Photoswitchable diacylglycerols enable optical control of protein kinase C

. 2016 Sep ; 12 (9) : 755-62. [epub] 20160725

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27454932

Grantová podpora
WT098424AIA Wellcome Trust - United Kingdom
MR/N00275X/1 Medical Research Council - United Kingdom
MR/L020149/1 Medical Research Council - United Kingdom
MR/J0003042/1 Medical Research Council - United Kingdom
268795 European Research Council - International
BB/J015873/1 Biotechnology and Biological Sciences Research Council - United Kingdom
Wellcome Trust - United Kingdom
MR/L02036X/1 Medical Research Council - United Kingdom

Increased levels of the second messenger lipid diacylglycerol (DAG) induce downstream signaling events including the translocation of C1-domain-containing proteins toward the plasma membrane. Here, we introduce three light-sensitive DAGs, termed PhoDAGs, which feature a photoswitchable acyl chain. The PhoDAGs are inactive in the dark and promote the translocation of proteins that feature C1 domains toward the plasma membrane upon a flash of UV-A light. This effect is quickly reversed after the termination of photostimulation or by irradiation with blue light, permitting the generation of oscillation patterns. Both protein kinase C and Munc13 can thus be put under optical control. PhoDAGs control vesicle release in excitable cells, such as mouse pancreatic islets and hippocampal neurons, and modulate synaptic transmission in Caenorhabditis elegans. As such, the PhoDAGs afford an unprecedented degree of spatiotemporal control and are broadly applicable tools to study DAG signaling.

Zobrazit více v PubMed

Almena M, Mérida I. Shaping up the membrane: diacylglycerol coordinates spatial orientation of signaling. Trends Biochem Sci. 2011;36:593–603. PubMed

Brose N, Rosenmund C. Move over protein kinase C, you’ve got company: alternative cellular effectors of diacylglycerol and phorbol esters. J Cell Sci. 2002;115:4399–4411. PubMed

Newton AC. Protein Kinase C : Structure, Function, and Regulation. J Biol Chem. 1995;270:28495–28498. PubMed

Pessin MS, Raben DM. Molecular species analysis of 1,2-diglycerides stimulated by alpha-thrombin in cultured fibroblasts. J Biol Chem. 1989;264:8729–8738. PubMed

Marignani PA, Epand RM, Sebaldt RJ. Acyl Chain Dependence of Diacylglycerol Activation of Protein Kinase C Activity in Vitro. Biochem Biophys Res Commun. 1996;473:469–473. PubMed

Hofmann T, et al. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature. 1999;397:259–263. PubMed

Das J, Rahman GM. C1 Domains : Structure and Ligand-Binding Properties. Chem Rev. 2012;114:12108–12131. PubMed

Coussens L, et al. Multiple, distinct forms of bovine and human protein kinase C suggest diversity in cellular signaling pathways. Science. 1986;233:859–866. PubMed

Rhee JS, et al. β phorbol ester- and diacylglycerol-induced augmentation of transmitter release is mediated by Munc13s and not by PKCs. Cell. 2002;108:121–133. PubMed

Betz A, et al. Munc13-1 is a presynaptic phorbol ester receptor that enhances neurotransmitter release. Neuron. 1998;21:123–136. PubMed

Brose N, Hofmann K, Hata Y, Sudhof TC. Mammalian homologues of Caenorhabditis elegans unc-13 gene define novel family of C2-domain proteins. J Biol Chem. 1995;270:25273–25280. PubMed

Varoqueaux F, et al. Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming. Proc Natl Acad Sci U S A. 2002;99:9037–42. PubMed PMC

Brose N, Betz A, Wegmeyer H. Divergent and convergent signaling by the diacylglycerol second messenger pathway in mammals. Curr Opin Neurobiol. 2004;14:328–340. PubMed

Wender P, et al. Modeling of the bryostatins to the phorbol ester pharmacophore on protein kinase C. Proc Natl Acad Sci U S A. 1988;85:7197–7201. PubMed PMC

Nadler A, et al. The fatty acid composition of diacylglycerols determines local signaling patterns. Angew Chem Int Ed Engl. 2013;52:6330–4. PubMed

Putyrski M, Schultz C. Protein translocation as a tool: The current rapamycin story. FEBS Lett. 2012;586:2097–2105. PubMed

Feng S, et al. A rapidly reversible chemical dimerizer system to study lipid signaling in living cells. Angew Chemie - Int Ed. 2014;53:6720–6723. PubMed

Toettcher JE, Voigt C, Weiner OD, Lim W. The promise of optogenetics in cell biology: interrogating molecular circuits in space and time. Nat Methods. 2012;8:35–38. PubMed PMC

Frank JA, et al. Photoswitchable fatty acids enable optical control of TRPV1. Nat Commun. 2015;6:7118. PubMed PMC

Davis RJ, Ganongq BR, Belll RM, Czech MP. 1,2-Dioctanoylglycerol. J Biol Chem. 1985;260:1562–1566. PubMed

Oancea E, Teruel MN, Quest AFG, Meyer T. Green fluorescent protein (GFP)-tagged cysteine-rich domains from protein kinase C as fluorescent indicators for diacylglycerol signaling in living cells. J Cell Biol. 1998;140:485–498. PubMed PMC

Wuttke A, Idevall-Hagren O, Tengholm A. P2Y1 receptor-dependent diacylglycerol signaling microdomains in beta cells promote insulin secretion. FASEB J. 2013;27:1610–1620. PubMed

Nadler A, et al. Exclusive photorelease of signalling lipids at the plasma membrane. Nat Commun. 2015;6 10056. PubMed PMC

Zhao Y, et al. An Expanded Palette of Genetically Encoded Ca2+ Indicators. Science. 2011;557:1888–1891. PubMed PMC

Harteneck C, Gollasch M. Pharmacological Modulation of Diacylglycerol-Sensitive TRPC3/6/7 Channels. Curr Pharm Biotechnol. 2011;12:35–41. PubMed PMC

Plenge-Tellechea F, Soler F. On the inhibition mechanism of sarcoplasmic or endoplasmic reticulum Ca2+-ATPases by cyclopiazonic acid. J Biol Chem. 1997;272:2794–2800. PubMed

Bootman MD, Young KW, Young JM, Moreton RB, Berridge MJ. Extracellular calcium concentration controls the frequency of intracellular calcium spiking independently of inositol 1,4,5-trisphosphate production in HeLa cells. Biochem J. 1996;314:347–354. PubMed PMC

Corbalán-García S, Gómez-Fernández JC. Protein kinase C regulatory domains: The art of decoding many different signals in membranes. Biochim Biophys Acta - Mol Cell Biol Lipids. 2006;1761:633–654. PubMed

Kikkawa U, Matsuzaki H, Yamamoto T. Protein kinase C delta (PKC delta): activation mechanisms and functions. J Biochem. 2002;132:831–839. PubMed

Reither G, Schaefer M, Lipp P. PKCalpha: A versatile key for decoding the cellular calcium toolkit. J Cell Biol. 2006;174:521–533. PubMed PMC

Violin JD, Newton AC. Pathway illuminated: visualizing protein kinase C signaling. IUBMB Life. 2003;55:653–660. PubMed

Violin JD, Zhang J, Tsien RY, Newton AC. A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C. J Cell Biol. 2003;161:899–909. PubMed PMC

Toullecs D, et al. The Bisindolemaleimide GF 109203X is a Potent and Selective Inhibitor of Protein Kinase C. J Biol Chem. 1991;266:15771–15781. PubMed

Herbert JM, Augereau JM, Gleye J, Maffrand JP. Chelerythrine is a potent and specific inhibitor of protein kinase C. Biochem Biophys Res Commun. 1990;172:993–999. PubMed

Bergsten P. Slow and fast oscillations of cytoplasmic Ca2+ in pancreatic islets correspond to pulsatile insulin release. Am J Physiol. 1995;268:E282–E287. PubMed

Bergsten P, Grapengiesser E, Gylfe E, Tengholm A, Hellman B. Synchronous oscillations of cytoplasmic Ca2+ and insulin release in glucose-stimulated pancreatic islets. J Biol Chem. 1994;269:8749–8753. PubMed

Rorsman P, Braun M. Regulation of Insulin Secretion in Human Pancreatic Islets. Annu Rev Physiol. 2012;75:155–179. PubMed

Wuttke A. Lipid Signalling Dynamics at the β-cell Plasma Membrane. Basic Clin Pharmacol Toxicol. 2015;116:281–290. PubMed

Yang C, Kazanietz MG. Divergence and complexities in DAG signaling: Looking beyond PKC. Trends Pharmacol Sci. 2003;24:602–608. PubMed

Kaneko YK, Ishikawa T. Diacylglycerol Signaling Pathway in Pancreatic β -Cells : An Essential Role of Diacylglycerol Kinase in the Regulation of Insulin Secretion. Biol Pharm Bull. 2015;38:669–673. PubMed

Kurohane Kaneko Y, et al. Depression of Type I Diacylglycerol Kinases in Pancreatic β-Cells From Male Mice Results in Impaired Insulin Secretion. Endocrinology. 2013;154:4089–4098. PubMed

Ishihara H, et al. Pancreatic beta cell line MIN6 exhibits characteristics of glucose metabolism and glucose-stimulated insulin secretion similar to those of normal islets. Diabetologia. 1993;36:1139–1145. PubMed

Ashcroft FM, et al. Stimulus-secretion coupling in pancreatic beta cells. J Cell Biochem. 1994;55S:54–65. PubMed

Dadi PK, et al. Inhibition of Pancreatic beta-Cell Ca2+/Calmodulin-dependent Protein Kinase II Reduces Glucose-stimulated Calcium Influx and Insulin Secretion, Impairing Glucose Tolerance. J Biol Chem. 2014;289:12435–12445. PubMed PMC

Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev. 2005;57:411–425. PubMed

Ashcroft FM, Kelly RP, Smith PA. Two types of Ca channel in rat pancreatic beta-cells. Pflugers Arch. 1990;415:504–506. PubMed

Jacobson DA, et al. Kv2.1 Ablation Alters Glucose-Induced Islet Electrical Activity, Enhancing Insulin Secretion. Cell Metab. 2007;6:229–235. PubMed PMC

Jacobson DA, et al. Calcium-activated and voltage-gated potassium channels of the pancreatic islet impart distinct and complementary roles during secretagogue induced electrical responses. J Physiol. 2010;588:3525–3537. PubMed PMC

Jacobson DA, Weber CR, Bao S, Turk J, Philipson LH. Modulation of the Pancreatic Islet beta Cell delayed Rectifier Potassium Channel Kv2.1 by the Polyunsaturated Fatty arachidonate. J Biol Chem. 2007;282:7442–7449. PubMed PMC

Rutter GA, Hodson DJ. Beta cell connectivity in pancreatic islets: A type 2 diabetes target? Cell Mol Life Sci. 2015;72:453–467. PubMed PMC

Nolan CJ, Madiraju MSR, Delghingaro-Augusto V, Peyot M-L, Prentki M. Fatty Acid Signaling in the beta-Cell and Insulin Secretion. Diabetes. 2006;55:S16–S23. PubMed

Lou X, Korogod N, Brose N, Schneggenburger R. Phorbol esters modulate spontaneous and Ca2+-evoked transmitter release via acting on both Munc13 and protein kinase C. J Neurosci. 2008;28:8257–8267. PubMed PMC

Basu J, Betz A, Brose N, Rosenmund C. Munc13-1 C1 domain activation lowers the energy barrier for synaptic vesicle fusion. J Neurosci. 2007;27:1200–1210. PubMed PMC

Wierda KDB, Toonen RFG, de Wit H, Brussaard AB, Verhage M. Interdependence of PKC-Dependent and PKC-Independent Pathways for Presynaptic Plasticity. Neuron. 2007;54:275–290. PubMed

Bargmann CI, Kaplan JM. Signal transduction in the Caenorhabditis elegans nervous system. Annu Rev Neurosci. 1998;21:279–308. PubMed

Rand JB. WormBook, ed C. elegans Res Community. 2007. Acetylcholine. PubMed DOI

Mahoney TR, Luo S, Nonet ML. Analysis of synaptic transmission in Caenorhabditis elegans using an aldicarb-sensitivity assay. Nat Protoc. 2006;1:1772–1777. PubMed

Fleming JT, et al. Caenorhabditis elegans levamisole resistance genes lev-1, unc-29, and unc-38 encode functional nicotinic acetylcholine receptor subunits. J Neurosci. 1997;17:5843–5857. PubMed PMC

Lewis Ja, Wu CH, Berg H, Levine JH. The genetics of levamisole resistance in the nematode Caenorhabditis elegans. Genetics. 1980;95:905–928. PubMed PMC

Fliegl H, Koehn A, Haettig C, Ahlrichs R. Ab Initio Calculation of the Vibrational and Electronic Spectra of trans- and cis-Azobenzene. J Am Chem Soc. 2003;125:9821–9827. PubMed

Konrad DB, Frank JA, Trauner D. Synthesis of Redshifted Azobenzene Photoswitches by Late-Stage Functionalization. Chem a Eur J. 2016 recently accepted manuscript. PubMed

Hui X, Reither G, Kaestner L, Lipp P. Targeted Activation of Conventional and Novel Protein Kinases C through Differential Translocation Patterns. Mol Cell Biol. 2014;34:2370–2381. PubMed PMC

Ravier Magalie A, Rutter GuyA. Isolation and Culture of Mouse Pancreatic Islets for Ex Vivo Imaging Studies with Trappable or Recombinant Fluorescent Probes. Mouse Cell Cult. 2010;633:171–184. PubMed

Ravier MA, Rutter GA. Glucose or Insulin, but not Zinc Ions, Inhibit Glucagon Secretion From Mouse Pancreatic alpha-cells. Diabetes. 2005;54:1789–1797. PubMed

Burgalossi A, et al. Analysis of neurotransmitter release mechanisms by photolysis of caged Ca2+ in an autaptic neuron culture system. Nat Protoc. 2012;7:1351–1365. PubMed

Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77:71–94. PubMed PMC

Gaffney PRJ, Reese CB. Preparation of 2-O-Arachidonoyl-1-O-stearoyl-sn-glycerol and Other Di-O-Acyl Glycerol Derivatives. Tetrahedron. 1997;38:2539–2542.

Chen C-Y, Han W-B, Chen H-J, Wu Y, Gao P. Optically Active Monoacylglycerols: Synthesis and Assessment of Purity. European J Org Chem. 2013;2013:4311–4318.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Optical control of GPR40 signalling in pancreatic β-cells

. 2017 Nov 01 ; 8 (11) : 7604-7610. [epub] 20170830

Zobrazit více v PubMed

PubChem-Substance
315492946, 315492947, 315492948, 315492949, 315492950, 315492951, 315492952, 315492953, 315492954, 315492955, 315492956, 315492957

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...