Exclusive photorelease of signalling lipids at the plasma membrane
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26686736
PubMed Central
PMC4703838
DOI
10.1038/ncomms10056
PII: ncomms10056
Knihovny.cz E-zdroje
- MeSH
- beta-buňky metabolismus účinky záření MeSH
- buněčná membrána metabolismus účinky záření MeSH
- HeLa buňky MeSH
- kumariny chemie metabolismus MeSH
- kyselina arachidonová chemie metabolismus MeSH
- lidé MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- neurony metabolismus účinky záření MeSH
- světlo MeSH
- vápník metabolismus MeSH
- vápníková signalizace účinky záření MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- coumarin MeSH Prohlížeč
- kumariny MeSH
- kyselina arachidonová MeSH
- vápník MeSH
Photoactivation of caged biomolecules has become a powerful approach to study cellular signalling events. Here we report a method for anchoring and uncaging biomolecules exclusively at the outer leaflet of the plasma membrane by employing a photocleavable, sulfonated coumarin derivative. The novel caging group allows quantifying the reaction progress and efficiency of uncaging reactions in a live-cell microscopy setup, thereby greatly improving the control of uncaging experiments. We synthesized arachidonic acid derivatives bearing the new negatively charged or a neutral, membrane-permeant coumarin caging group to locally induce signalling either at the plasma membrane or on internal membranes in β-cells and brain slices derived from C57B1/6 mice. Uncaging at the plasma membrane triggers a strong enhancement of calcium oscillations in β-cells and a pronounced potentiation of synaptic transmission while uncaging inside cells blocks calcium oscillations in β-cells and causes a more transient effect on neuronal transmission, respectively. The precise subcellular site of arachidonic acid release is therefore crucial for signalling outcome in two independent systems.
Zobrazit více v PubMed
Purvis J. E. & Lahav G. Encoding and decoding cellular information through signaling dynamics. Cell 152, 945–956 (2013) . PubMed PMC
Marks F., Klingmueller U. & Mueller-Decker K. Cellular Signal Processing: an Introduction to the Molecular Mechanisms of Signal Transduction Garland Science (2009) .
Ouyang X. & Chen J. K. Synthetic strategies for studying embryonic development. ChemBiol. 17, 590–606 (2010) . PubMed PMC
Putyrski M. & Schultz C. Protein translocation as a tool: The current rapamycin story. FEBS Lett. 586, 2097–2105 (2012) . PubMed
Rutkowska A. & Schultz C. Protein tango: the toolbox to capture interacting partners. Angew. Chem. Int. Ed. Engl. 51, 8166–8176 (2012) . PubMed
Fegan A., White B., Carlson J. C. T. & Wagner C. R. Chemically controlled protein assembly: techniques and applications. Chem. Rev. 110, 3315–3336 (2010) . PubMed
Pastrana E. Optogenetics: controlling cell function with light. Nat. Methods 8, 24–25 (2011) .
Kramer R. H., Mourot A. & Adesnik H. Optogenetic pharmacology for control of native neuronal signaling proteins. Nat. Neurosci. 16, 816–823 (2013) . PubMed PMC
Kao J. P. Caged molecules: principles and practical considerations. Curr. Protoc. Neurosci Chapter 6, Unit 6 20 (2006) . PubMed
Gautier A. et al.. How to control proteins with light in living systems. Nat. Chem. Biol. 10, 533–541 (2014) . PubMed
Nadler A. et al.. The fatty acid composition of diacylglycerols determines local signaling patterns. Angew. Chem. Int. Ed. Engl. 52, 6330–6334 (2013) . PubMed
Artamonov M. V. et al.. Agonist-induced Ca2+ sensitization in smooth muscle: redundancy of Rho guanine nucleotide exchange factors (RhoGEFs) and response kinetics, a caged compound study. J. Biol. Chem. 288, 34030–34040 (2013) . PubMed PMC
Ellis-Davies G. C. A practical guide to the synthesis of dinitroindolinyl-caged neurotransmitters. Nat. Protoc. 6, 314–326 (2011) . PubMed PMC
Hoglinger D., Nadler A. & Schultz C. Caged lipids as tools for investigating cellular signaling. Biophys. Biochim. Acta 1841, 1085–1096 (2014) . PubMed
Huang X. P., Sreekumar R., Patel J. R. & Walker J. W. Response of cardiac myocytes to a ramp increase of diacylglycerol generated by photolysis of a novel caged diacylglycerol. Biophys. J. 70, 2448–2457 (1996) . PubMed PMC
Thompson S. M. et al.. Flashy science: controlling neural function with light. J. Neurosci. 25, 10358–10365 (2005) . PubMed PMC
Neveu P. et al.. A caged retinoic acid for one- and two-photon excitation in zebrafish embryos. Angew. Chem. Int. Ed. Engl. 47, 3744–3746 (2008) . PubMed
Feng S. H. et al.. A rapidly reversible chemical dimerizer system to study lipid signaling in living cells. Angew. Chem. Int. Ed. Engl. 53, 6720–6723 (2014) . PubMed
Ahmed S., Xie J., Horne D. & Williams J. C. Photocleavable dimerizer for the rapid reversal of molecular trap antagonists. J. Biol. Chem. 289, 4546–4552 (2014) . PubMed PMC
Zimmermann M. et al.. Cell-permeant and photocleavable chemical inducer of dimerization. Angew. Chem. Int. Ed. Engl. 53, 4717–4720 (2014) . PubMed PMC
Liu P. et al.. A bioorthogonal small-molecule-switch system for controlling protein function in live cells. Angew. Chem. Int. Ed. Engl. 53, 10049–10055 (2014) . PubMed
Tischer D. & Weiner O. D. Illuminating cell signalling with optogenetic tools. Nat. Rev. Mol. Cell Biol. 15, 551–558 (2014) . PubMed PMC
Matsuzaki M. & Kasai H. Two-photon uncaging microscopy. Cold Spring Harb. Protoc. 2011, pdb prot5620 (2011) . PubMed
Olson J. P. et al.. Optically selective two-photon uncaging of glutamate at 900 nm. J. Am. Chem. Soc. 135, 5954–5957 (2013) . PubMed PMC
Fournier L. et al.. Coumarinylmethyl caging groups with redshifted absorption. Chemistry 19, 17494–17507 (2013) . PubMed
Brieke C., Rohrbach F., Gottschalk A., Mayer G. & Heckel A. Light-controlled tools. Angew. Chem. Int. Ed. Engl. 51, 8446–8476 (2012) . PubMed
Banala S., Maurel D., Manley S. & Johnsson K. A caged, localizable rhodamine derivative for superresolution microscopy. ACS Chem. Biol. 7, 288–292 (2012) . PubMed
Brash A. R. Arachidonic acid as a bioactive molecule. J. Clin. Invest. 107, 1339–1345 (2001) . PubMed PMC
Jacobson D. A., Weber C. R., Bao S. Z., Turk J. & Philipson L. H. Modulation of the pancreatic islet beta-cell-delayed rectifier potassium channel Kv2.1 by the polyunsaturated fatty acid arachidonate. J. Biol. Chem. 282, 7442–7449 (2007) . PubMed PMC
Carta M. et al.. Membrane lipids tune synaptic transmission by direct modulation of presynaptic potassium channels. Neuron 81, 787–799 (2014) . PubMed
Alexander L. D. & Hamzeh M. T. Arachidonic acid-induced apoptosis in human renal proximal tubular epithelial cells. FASEB J. 27, 727.12 (2013) .
Meves H. Arachidonic acid and ion channels: an update. Br. J. Pharmacol. 155, 4–16 (2008) . PubMed PMC
Oliver D. et al.. Functional conversion between A-type and delayed rectifier K+ channels by membrane lipids. Science 304, 265–270 (2004) . PubMed
Connell E. et al.. Mechanism of arachidonic acid action on syntaxin-Munc18. EMBO. Rep. 8, 414–419 (2007) . PubMed PMC
Itoh Y. et al.. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 422, 173–176 (2003) . PubMed
O'Flaherty J. T., Chadwell B. A., Kearns M. W., Sergeant S. & Daniel L. W. Protein kinases C translocation responses to low concentrations of arachidonic acid. J. Biol. Chem. 276, 24743–24750 (2001) . PubMed
Bennett W. F. D. & Tieleman D. P. Molecular simulation of rapid translocation of cholesterol, diacylglycerol, and ceramide in model raft and nonraft membranes. J. Lipid Res. 53, 421–429 (2012) . PubMed PMC
Ramanadham S., Gross R. & Turk J. Arachidonic-acid induces an increase in the cytosolic calcium-concentration in single pancreatic-islet beta-cells. Biochem. Biophys. Res. Commun. 184, 647–653 (1992) . PubMed
Yeung-Yam-Wah V., Lee A. K. & Tse A. Arachidonic acid mobilizes Ca2+ from the endoplasmic reticulum and an acidic store in rat pancreatic beta cells. Cell Calcium 51, 140–148 (2012) . PubMed
Ramanadham S., Gross R. W., Han X. L. & Turk J. Inhibition of arachidonate release by secretagogue-stimulated pancreatic-islets suppresses both insulin-secretion and the rise in beta-cell cytosolic calcium-ion concentration. Biochemistry 32, 337–346 (1993) . PubMed
Ishihara H. et al.. Pancreatic beta-cell line min6 exhibits characteristics of glucose-metabolism and glucose-stimulated insulin-secretion similar to those of normal islets. Diabetologia 36, 1139–1145 (1993) . PubMed
Zhao Y. et al.. An expanded palette of genetically encoded Ca(2)(+) indicators. Science 333, 1888–1891 (2011) . PubMed PMC
Hu H. et al.. A novel class of antagonists for the FFAs receptor GPR40. Biochem. Biophys. Res. Commun. 390, 557–563 (2009) . PubMed
Wu J. et al.. Inhibition of GPR40 protects MIN6 beta cells from palmitate-induced ER stress and apoptosis. J. Cell. Biochem. 113, 1152–1158 (2012) . PubMed
Briscoe C. P. et al.. Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules. Br. J. Pharmacol. 148, 619–628 (2006) . PubMed PMC
Lipina C., Rastedt W., Irving A. J. & Hundal H. S. Endocannabinoids in obesity:brewing up the perfect metabolicstorm? WIREs Membr. Transp. Signal 2, 49–63 (2013) .
Eckardt K. et al.. Cannabinoid type 1 receptors in human skeletal muscle cells participate in the negative crosstalk between fat and muscle. Diabetologia 52, 664–674 (2009) . PubMed
Alle H., Kubota H. & Geiger J. R. P. Sparse but highly efficient K(v)3 outpace BKCa channels in action potential repolarization at hippocampal mossy fiber boutons. J. Neurosci. 31, 8001–8012 (2011) . PubMed PMC
Geiger J. R. P. & Jonas P. Dynamic control of presynaptic ca2+ inflow by fast-inactivating K+ channels in hippocampal mossy fiber boutons. Neuron 28, 927–939 (2000) . PubMed
Horinouchi T., Nakagawa H., Suzuki T., Fukuhara K. & Miyata N. A novel mitochondria-localizing nitrobenzene derivative as a donor for photo-uncaging of nitric oxide. Bioorg. Med. Chem. Lett. 21, 2000–2002 (2011) . PubMed
Leonidova A. et al.. Photo-induced uncaging of a specific Re(I) organometallic complex in living cells. Chem. Sci. 5, 4044–4056 (2014) .
Riesgo E. C., Jin X. & Thummel R. P. Introduction of benzo[h]quinoline and 1,10-phenanthroline subunits by friedlander methodology. J. Org. Chem. 61, 3017–3022 (1996) . PubMed
Ito K. & Nakajima K. Selenium dioxide oxidation of alkylcoumarins and related methyl-substituted heteroaromatics. J. Heterocycl. Chem. 25, 511–515 (1988) .
Hagen V. et al.. Coumarinylmethyl esters for ultrafast release of high concentrations of cyclic nucleotides upon one- and two-photon photolysis. Angew. Chem. Int. Ed. Engl. 44, 7887–7891 (2005) . PubMed
Jones G., Jackson W. R., Choi C. & Bergmark W. R. Solvent effects on emission yield and lifetime for coumarin laser-dyes - requirements for a rotatory decay mechanism. J. Phys. Chem. 89, 294–300 (1985) .
Miyazaki J. I. et al.. Establishment of a pancreatic beta-cell line that retains glucose-inducible insulin-secretion - special reference to expression of glucose transporter isoforms. Endocrinology 127, 126–132 (1990) . PubMed
Stein F., Kress M., Reither S., Piljic A. & Schultz C. FluoQ: a tool for rapid analysis of multiparameter fluorescence imaging data applied to oscillatory events. ACS Chem. Biol. 8, 1862–1868 (2013) . PubMed
Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials
Optical control of GPR40 signalling in pancreatic β-cells
Manipulating cell signaling with subcellular spatial resolution
Photoswitchable diacylglycerols enable optical control of protein kinase C