Cyanine-Flavonol Hybrids for Near-Infrared Light-Activated Delivery of Carbon Monoxide
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
665860
Horizon 2020 Framework Programme
6SA17811
the South Moravian Region
GA18-12477S
Grantová Agentura České Republiky
RVO-VFN64165
Ministerstvo Zdravotnictví Ceské Republiky
LM2018121
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/17_043/0009632
Ministerstvo Školství, Mládeže a Tělovýchovy
857560
H2020 Excellent Science
PubMed
32885885
PubMed Central
PMC7693251
DOI
10.1002/chem.202003272
Knihovny.cz E-zdroje
- Klíčová slova
- CO release, cyanine, near-infrared light, photoCORM, photorelease,
- Publikační typ
- časopisecké články MeSH
Carbon monoxide (CO) is an endogenous signaling molecule that controls a number of physiological processes. To circumvent the inherent toxicity of CO, light-activated CO-releasing molecules (photoCORMs) have emerged as an alternative for its administration. However, their wider application requires photoactivation using biologically benign visible and near-infrared (NIR) light. In this work, a strategy to access such photoCORMs by fusing two CO-releasing flavonol moieties with a NIR-absorbing cyanine dye is presented. These hybrids liberate two molecules of CO in high chemical yields upon activation with NIR light up to 820 nm and exhibit excellent uncaging cross-sections, which surpass the state-of-the-art by two orders of magnitude. Furthermore, the biocompatibility and applicability of the system in vitro and in vivo are demonstrated, and a mechanism of CO release is proposed. It is hoped that this strategy will stimulate the discovery of new classes of photoCORMs and accelerate the translation of CO-based phototherapy into practice.
Zobrazit více v PubMed
Phan T. G., Bullen A., Immunol. Cell Biol. 2010, 88, 438–444. PubMed
Lim Y. T., Kim S., Nakayama A., Stott N. E., Bawendi M. G., Frangioni J. V., Mol. Imaging 2003, 2, 50–64. PubMed
Allison R. R., Sibata C. H., Photodiagn. Photodyn. Ther. 2010, 7, 61–75. PubMed
Romão C. C., Blättler W. A., Seixas J. D., Bernardes G. J. L., Chem. Soc. Rev. 2012, 41, 3571–3583. PubMed
Motterlini R., Otterbein L. E., Nat. Rev. Drug Discovery 2010, 9, 728–743. PubMed
Ling K., Men F., Wang W. C., Zhou Y. Q., Zhang H. W., Ye D. W., J. Med. Chem. 2018, 61, 2611–2635. PubMed
Szabo C., Nat. Rev. Drug Discovery 2016, 15, 185–203. PubMed PMC
Levitt D. G., Levitt M. D., Clin. Pharmacol. Adv. Appl. 2015, 7, 37–56. PubMed PMC
Vander Heiden M. G., Cantley L. C., Thompson C. B., Science 2009, 324, 1029–1033. PubMed PMC
Wegiel B., Gallo D., Csizmadia E., Harris C., Belcher J., Vercellotti G. M., Penacho N., Seth P., Sukhatme V., Ahmed A., Pandolfi P. P., Helczynski L., Bjartell A., Persson J. L., Otterbein L. E., Cancer Res. 2013, 73, 7009–7021. PubMed PMC
Vítek L., Gbelcová H., Muchová L., Váňová K., Zelenka J., Koníčková R., Šuk J., Zadinova M., Knejzlík Z., Ahmad S., Fujisawa T., Ahmed A., Ruml T., Dig. Liver Dis. 2014, 46, 369–375. PubMed
Ahmad S., Hewett P. W., Fujisawa T., Sissaoui S., Cai M., Gueron G., Al-Ani B., Cudmore M., Faraz Ahmed S., Wong M. K. K., Wegiel B., Otterbein L. E., Vítek L., Ramma W., Wang K., Ahmed A., Thromb. Haemostasis 2015, 113, 329–337. PubMed
Heinemann S. H., Hoshi T., Westerhausen M., Schiller A., Chem. Commun. 2014, 50, 3644–3660. PubMed PMC
García-Gallego S., Bernardes G. J. L., Angew. Chem. Int. Ed. 2014, 53, 9712–9721; PubMed
Angew. Chem. 2014, 126, 9868–9877.
Romanski S., Kraus B., Guttentag M., Schlundt W., Rücker H., Adler A., Neudörfl J. M., Alberto R., Amslinger S., Schmalz H. G., Dalt. Trans. 2012, 41, 13862–13875. PubMed
Sitnikov N. S., Li Y., Zhang D., Yard B., Schmalz H. G., Angew. Chem. Int. Ed. 2015, 54, 12314–12318; PubMed
Angew. Chem. 2015, 127, 12489–12493.
Martínek M., Filipová L., Galeta J., Ludvíková L., Klán P., Org. Lett. 2016, 18, 4892–4895. PubMed
Poloukhtine A. A., Mbua N. E., Wolfert M. A., Boons G. J., Popik V. V., J. Am. Chem. Soc. 2009, 131, 15769–15776. PubMed PMC
Kuzmanich G., Gard M. N., Garcia-Garibay M. A., J. Am. Chem. Soc. 2009, 131, 11606–11614. PubMed
Kuzmanich G., Garcia-Garibay M. A., J. Phys. Org. Chem. 2011, 24, 883–888.
Chapman O. L., Wojtkowski P. W., Adam W., Rodriguez O., Rucktaeschel R., J. Am. Chem. Soc. 1972, 94, 1365–1367.
Peng P., Wang C., Shi Z., Johns V. K., Ma L., Oyer J., Copik A., Igarashi R., Liao Y., Org. Biomol. Chem. 2013, 11, 6671–6674. PubMed
Antony L. A. P., Slanina T., Šebej P., Šolomek T., Klán P., Org. Lett. 2013, 15, 4552–4555. PubMed
Soboleva T., Esquer H. J., Benninghoff A. D., Berreau L. M., J. Am. Chem. Soc. 2017, 139, 9435–9438. PubMed
Popova M., Soboleva T., Arif A. M., Berreau L. M., RSC Adv. 2017, 7, 21997–22007.
Anderson S. N., Richards J. M., Esquer H. J., Benninghoff A. D., Arif A. M., Berreau L. M., ChemistryOpen 2015, 4, 590–594. PubMed PMC
Feng W., Feng S., Feng G., Chem. Commun. 2019, 55, 8987–8990. PubMed
Popova M., Soboleva T., Ayad S., Benninghoff A. D., Berreau L. M., J. Am. Chem. Soc. 2018, 140, 9721–9729. PubMed PMC
Russo M., Štacko P., Nachtigallová D., Klán P., J. Org. Chem. 2020, 85, 3527–3537. PubMed
Palao E., Slanina T., Muchová L., Šolomek T., Vítek L., Klán P., J. Am. Chem. Soc. 2016, 138, 126–133. PubMed
Gorka A. P., Nani R. R., Schnermann M. J., Acc. Chem. Res. 2018, 51, 3226–3235. PubMed
Sun W., Guo S., Hu C., Fan J., Peng X., Chem. Rev. 2016, 116, 7768–7817. PubMed
Estrada L. A., Neckers D. C., J. Org. Chem. 2009, 74, 8484–8487. PubMed
Rosenthal E. L., Warram J. M., De Boer E., Chung T. K., Korb M. L., Brandwein-Gensler M., Strong T. V., Schmalbach C. E., Morlandt A. B., Agarwal G., Hartman Y. E., Carroll W. R., Richman J. S., Clemons L. K., Nabell L. M., Zinn K. R., Clin. Cancer Res. 2015, 21, 3658–3666. PubMed PMC
From https://ClinicalTrials.gov, Search Term: ICG, last accessed on July 30, 2020.
Usama S. M., Lin C. M., Burgess K., Bioconjugate Chem. 2018, 29, 3886–3895. PubMed
Štacková L., Štacko P., Klán P., J. Am. Chem. Soc. 2019, 141, 7155–7162. PubMed
Samanta A., Vendrell M., Das R., Chang Y. T., Chem. Commun. 2010, 46, 7406–7408. PubMed
König S. G., Krämer R., Chem. Eur. J. 2017, 23, 9306–9312. PubMed
Štacková L., Muchová E., Russo M., Slavíček P., Štacko P., Klán P., J. Org. Chem. 2020, 85, 9776–9790. PubMed
Nani R. R., Kelley J. A., Ivanic J., Schnermann M. J., Chem. Sci. 2015, 6, 6556–6563. PubMed PMC
Gorka A. P., Nani R. R., Zhu J., Mackem S., Schnermann M. J., J. Am. Chem. Soc. 2014, 136, 14153–14159. PubMed PMC
Nani R. R., Gorka A. P., Nagaya T., Yamamoto T., Ivanic J., Kobayashi H., Schnermann M. J., ACS Cent. Sci. 2017, 3, 329–337. PubMed PMC
Levitt D. G., Levitt M. D., Clin. Pharm. Adv. Appl. 2015, 7, 37–56. PubMed PMC
Zhu T. C., Kim M. M., Liang X., Finlay J. C., Busch T. M., Photon. Lasers Med. 2015, 4, 59–71. PubMed PMC
James N. S., Chen Y., Joshi P., Ohulchanskyy T. Y., Ethirajan M., Henary M., Strekowski L., Pandey R. K., Theranostics 2013, 3, 692–702. PubMed PMC
Studer S. L., Brewer W. E., Martinez M. L., Chou P. T., J. Am. Chem. Soc. 1989, 111, 7643–7644.
Byers G. W., Gross S., Henrichs P. M., Photochem. Photobiol. 1976, 23, 37–43. PubMed
Visible-Light-Activated Carbon Monoxide Release from Porphyrin-Flavonol Hybrids
Spin-Vibronic Control of Intersystem Crossing in Iodine-Substituted Heptamethine Cyanines
Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials