Exclusive photorelease of signalling lipids at the plasma membrane

. 2015 Dec 21 ; 6 () : 10056. [epub] 20151221

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26686736

Photoactivation of caged biomolecules has become a powerful approach to study cellular signalling events. Here we report a method for anchoring and uncaging biomolecules exclusively at the outer leaflet of the plasma membrane by employing a photocleavable, sulfonated coumarin derivative. The novel caging group allows quantifying the reaction progress and efficiency of uncaging reactions in a live-cell microscopy setup, thereby greatly improving the control of uncaging experiments. We synthesized arachidonic acid derivatives bearing the new negatively charged or a neutral, membrane-permeant coumarin caging group to locally induce signalling either at the plasma membrane or on internal membranes in β-cells and brain slices derived from C57B1/6 mice. Uncaging at the plasma membrane triggers a strong enhancement of calcium oscillations in β-cells and a pronounced potentiation of synaptic transmission while uncaging inside cells blocks calcium oscillations in β-cells and causes a more transient effect on neuronal transmission, respectively. The precise subcellular site of arachidonic acid release is therefore crucial for signalling outcome in two independent systems.

Zobrazit více v PubMed

Purvis J. E. & Lahav G. Encoding and decoding cellular information through signaling dynamics. Cell 152, 945–956 (2013) . PubMed PMC

Marks F., Klingmueller U. & Mueller-Decker K. Cellular Signal Processing: an Introduction to the Molecular Mechanisms of Signal Transduction Garland Science (2009) .

Ouyang X. & Chen J. K. Synthetic strategies for studying embryonic development. ChemBiol. 17, 590–606 (2010) . PubMed PMC

Putyrski M. & Schultz C. Protein translocation as a tool: The current rapamycin story. FEBS Lett. 586, 2097–2105 (2012) . PubMed

Rutkowska A. & Schultz C. Protein tango: the toolbox to capture interacting partners. Angew. Chem. Int. Ed. Engl. 51, 8166–8176 (2012) . PubMed

Fegan A., White B., Carlson J. C. T. & Wagner C. R. Chemically controlled protein assembly: techniques and applications. Chem. Rev. 110, 3315–3336 (2010) . PubMed

Pastrana E. Optogenetics: controlling cell function with light. Nat. Methods 8, 24–25 (2011) .

Kramer R. H., Mourot A. & Adesnik H. Optogenetic pharmacology for control of native neuronal signaling proteins. Nat. Neurosci. 16, 816–823 (2013) . PubMed PMC

Kao J. P. Caged molecules: principles and practical considerations. Curr. Protoc. Neurosci Chapter 6, Unit 6 20 (2006) . PubMed

Gautier A. et al.. How to control proteins with light in living systems. Nat. Chem. Biol. 10, 533–541 (2014) . PubMed

Nadler A. et al.. The fatty acid composition of diacylglycerols determines local signaling patterns. Angew. Chem. Int. Ed. Engl. 52, 6330–6334 (2013) . PubMed

Artamonov M. V. et al.. Agonist-induced Ca2+ sensitization in smooth muscle: redundancy of Rho guanine nucleotide exchange factors (RhoGEFs) and response kinetics, a caged compound study. J. Biol. Chem. 288, 34030–34040 (2013) . PubMed PMC

Ellis-Davies G. C. A practical guide to the synthesis of dinitroindolinyl-caged neurotransmitters. Nat. Protoc. 6, 314–326 (2011) . PubMed PMC

Hoglinger D., Nadler A. & Schultz C. Caged lipids as tools for investigating cellular signaling. Biophys. Biochim. Acta 1841, 1085–1096 (2014) . PubMed

Huang X. P., Sreekumar R., Patel J. R. & Walker J. W. Response of cardiac myocytes to a ramp increase of diacylglycerol generated by photolysis of a novel caged diacylglycerol. Biophys. J. 70, 2448–2457 (1996) . PubMed PMC

Thompson S. M. et al.. Flashy science: controlling neural function with light. J. Neurosci. 25, 10358–10365 (2005) . PubMed PMC

Neveu P. et al.. A caged retinoic acid for one- and two-photon excitation in zebrafish embryos. Angew. Chem. Int. Ed. Engl. 47, 3744–3746 (2008) . PubMed

Feng S. H. et al.. A rapidly reversible chemical dimerizer system to study lipid signaling in living cells. Angew. Chem. Int. Ed. Engl. 53, 6720–6723 (2014) . PubMed

Ahmed S., Xie J., Horne D. & Williams J. C. Photocleavable dimerizer for the rapid reversal of molecular trap antagonists. J. Biol. Chem. 289, 4546–4552 (2014) . PubMed PMC

Zimmermann M. et al.. Cell-permeant and photocleavable chemical inducer of dimerization. Angew. Chem. Int. Ed. Engl. 53, 4717–4720 (2014) . PubMed PMC

Liu P. et al.. A bioorthogonal small-molecule-switch system for controlling protein function in live cells. Angew. Chem. Int. Ed. Engl. 53, 10049–10055 (2014) . PubMed

Tischer D. & Weiner O. D. Illuminating cell signalling with optogenetic tools. Nat. Rev. Mol. Cell Biol. 15, 551–558 (2014) . PubMed PMC

Matsuzaki M. & Kasai H. Two-photon uncaging microscopy. Cold Spring Harb. Protoc. 2011, pdb prot5620 (2011) . PubMed

Olson J. P. et al.. Optically selective two-photon uncaging of glutamate at 900 nm. J. Am. Chem. Soc. 135, 5954–5957 (2013) . PubMed PMC

Fournier L. et al.. Coumarinylmethyl caging groups with redshifted absorption. Chemistry 19, 17494–17507 (2013) . PubMed

Brieke C., Rohrbach F., Gottschalk A., Mayer G. & Heckel A. Light-controlled tools. Angew. Chem. Int. Ed. Engl. 51, 8446–8476 (2012) . PubMed

Banala S., Maurel D., Manley S. & Johnsson K. A caged, localizable rhodamine derivative for superresolution microscopy. ACS Chem. Biol. 7, 288–292 (2012) . PubMed

Brash A. R. Arachidonic acid as a bioactive molecule. J. Clin. Invest. 107, 1339–1345 (2001) . PubMed PMC

Jacobson D. A., Weber C. R., Bao S. Z., Turk J. & Philipson L. H. Modulation of the pancreatic islet beta-cell-delayed rectifier potassium channel Kv2.1 by the polyunsaturated fatty acid arachidonate. J. Biol. Chem. 282, 7442–7449 (2007) . PubMed PMC

Carta M. et al.. Membrane lipids tune synaptic transmission by direct modulation of presynaptic potassium channels. Neuron 81, 787–799 (2014) . PubMed

Alexander L. D. & Hamzeh M. T. Arachidonic acid-induced apoptosis in human renal proximal tubular epithelial cells. FASEB J. 27, 727.12 (2013) .

Meves H. Arachidonic acid and ion channels: an update. Br. J. Pharmacol. 155, 4–16 (2008) . PubMed PMC

Oliver D. et al.. Functional conversion between A-type and delayed rectifier K+ channels by membrane lipids. Science 304, 265–270 (2004) . PubMed

Connell E. et al.. Mechanism of arachidonic acid action on syntaxin-Munc18. EMBO. Rep. 8, 414–419 (2007) . PubMed PMC

Itoh Y. et al.. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 422, 173–176 (2003) . PubMed

O'Flaherty J. T., Chadwell B. A., Kearns M. W., Sergeant S. & Daniel L. W. Protein kinases C translocation responses to low concentrations of arachidonic acid. J. Biol. Chem. 276, 24743–24750 (2001) . PubMed

Bennett W. F. D. & Tieleman D. P. Molecular simulation of rapid translocation of cholesterol, diacylglycerol, and ceramide in model raft and nonraft membranes. J. Lipid Res. 53, 421–429 (2012) . PubMed PMC

Ramanadham S., Gross R. & Turk J. Arachidonic-acid induces an increase in the cytosolic calcium-concentration in single pancreatic-islet beta-cells. Biochem. Biophys. Res. Commun. 184, 647–653 (1992) . PubMed

Yeung-Yam-Wah V., Lee A. K. & Tse A. Arachidonic acid mobilizes Ca2+ from the endoplasmic reticulum and an acidic store in rat pancreatic beta cells. Cell Calcium 51, 140–148 (2012) . PubMed

Ramanadham S., Gross R. W., Han X. L. & Turk J. Inhibition of arachidonate release by secretagogue-stimulated pancreatic-islets suppresses both insulin-secretion and the rise in beta-cell cytosolic calcium-ion concentration. Biochemistry 32, 337–346 (1993) . PubMed

Ishihara H. et al.. Pancreatic beta-cell line min6 exhibits characteristics of glucose-metabolism and glucose-stimulated insulin-secretion similar to those of normal islets. Diabetologia 36, 1139–1145 (1993) . PubMed

Zhao Y. et al.. An expanded palette of genetically encoded Ca(2)(+) indicators. Science 333, 1888–1891 (2011) . PubMed PMC

Hu H. et al.. A novel class of antagonists for the FFAs receptor GPR40. Biochem. Biophys. Res. Commun. 390, 557–563 (2009) . PubMed

Wu J. et al.. Inhibition of GPR40 protects MIN6 beta cells from palmitate-induced ER stress and apoptosis. J. Cell. Biochem. 113, 1152–1158 (2012) . PubMed

Briscoe C. P. et al.. Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules. Br. J. Pharmacol. 148, 619–628 (2006) . PubMed PMC

Lipina C., Rastedt W., Irving A. J. & Hundal H. S. Endocannabinoids in obesity:brewing up the perfect metabolicstorm? WIREs Membr. Transp. Signal 2, 49–63 (2013) .

Eckardt K. et al.. Cannabinoid type 1 receptors in human skeletal muscle cells participate in the negative crosstalk between fat and muscle. Diabetologia 52, 664–674 (2009) . PubMed

Alle H., Kubota H. & Geiger J. R. P. Sparse but highly efficient K(v)3 outpace BKCa channels in action potential repolarization at hippocampal mossy fiber boutons. J. Neurosci. 31, 8001–8012 (2011) . PubMed PMC

Geiger J. R. P. & Jonas P. Dynamic control of presynaptic ca2+ inflow by fast-inactivating K+ channels in hippocampal mossy fiber boutons. Neuron 28, 927–939 (2000) . PubMed

Horinouchi T., Nakagawa H., Suzuki T., Fukuhara K. & Miyata N. A novel mitochondria-localizing nitrobenzene derivative as a donor for photo-uncaging of nitric oxide. Bioorg. Med. Chem. Lett. 21, 2000–2002 (2011) . PubMed

Leonidova A. et al.. Photo-induced uncaging of a specific Re(I) organometallic complex in living cells. Chem. Sci. 5, 4044–4056 (2014) .

Riesgo E. C., Jin X. & Thummel R. P. Introduction of benzo[h]quinoline and 1,10-phenanthroline subunits by friedlander methodology. J. Org. Chem. 61, 3017–3022 (1996) . PubMed

Ito K. & Nakajima K. Selenium dioxide oxidation of alkylcoumarins and related methyl-substituted heteroaromatics. J. Heterocycl. Chem. 25, 511–515 (1988) .

Hagen V. et al.. Coumarinylmethyl esters for ultrafast release of high concentrations of cyclic nucleotides upon one- and two-photon photolysis. Angew. Chem. Int. Ed. Engl. 44, 7887–7891 (2005) . PubMed

Jones G., Jackson W. R., Choi C. & Bergmark W. R. Solvent effects on emission yield and lifetime for coumarin laser-dyes - requirements for a rotatory decay mechanism. J. Phys. Chem. 89, 294–300 (1985) .

Miyazaki J. I. et al.. Establishment of a pancreatic beta-cell line that retains glucose-inducible insulin-secretion - special reference to expression of glucose transporter isoforms. Endocrinology 127, 126–132 (1990) . PubMed

Stein F., Kress M., Reither S., Piljic A. & Schultz C. FluoQ: a tool for rapid analysis of multiparameter fluorescence imaging data applied to oscillatory events. ACS Chem. Biol. 8, 1862–1868 (2013) . PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace