 2011, 7, 3271–3275. 10.1002/smll.201101753. PubMed DOI
Agarwal A.; Mackey M. A.; El-Sayed M. A.; Bellamkonda R. V. Remote Triggered Release of Doxorubicin in Tumors by Synergistic Application of Thermosensitive Liposomes and Gold Nanorods. ACS Nano 2011, 5, 4919–4926. 10.1021/nn201010q. PubMed DOI
Li M.; Yan H.; Teh C.; Korzh V.; Zhao Y. NIR-Triggered Drug Release From Switchable Rotaxane-Functionalized Silica-Covered Au Nanorods. Chem. Commun. 2014, 50, 9745–9748. 10.1039/C4CC02966F. PubMed DOI
Luo G.; Chen W.; Jia H.; Sun Y.; Cheng H.; Zhuo R.; Zhang X. An Indicator-Guided Photo-Controlled Drug Delivery System Based on Mesoporous Silica/Gold Nanocomposites. Nano Res. 2015, 8, 1893–1905. 10.1007/s12274-014-0698-2. DOI
Cai H.; Shen T.; Kirillov A. M.; Zhang Y.; Shan C.; Li X.; Liu W.; Tang Y. Self-Assembled Upconversion Nanoparticle Clusters for NIR-controlled Drug Release and Synergistic Therapy after Conjugation with Gold Nanoparticles. Inorg. Chem. 2017, 56, 5295–5304. 10.1021/acs.inorgchem.7b00380. PubMed DOI
Zandberg W. F.; Bakhtiari A. B. S.; Erno Z.; Hsiao D.; Gates B. D.; Claydon T.; Branda N. R. Photothermal Release of Small Molecules From Gold Nanoparticles in Live Cells. Nanomedicine 2012, 8, 908–915. 10.1016/j.nano.2011.10.012. PubMed DOI
Basuki J. S.; Qie F.; Mulet X.; Suryadinata R.; Vashi A. V.; Peng Y. Y.; Li L.; Hao X.; Tan T.; Hughes T. C. Photo-Modulated Therapeutic Protein Release from a Hydrogel Depot Using Visible Light. Angew. Chem. 2017, 129, 986–991. 10.1002/ange.201610618. PubMed DOI
You J.; Shao R.; Wei X.; Gupta S.; Li C. Near-Infrared Light Triggers Release of Paclitaxel from Biodegradable Microspheres: Photothermal Effect and Enhanced Antitumor Activity. Small 2010, 6, 1022–1031. 10.1002/smll.201000028. PubMed DOI PMC
Ju E.; Li Z.; Liu Z.; Ren J.; Qu X. Near-Infrared Light-Triggered Drug-Delivery Vehicle for Mitochondria-Targeted Chemo-Photothermal Therapy. ACS Appl. Mater. Interfaces 2014, 6, 4364–4370. 10.1021/am5000883. PubMed DOI
Yang X.; Liu Z.; Li Z.; Pu F.; Ren J.; Qu X. Near-Infrared-Controlled, Targeted Hydrophobic Drug-Delivery System for Synergistic Cancer Therapy. Chem. - Eur. J. 2013, 19, 10388–10394. 10.1002/chem.201204624. PubMed DOI
Han S.; Samanta A.; Xie X.; Huang L.; Peng J.; Park S. J.; Teh D. B. L.; Choi Y.; Chang Y.-T.; All A. H.; Yang Y.; Xing B.; Liu X. Gold and Hairpin DNA Functionalization of Upconversion Nanocrystals for Imaging and In Vivo Drug Delivery. Adv. Mater. 2017, 29, 1700244.10.1002/adma.201700244. PubMed DOI
Xiong H.; Li X.; Kang P.; Perish J.; Neuhaus F.; Ploski J. E.; Kroener S.; Ogunyankin M. O.; Shin J. E.; Zasadzinski J. A.; Wang H.; Slesinger P. A.; Zumbuehl A.; Qin Z. Near-Infrared Light Triggered-Release in Deep Brain Regions Using Ultra-photosensitive Nanovesicles. Angew. Chem., Int. Ed. 2020, 59, 8608–8615. 10.1002/anie.201915296. PubMed DOI PMC
Zhu H.; Deng J.; Yang Y.; Li Y.; Shi J.; Zhao J.; Deng Y.; Chen X.; Yang W. Cobalt Nanowire-Based Multifunctional Platform for Targeted Chemo-Photothermal Synergistic Cancer Therapy. Colloids Surf., B 2019, 180, 401–410. 10.1016/j.colsurfb.2019.05.005. PubMed DOI
Li N.; Wen X.; Liu J.; Wang B.; Zhan Q.; He S. Yb3+-Enhanced UCNP@SiO2 Nanocomposites for Consecutive Imaging, Photothermal-Controlled Drug Delivery and Cancer Therapy. Opt. Mater. Express 2016, 6, 1161–1171. 10.1364/OME.6.001161. DOI
Zhou M.; Liu S.; Jiang Y.; Ma H.; Shi M.; Wang Q.; Zhong W.; Liao W.; Xing M. M. Q. Doxorubicin-Loaded Single Wall Nanotube Thermo-Sensitive Hydrogel for Gastric Cancer Chemo-Photothermal Therapy. Adv. Funct. Mater. 2015, 25, 4730–4739. 10.1002/adfm.201501434. DOI
Liu B.; Chen C.; Wang R.; Dong S.; Li J.; Zhang G.; Cai D.; Zhai S.; Wu Z. Near-Infrared Light-Responsively Controlled-Release Herbicide Using Biochar as a Photothermal Agent. ACS Sustainable Chem. Eng. 2019, 7, 14924–14932. 10.1021/acssuschemeng.9b03123. DOI
Viger M. L.; Sheng W.; Doré K.; Alhasan A. H.; Carling C.-J.; Lux J.; de Gracia Lux C.; Grossman M.; Malinow R.; Almutairi A. Near-Infrared-Induced Heating of Confined Water in Polymeric Particles for Efficient Payload Release. ACS Nano 2014, 8, 4815–4826. 10.1021/nn500702g. PubMed DOI PMC
Ercole F.; Davis T. P.; Evans R. A. Photo-Responsive Systems and Biomaterials: Photochromic Polymers, Light-Triggered Self-Assembly, Surface Modification, Fluorescence Modulation and Beyond. Polym. Chem. 2010, 1, 37–54. 10.1039/B9PY00300B. DOI
Gohy J.-F.; Zhao Y. Photo-Responsive Block Copolymer Micelles: Design and Behavior. Chem. Soc. Rev. 2013, 42, 7117–7129. 10.1039/c3cs35469e. PubMed DOI
Grimm O.; Wendler F.; Schacher F. H. Micellization of Photo-Responsive Block Copolymers. Polymers 2017, 9, 396.10.3390/polym9090396. PubMed DOI PMC
Lino M. M.; Ferreira L. Light-Triggerable Formulations for the Intracellular Controlled Release of Biomolecules. Drug Discovery Today 2018, 23, 1062–1070. 10.1016/j.drudis.2018.01.019. PubMed DOI
Linsley C. S.; Wu B. M. Recent Advances in Light-Responsive On-Demand Drug- Delivery Systems. Ther. Delivery 2017, 8, 89–107. 10.4155/tde-2016-0060. PubMed DOI PMC
Zeng X. L.; Zhou X. C.; Wu S. Red and Near-Infrared Light-Cleavable Polymers. Macromol. Rapid Commun. 2018, 39, 1800034.10.1002/marc.201800034. PubMed DOI
Fomina N.; Sankaranarayanan J.; Almutairi A. Photochemical Mechanisms of Light-Triggered Release From Nanocarriers. Adv. Drug Delivery Rev. 2012, 64, 1005–1020. 10.1016/j.addr.2012.02.006. PubMed DOI PMC
Yan Q.; Han D.; Zhao Y. Main-Chain Photoresponsive Polymers With Controlled Location of Light-Cleavable Units: From Synthetic Strategies to Structural Engineering. Polym. Chem. 2013, 4, 5026–5037. 10.1039/c3py00804e. DOI
Dai Y.; Chen X.; Zhang X. Recent Advances in Stimuli-Responsive Polymeric Micelles via Click Chemistry. Polym. Chem. 2019, 10, 34–44. 10.1039/C8PY01174E. DOI
Liu G.; Liu W.; Dong C.-M. UV- and NIR-Responsive Polymeric Nanomedicines for On-Demand Drug Delivery. Polym. Chem. 2013, 4, 3431–3443. 10.1039/c3py21121e. DOI
Tong R.; Kohane D. S. Shedding Light on Nanomedicine. WIREs Nanomed. Nanobi. 2012, 4, 638–662. 10.1002/wnan.1188. PubMed DOI PMC
Boase N. R. B. Shining a Light on Bioorthogonal Photochemistry for Polymer Science. Macromol. Rapid Commun. 2020, 41, 2000305.10.1002/marc.202000305. PubMed DOI
Griffin D. R.; Kasko A. M. Photoselective Delivery of Model Therapeutics from Hydrogels. ACS Macro Lett. 2012, 1, 1330–1334. 10.1021/mz300366s. PubMed DOI PMC
Barhoumi A.; Liu Q.; Kohane D. S. Ultraviolet Light-Mediated Drug Delivery: Principles, Applications, and Challenges. J. Controlled Release 2015, 219, 31–42. 10.1016/j.jconrel.2015.07.018. PubMed DOI
Zhao H.; Hou B.; Tang Y.; Hu W.; Yin C.; Ji Y.; Lu X.; Fan Q.; Huang W. o-Nitrobenzyl-Alt-(Phenylethynyl)Benzene Copolymer-Based Nanoaggregates With Highly Efficient Two-Photon-Triggered Degradable Properties via a FRET Process. Polym. Chem. 2016, 7, 3117–3125. 10.1039/C6PY00420B. DOI
Peng K.; Tomatsu I.; van den Broek B.; Cui C.; Korobko A. V.; van Noort J.; Meijer A. H.; Spaink H. P.; Kros A. Dextran Based Photodegradable Hydrogels Formed via a Michael Addition. Soft Matter 2011, 7, 4881–4887. 10.1039/c1sm05291h. DOI
Cao J.; Huang S.; Chen Y.; Li S.; Li X.; Deng D.; Qian Z.; Tang L.; Gu Y. Near-Infrared Light-Triggered Micelles for Fast Controlled Drug Release in Deep Tissue. Biomaterials 2013, 34, 6272–6283. 10.1016/j.biomaterials.2013.05.008. PubMed DOI
de Gracia Lux C.; McFearin C. L.; Joshi-Barr S.; Sankaranarayanan J.; Fomina N.; Almutairi A. Single UV or Near IR Triggering Event Leads to Polymer Degradation into Small Molecules. ACS Macro Lett. 2012, 1, 922–926. 10.1021/mz3002403. PubMed DOI PMC
Li L.; Wu Y.; Du F.-S.; Li Z.-C. Modular Synthesis of Photodegradable Polymers With Different Sensitive Wavelengths As UV/NIR Responsive Nanocarriers. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 334–341. 10.1002/pola.29185. DOI
Kehrloesser D.; Behrendt P. J.; Hampp N. Two-Photon Absorption Triggered Drug Delivery From a Polymer for Intraocular Lenses in Presence of an UV-Absorber. J. Photochem. Photobiol., A 2012, 248, 8–14. 10.1016/j.jphotochem.2012.08.012. DOI
Babin J.; Pelletier M.; Lepage M.; Allard J.-F.; Morris D.; Zhao Y. A New Two-Photon-Sensitive Block Copolymer Nanocarrier. Angew. Chem., Int. Ed. 2009, 48, 3329–3332. 10.1002/anie.200900255. PubMed DOI
Hang C.; Zou Y.; Zhong Y.; Zhong Z.; Meng F. NIR and UV-Responsive Degradable Hyaluronic Acid Nanogels for CD44-Targeted and Remotely Triggered Intracellular Doxorubicin Delivery. Colloids Surf., B 2017, 158, 547–555. 10.1016/j.colsurfb.2017.07.041. PubMed DOI
Goodwin A. P.; Mynar J. L.; Ma Y.; Fleming G. R.; Fréchet J. M. J. Synthetic Micelle Sensitive to IR Light via a Two-Photon Process. J. Am. Chem. Soc. 2005, 127, 9952–9953. 10.1021/ja0523035. PubMed DOI
Mynar J. L.; Goodwin A. P.; Cohen J. A.; Ma Y.; Fleming G. R.; Fréchet J. M. J. Two-Photon Degradable Supramolecular Assemblies of Linear-Dendritic Copolymers. Chem. Commun. 2007, 2081–2082. 10.1039/B701681F. PubMed DOI
Liu G.-Y.; Chen C.-J.; Li D.-D.; Wang S.-S.; Ji J. Near-Infrared Light-Sensitive Micelles for Enhanced Intracellular Drug Delivery. J. Mater. Chem. 2012, 22, 16865–16871. 10.1039/c2jm00045h. DOI
Yuan Y.; Wang Z.; Cai P.; Liu J.; Liao L.-D.; Hong M.; Chen X.; Thakor N.; Liu B. Conjugated Polymer and Drug Co-encapsulated Nanoparticles for Chemo- and Photo-Thermal Combination Therapy With Two-Photon Regulated Fast Drug Release. Nanoscale 2015, 7, 3067–3076. 10.1039/C4NR06420H. PubMed DOI
Sun L.; Ma X.; Dong C.-M.; Zhu B.; Zhu X. NIR-Responsive and Lectin-Binding Doxorubicin-Loaded Nanomedicine from Janus-Type Dendritic PAMAM Amphiphiles. Biomacromolecules 2012, 13, 3581–3591. 10.1021/bm3010325. PubMed DOI
Sun L.; Yang Y.; Dong C.-M.; Wei Y. Two-Photon-Sensitive and Sugar-Targeted Nanocarriers from Degradable and Dendritic Amphiphiles. Small 2011, 7, 401–406. 10.1002/smll.201001729. PubMed DOI
Sun W.; Li S.; Häupler B.; Liu J.; Jin S.; Steffen W.; Schubert U. S.; Butt H.-J.; Liang X.-J.; Wu S. An Amphiphilic Ruthenium Polymetallodrug for Combined Photodynamic Therapy and Photochemotherapy In Vivo. Adv. Mater. 2017, 29, 1603702.10.1002/adma.201603702. PubMed DOI
Zhao T.; Chen L.; Li Q.; Li X. Near-Infrared Light Triggered Drug Release From Mesoporous Silica Nanoparticles. J. Mater. Chem. B 2018, 6, 7112–7121. 10.1039/C8TB01548A. PubMed DOI
Chen F.; Hableel G.; Zhao E. R.; Jokerst J. V. Multifunctional Nanomedicine With Silica: Role of Silica in Nanoparticles for Theranostic, Imaging, and Drug Monitoring. J. Colloid Interface Sci. 2018, 521, 261–279. 10.1016/j.jcis.2018.02.053. PubMed DOI PMC
Bayir S.; Barras A.; Boukherroub R.; Szunerits S.; Raehm L.; Richeter S.; Durand J.-O. Mesoporous Silica Nanoparticles in Recent Photodynamic Therapy Applications. Photochem. Photobiol. Sci. 2018, 17, 1651–1674. 10.1039/C8PP00143J. PubMed DOI
Croissant J. G.; Zink J. I.; Raehm L.; Durand J.-O. Two-Photon-Excited Silica and Organosilica Nanoparticles for Spatiotemporal Cancer Treatment. Adv. Healthcare Mater. 2018, 7, 1701248.10.1002/adhm.201701248. PubMed DOI
Hernández-Montoto A.; Gorbe M.; Llopis-Lorente A.; Terrés J. M.; Montes R.; Cao-Milán R.; Díaz de Greñu B.; Alfonso M.; Orzaez M.; Marcos M. D.; Martínez-Máñez R.; Sancenón F. A NIR Light-Triggered Drug Delivery System Using Core–Shell Gold Nanostars–Mesoporous Silica Nanoparticles Based on Multiphoton Absorption Photo-Dissociation of 2-Nitrobenzyl PEG. Chem. Commun. 2019, 55, 9039–9042. 10.1039/C9CC04260A. PubMed DOI
Qu D. H.; Wang Q. C.; Zhang Q. W.; Ma X.; Tian H. Photoresponsive Host-Guest Functional Systems. Chem. Rev. 2015, 115, 7543–7588. 10.1021/cr5006342. PubMed DOI
Bleger D.; Hecht S. Visible-Light-Activated Molecular Switches. Angew. Chem., Int. Ed. 2015, 54, 11338–11349. 10.1002/anie.201500628. PubMed DOI
Wang D.; Zhao W.; Wei Q.; Zhao C.; Zheng Y. Photoswitchable Azobenzene/Cyclodextrin Host-Guest Complexes: From UV- to Visible/Near-IR-Light-Responsive Systems. ChemPhotoChem. 2018, 2, 403–415. 10.1002/cptc.201700233. DOI
Yao X.; Li T.; Wang J.; Ma X.; Tian H. Recent Progress in Photoswitchable Supramolecular Self-Assembling Systems. Adv. Opt. Mater. 2016, 4, 1322–1349. 10.1002/adom.201600281. DOI
Lee S.; Flood A. H. Photoresponsive Receptors for Binding and Releasing Anions. J. Phys. Org. Chem. 2013, 26, 79–86. 10.1002/poc.2973. DOI
Kim T. Y.; Vasdev R. A. S.; Preston D.; Crowley J. D. Strategies for Reversible Guest Uptake and Release from Metallosupramolecular Architectures. Chem. - Eur. J. 2018, 24, 14878–14890. 10.1002/chem.201802081. PubMed DOI
Diaz-Moscoso A.; Ballester P. Light-Responsive Molecular Containers. Chem. Commun. 2017, 53, 4635–4652. 10.1039/C7CC01568B. PubMed DOI
Ramamurthy V. Photochemistry within a Water-Soluble Organic Capsule. Acc. Chem. Res. 2015, 48, 2904–2917. 10.1021/acs.accounts.5b00360. PubMed DOI
Abendroth J. M.; Bushuyev O. S.; Weiss P. S.; Barrett C. J. Controlling Motion at the Nanoscale: Rise of the Molecular Machines. ACS Nano 2015, 9, 7746–7768. 10.1021/acsnano.5b03367. PubMed DOI
Marturano V.; Cerruti P.; Giamberini M.; Tylkowski B.; Ambrogi V. Light-Responsive Polymer Micro- and Nano-Capsules. Polymers 2017, 9, 8.10.3390/polym9010008. PubMed DOI PMC
Moncelsi G.; Ballester P. Photoswitchable Host-Guest Systems Incorporating Hemithioindigo and Spiropyran Units. ChemPhotoChem. 2019, 3, 304–317. 10.1002/cptc.201800249. DOI
Ueno A.; Yoshimura H.; Saka R.; Osa T. Photocontrol of Binding Ability of Capped Cyclodextrin. J. Am. Chem. Soc. 1979, 101, 2779–2780. 10.1021/ja00504a070. DOI
Liu M.; Yan X.; Hu M.; Chen X.; Zhang M.; Zheng B.; Hu X.; Shao S.; Huang F. Photoresponsive Host-Guest Systems Based on a New Azobenzene-Containing Crytpand. Org. Lett. 2010, 12, 2558–2561. 10.1021/ol100770j. PubMed DOI
Ma X.; Cao J.; Wang Q.; Tian H. Photocontrolled Reversible Room Temperature Phosphorescence (RTP) Encoding β-Cyclodextrin Pseudorotaxane. Chem. Commun. 2011, 47, 3559–3561. 10.1039/c0cc05488g. PubMed DOI
Wang D.; Wu S. Red-Light-Responsive Supramolecular Valves for Photocontrolled Drug Release from Mesoporous Nanoparticles. Langmuir 2016, 32, 632–636. 10.1021/acs.langmuir.5b04399. PubMed DOI
Han M. X.; Michel R.; He B.; Chen Y. S.; Stalke D.; John M.; Clever G. H. Light-Triggered Guest Uptake and Release by a Photochromic Coordination Cage. Angew. Chem., Int. Ed. 2013, 52, 1319–1323. 10.1002/anie.201207373. PubMed DOI
Guerin J.; Leaustic A.; Berthet J.; Metivier R.; Guillot R.; Delbaere S.; Nakatani K.; Yu P. Light-Controlled Release and Uptake of Zinc Ions in Solution by a Photochromic Terthiazole-Based Ligand. Chem. - Asian J. 2017, 12, 853–859. 10.1002/asia.201700028. PubMed DOI
O’Hagan M. P.; Ramos-Soriano J.; Haldar S.; Sheikh S.; Morales J. C.; Mulholland A. J.; Galan M. C. Visible-Light Photoswitching of Ligand Binding Mode Suggests G-Quadruplex DNA as a Target for Photopharmacology. Chem. Commun. 2020, 56, 5186–5189. 10.1039/D0CC01581D. PubMed DOI
Dozova N.; Pousse G.; Barnych B.; Mallet J.-M.; Cossy J.; Valeur B.; Plaza P. A Novel Diarylethene-Based Photoswitchable Chelator for Reversible Release and Capture of Ca2+ in Aqueous Media. J. Photochem. Photobiol., A 2018, 360, 181–187. 10.1016/j.jphotochem.2018.04.029. DOI
Ma G. L.; Wen S. F.; He L.; Huang Y.; Wang Y. J.; Zhou Y. B. Optogenetic Toolkit for Precise Control of Calcium Signaling. Cell Calcium 2017, 64, 36–46. 10.1016/j.ceca.2017.01.004. PubMed DOI PMC
Griepenburg J. C.; Sood N.; Vargo K. B.; Williams D.; Rawson J.; Therien M. J.; Hammer D. A.; Dmochowski I. J. Caging Metal Ions with Visible Light-Responsive Nanopolymersomes. Langmuir 2015, 31, 799–807. 10.1021/la5036689. PubMed DOI PMC
Jia S.; Fong W.-K.; Graham B.; Boyd B. J. Photoswitchable Molecules in Long-Wavelength Light-Responsive Drug Delivery: From Molecular Design to Applications. Chem. Mater. 2018, 30, 2873–2887. 10.1021/acs.chemmater.8b00357. DOI
Huang L.; Han G. Near Infrared Boron Dipyrromethene Nanoparticles for Optotheranostics. Small Methods 2018, 2, 1700370.10.1002/smtd.201700370. PubMed DOI PMC
Basílio N.; García-Río L. Photoswitchable Vesicles. Curr. Opin. Colloid Interface Sci. 2017, 32, 29–38. 10.1016/j.cocis.2017.09.004. DOI
Gautier A.; Gauron C.; Volovitch M.; Bensimon D.; Jullien L.; Vriz S. How to Control Proteins with Light in Living Systems. Nat. Chem. Biol. 2014, 10, 533–541. 10.1038/nchembio.1534. PubMed DOI
Kataoka K.; Harada A.; Nagasaki Y. Block Copolymer Micelles for Drug Delivery: Design, Characterization and Biological Significance. Adv. Drug Delivery Rev. 2001, 47, 113–131. 10.1016/S0169-409X(00)00124-1. PubMed DOI
Puri A. Phototriggerable Liposomes: Current Research and Future Perspectives. Pharmaceutics 2014, 6, 1–25. 10.3390/pharmaceutics6010001. PubMed DOI PMC
Wang X.; Hu J.; Liu G.; Tian J.; Wang H.; Gong M.; Liu S. Reversibly Switching Bilayer Permeability and Release Modules of Photochromic Polymersomes Stabilized by Cooperative Noncovalent Interactions. J. Am. Chem. Soc. 2015, 137, 15262–15275. 10.1021/jacs.5b10127. PubMed DOI
Rifaie-Graham O.; Ulrich S.; Galensowske N. F. B.; Balog S.; Chami M.; Rentsch D.; Hemmer J. R.; Read de Alaniz J.; Boesel L. F.; Bruns N. Wavelength-Selective Light-Responsive DASA-Functionalized Polymersome Nanoreactors. J. Am. Chem. Soc. 2018, 140, 8027–8036. 10.1021/jacs.8b04511. PubMed DOI
Wang Z.; Johns V. K.; Liao Y. Controlled Release of Fragrant Molecules with Visible Light. Chem. - Eur. J. 2014, 20, 14637–14640. 10.1002/chem.201404203. PubMed DOI
Xing Q.; Li N.; Chen D.; Sha W.; Jiao Y.; Qi X.; Xu Q.; Lu J. Light-Responsive Amphiphilic Copolymer Coated Nanoparticles as Nanocarriers and Real-Time Monitors for Controlled Drug Release. J. Mater. Chem. B 2014, 2, 1182–1189. 10.1039/c3tb21269f. PubMed DOI
Senthilkumar T.; Zhou L.; Gu Q.; Liu L.; Lv F.; Wang S. Conjugated Polymer Nanoparticles with Appended Photo-Responsive Units for Controlled Drug Delivery, Release, and Imaging. Angew. Chem., Int. Ed. 2018, 57, 13114–13119. 10.1002/anie.201807158. PubMed DOI
Romero M. A.; Mateus P.; Matos B.; Acuña Á.; García-Río L.; Arteaga J. F.; Pischel U.; Basílio N. Binding of Flavylium Ions to Sulfonatocalix[4]arene and Implication in the Photorelease of Biologically Relevant Guests in Water. J. Org. Chem. 2019, 84, 10852–10859. 10.1021/acs.joc.9b01420. PubMed DOI
Hu X.-Y.; Jia K.; Cao Y.; Li Y.; Qin S.; Zhou F.; Lin C.; Zhang D.; Wang L. Dual Photo- and pH-Responsive Supramolecular Nanocarriers Based on Water-Soluble Pillar[6]arene and Different Azobenzene Derivatives for Intracellular Anticancer Drug Delivery. Chem. - Eur. J. 2015, 21, 1208–1220. 10.1002/chem.201405095. PubMed DOI
Huang Y.; Shen L.; Guo D.; Yasen W.; Wu Y.; Su Y.; Chen D.; Qiu F.; Yan D.; Zhu X. A NIR-Triggered Gatekeeper of Supramolecular Conjugated Unimicelles With Two-Photon Absorption for Controlled Drug Release. Chem. Commun. 2019, 55, 6735–6738. 10.1039/C9CC02901J. PubMed DOI
Liu Y.-C.; Le Ny A.-L. M.; Schmidt J.; Talmon Y.; Chmelka B. F.; Lee C. T. Photo-Assisted Gene Delivery Using Light-Responsive Catanionic Vesicles. Langmuir 2009, 25, 5713–5724. 10.1021/la803588d. PubMed DOI
Pianowski Z. L.; Karcher J.; Schneider K. Photoresponsive Self-Healing Supramolecular Hydrogels for Light-Induced Release of Dna and Doxorubicin. Chem. Commun. 2016, 52, 3143–3146. 10.1039/C5CC09633B. PubMed DOI
Nehls E. M.; Rosales A. M.; Anseth K. S. Enhanced User-Control of Small Molecule Drug Release From a Poly(Ethylene Glycol) Hydrogel via Azobenzene/Cyclodextrin Complex Tethers. J. Mater. Chem. B 2016, 4, 1035–1039. 10.1039/C5TB02004B. PubMed DOI PMC
Lu J.; Choi E.; Tamanoi F.; Zink J. I. Light-Activated Nanoimpeller-Controlled Drug Release in Cancer Cells. Small 2008, 4, 421–426. 10.1002/smll.200700903. PubMed DOI PMC
Knežević N. Ž.; Trewyn B. G.; Lin V. S. Y. Functionalized Mesoporous Silica Nanoparticle-Based Visible Light Responsive Controlled Release Delivery System. Chem. Commun. 2011, 47, 2817–2819. 10.1039/c0cc04424e. PubMed DOI
Hull K.; Morstein J.; Trauner D. In Vivo Photopharmacology. Chem. Rev. 2018, 118, 10710–10747. 10.1021/acs.chemrev.8b00037. PubMed DOI
Velema W. A.; Szymanski W.; Feringa B. L. Photopharmacology: Beyond Proof of Principle. J. Am. Chem. Soc. 2014, 136, 2178–2191. 10.1021/ja413063e. PubMed DOI
Arrue L.; Ratjen L. Internal Targeting and External Control: Phototriggered Targeting in Nanomedicine. ChemMedChem 2017, 12, 1908–1916. 10.1002/cmdc.201700621. PubMed DOI
Bregestovski P.; Maleeval G. Photopharmacology: Mini Review by Example of Potassium Channels Modulation by Light. Zh. Vyssh. Nerv. Deyat. 2017, 67, 41–52.
Lubbe A. S.; Szymanski W.; Feringa B. L. Recent Developments in Reversible Photoregulation of Oligonucleotide Structure and Function. Chem. Soc. Rev. 2017, 46, 1052–1079. 10.1039/C6CS00461J. PubMed DOI
Dong M. X.; Babalhavaeji A.; Samanta S.; Beharry A. A.; Woolley G. A. Red-Shifting Azobenzene Photoswitches for in Vivo Use. Acc. Chem. Res. 2015, 48, 2662–2670. 10.1021/acs.accounts.5b00270. PubMed DOI
Broichhagen J.; Frank J. A.; Trauner D. A Roadmap to Success in Photopharmacology. Acc. Chem. Res. 2015, 48, 1947–1960. 10.1021/acs.accounts.5b00129. PubMed DOI
Meisel P.; Jahrig D.; Jahrig K. What Is Photopharmacology, and What Can It Do?. Pharmazie 1980, 35, 377–388. PubMed
Albert L.; Vazquez O. Photoswitchable Peptides for Spatiotemporal Control of Biological Functions. Chem. Commun. 2019, 55, 10192–10213. 10.1039/C9CC03346G. PubMed DOI
Curcic S.; Tiapko O.; Groschner K. Photopharmacology and Opto-Chemogenetics of Trpc Channels-Some Therapeutic Visions. Pharmacol. Ther. 2019, 200, 13–26. 10.1016/j.pharmthera.2019.04.003. PubMed DOI
Morstein J.; Trauner D. New Players in Phototherapy: Photopharmacology and Bio-Integrated Optoelectronics. Curr. Opin. Chem. Biol. 2019, 50, 145–151. 10.1016/j.cbpa.2019.03.013. PubMed DOI
Szymański W.; Beierle J. M.; Kistemaker H. A. V.; Velema W. A.; Feringa B. L. Reversible Photocontrol of Biological Systems by the Incorporation of Molecular Photoswitches. Chem. Rev. 2013, 113, 6114–6178. 10.1021/cr300179f. PubMed DOI
Fuchter M. J. On the Promise of Photopharmacology Using Photoswitches: A Medicinal Chemist’s Perspective. J. Med. Chem. 2020, 63, 11436–11447. 10.1021/acs.jmedchem.0c00629. PubMed DOI
Mafy N. N.; Matsuo K.; Hiruma S.; Uehara R.; Tamaoki N. Photoswitchable CENP-E Inhibitor Enabling the Dynamic Control of Chromosome Movement and Mitotic Progression. J. Am. Chem. Soc. 2020, 142, 1763–1767. 10.1021/jacs.9b12782. PubMed DOI
Barber D. M.; Liu S.-A.; Gottschling K.; Sumser M.; Hollmann M.; Trauner D. Optical Control of AMPA Receptors Using a Photoswitchable Quinoxaline-2,3-dione Antagonist. Chem. Sci. 2017, 8, 611–615. 10.1039/C6SC01621A. PubMed DOI PMC
Izquierdo-Serra M.; Gascón-Moya M.; Hirtz J. J.; Pittolo S.; Poskanzer K. E.; Ferrer È.; Alibés R.; Busqué F.; Yuste R.; Hernando J.; Gorostiza P. Two-Photon Neuronal and Astrocytic Stimulation with Azobenzene-Based Photoswitches. J. Am. Chem. Soc. 2014, 136, 8693–8701. 10.1021/ja5026326. PubMed DOI PMC
Velema W. A.; van der Berg J. P.; Hansen M. J.; Szymanski W.; Driessen A. J. M.; Feringa B. L. Optical Control of Antibacterial Activity. Nat. Chem. 2013, 5, 924–928. 10.1038/nchem.1750. PubMed DOI
Wegener M.; Hansen M. J.; Driessen A. J. M.; Szymanski W.; Feringa B. L. Photocontrol of Antibacterial Activity: Shifting from UV to Red Light Activation. J. Am. Chem. Soc. 2017, 139, 17979–17986. 10.1021/jacs.7b09281. PubMed DOI PMC
Lachmann D.; Studte C.; Männel B.; Hübner H.; Gmeiner P.; König B. Photochromic Dopamine Receptor Ligands Based on Dithienylethenes and Fulgides. Chem. - Eur. J. 2017, 23, 13423–13434. 10.1002/chem.201702147. PubMed DOI
Skaar J. R.; Pagan J. K.; Pagano M. SCF Ubiquitin Ligase-Targeted Therapies. Nat. Rev. Drug Discovery 2014, 13, 889–903. 10.1038/nrd4432. PubMed DOI PMC
Reynders M.; Matsuura B. S.; Bérouti M.; Simoneschi D.; Marzio A.; Pagano M.; Trauner D. PHOTACs Enable Optical Control of Protein Degradation. Sci. Adv. 2020, 6, eaay506410.1126/sciadv.aay5064. PubMed DOI PMC
Jin Y.-H.; Lu M.-C.; Wang Y.; Shan W.-X.; Wang X.-Y.; You Q.-D.; Jiang Z.-Y. Azo-PROTAC: Novel Light-Controlled Small-Molecule Tool for Protein Knockdown. J. Med. Chem. 2020, 63, 4644–4654. 10.1021/acs.jmedchem.9b02058. PubMed DOI
Visible-Light-Activated Carbon Monoxide Release from Porphyrin-Flavonol Hybrids
Sulfonothioated meso-Methyl BODIPY Shows Enhanced Uncaging Efficiency and Releases H2Sn