Photochemistry of a 9-Dithianyl-Pyronin Derivative: A Cornucopia of Reaction Intermediates Lead to Common Photoproducts
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32729684
DOI
10.1002/cplu.202000370
Knihovny.cz E-zdroje
- Klíčová slova
- DFT calculations, dyes/pigments, photochemistry, reaction mechanisms, spectroscopy,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Leaving groups attached to the meso-methyl position of many common dyes, such as xanthene, BODIPY, or pyronin derivatives, can be liberated upon irradiation with visible light. However, the course of phototransformations of such photoactivatable systems can be quite complex and the identification of reaction intermediates or even products is often neglected. This paper exemplifies the photochemistry of a 9-dithianyl-pyronin derivative, which undergoes an oxidative transformation at the meso-position to give a 3,6-diamino-9H-xanthen-9-one derivative, formic acid, and carbon monoxide as the main photoproducts. The course of this multi-photon multi-step reaction was studied under various conditions by steady-state and time-resolved optical spectroscopy, mass spectrometry and NMR spectroscopy to understand the effects of solvents and molecular oxygen on individual steps. Our analyses have revealed the existence of many intermediates and their interrelationships to provide a complete picture of the transformation, which can bring new inputs to a rational design of new photoactivatable pyronin or xanthene derivatives.
Department of Chemistry Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
RECETOX Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
Zobrazit více v PubMed
C.-H. Jun, Chem. Soc. Rev. 2004, 33, 610-618.
K. Ruhland, Eur. J. Org. Chem. 2012, 2012, 2683-2706.
P. Klán, J. Wirz, Photochemistry of organic compounds: From concepts to practice, 1st ed., John Wiley & Sons Ltd.: Chichester 2009.
P. Wan, S. Muralidharan, J. Am. Chem. Soc. 1988, 110, 4336-4345.
P. K. Das, Chem. Rev. 1993, 93, 119-144.
M. Freccero, M. Fagnoni, A. Albini, J. Am. Chem. Soc. 2003, 125, 13182-13190.
A. T. Buck, C. L. Beck, A. H. Winter, J. Am. Chem. Soc. 2014, 136, 8933-8940.
H. E. Zimmerman, J. Am. Chem. Soc. 1995, 117, 8988-8991.
P. Klán, T. Šolomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina, V. Popik, A. Kostikov, J. Wirz, Chem. Rev. 2012, 113, 119-191.
P. Šebej, J. Wintner, P. Müller, T. Slanina, J. Al Anshori, L. A. P. Antony, P. Klán, J. Wirz, J. Org. Chem. 2012, 78, 1833-1843.
E. Palao, T. Slanina, L. Muchová, T. Šolomek, L. Vítek, P. Klán, J. Am. Chem. Soc. 2015, 138, 126-133.
T. Slanina, P. Shrestha, E. Palao, D. Kand, J. A. Peterson, A. S. Dutton, N. Rubinstein, R. Weinstain, A. H. Winter, P. Klán, J. Am. Chem. Soc. 2017, 139, 15168-15175.
J. A. Peterson, C. Wijesooriya, E. J. Gehrmann, K. M. Mahoney, P. P. Goswami, T. R. Albright, A. Syed, A. S. Dutton, E. A. Smith, A. H. Winter, J. Am. Chem. Soc. 2018, 140, 7343-7346.
H. Yu, J. Li, D. Wu, Z. Qiu, Y. Zhang, Chem. Soc. Rev. 2010, 39, 464-473.
P. Wang, Asian J. Org. Chem. 2013, 2, 452-464.
A. P. Gorka, R. R. Nani, M. J. Schnermann, Acc. Chem. Res. 2018, 51, 3226-3235.
P. Hu, K. Berning, Y.-W. Lam, I. H.-M. Ng, C.-C. Yeung, M. H.-W. Lam, J. Org. Chem. 2018, 83, 12998-13010.
X. Wang, J. A. Kalow, Org. Lett. 2018, 20, 1716-1719.
A. Y. Vorobev, A. E. Moskalensky, Comput. Struct. Biotechnol. J. 2020, 18, 27-34.
P. Štacko, P. Šebej, A. T. Veetil, P. Klán, Org. Lett. 2012, 14, 4918-4921.
P. Vath, D. E. Falvey, L. A. Barnhurst, A. G. Kutateladze, J. Org. Chem. 2001, 66, 2887-2890.
W. A. McHale, A. G. Kutateladze, J. Org. Chem. 1998, 63, 9924-9931.
P. G. M. Wuts, Greene's Protective Groups in Organic Synthesis, John Wiley & Sons, Inc. 2014.
M. Yus, C. Nájera, F. Foubelo, Tetrahedron 2003, 59, 6147-6212.
T. E. Burghardt, J. Sulfur Chem. 2005, 26, 411-427.
D. K. Stevenson, L. K. Kwong, H. J. Vreman, Clin. Chem. 1984, 30, 1382-1386.
H. J. Vreman, D. K. Stevenson, Anal. Biochem. 1988, 168, 31-38.
M. Arık, K. Meral, Y. Onganer, J. Lumin. 2009, 129, 599-604.
O. Valdes-Aguilera, D. C. Neckers, Acc. Chem. Res. 2002, 22, 171-177.
G. R. Fleming, A. W. E. Knight, J. M. Morris, R. J. S. Morrison, G. W. Robinson, J. Am. Chem. Soc. 1977, 99, 4306-4311.
P. Murasecco-Suardi, E. Gassmann, A. M. Braun, E. Oliveros, Helv. Chim. Acta 1987, 70, 1760-1773.
L. Ludvíková, P. Friš, D. Heger, P. Šebej, J. Wirz, P. Klán, Phys. Chem. Chem. Phys. 2016, 18, 16266-16273.
J. C. Scaiano, J. Am. Chem. Soc. 1980, 102, 7747-7753.
C. S. Foote, Science 1968, 162, 963-970.
C. S. Foote, ACS Symp. Ser. 1987, 339, 22-38.
K. Gollnick, Adv. Photochem., Vol. 6, John Wiley & Sons 1968, pp. 1-122.
S. Kim, M. Fujitsuka, M. Miyata, T. Majima, Phys. Chem. Chem. Phys. 2016, 18, 2097-2103.
R. P. Sabatini, M. F. Mark, D. J. Mark, M. W. Kryman, J. E. Hill, W. W. Brennessel, M. R. Detty, R. Eisenberg, D. W. McCamant, Photochem. Photobiol. Sci. 2016, 15, 1417-1432.
V. E. Korobov, V. V. Shubin, A. K. Chibisov, Chem. Phys. Lett. 1977, 45, 498-501.
M. N. Eberlin, Eur. J. Mass Spectrom. 2017, 13, 19-28.
P. Chen, Angew. Chem. Int. Ed. 2003, 42, 2832-2847;
Angew. Chem. 2003, 115, 2938-2954.
L. Jašíková, M. Anania, S. Hybelbauerová, J. Roithová, J. Am. Chem. Soc. 2015, 137, 13647-13657.
L. Sleno, D. A. Volmer, J. Mass Spectrom. 2004, 39, 1091-1112.
L. Jašíková, J. Roithová, Chem. Eur. J. 2018, 24, 3374-3390.
J. Roithová, Chem. Soc. Rev. 2012, 41, 547-559.
L. MacAleese, P. Maître, Mass Spectrom. Rev. 2007, 26, 583-605.
J. Roithová, A. Gray, E. Andris, J. Jašík, D. Gerlich, Acc. Chem. Res. 2016, 49, 223-230.
J. Zelenka, J. Roithová, ChemBioChem 2020, (in print).
M. Montalti, A. Credi, L. Prodi, M. T. Gandolfi, Handbook of Photochemistry, 3rd ed., CRC Press Boca Raton 2006.
Y. Onganer, E. L. Quitevis, J. Phys. Chem. 1992, 96, 7996-8001.
X.-F. Zhang, J. Zhang, X. Lu, J. Fluoresc. 2015, 25, 1151-1158.
R. E. Barnett, W. P. Jencks, J. Am. Chem. Soc. 1967, 89, 5963-5964.
R. E. Barnett, W. P. Jencks, J. Am. Chem. Soc. 1969, 91, 6758-6765.
A. Specht, S. Loudwig, L. Peng, M. Goeldner, Tetrahedron Lett. 2002, 43, 8947-8950.
W. Lin, D. S. Lawrence, J. Org. Chem. 2002, 67, 2723-2726.
A. P. Kostikov, V. V. Popik, Org. Lett. 2008, 10, 5277-5280.
M. El Baraka, M. Deumié, P. Viallet, T. J. Lampidis, J. Photochem. Photobiol. A 1991, 56, 295-311.
E. Baciocchi, C. Crescenzi, O. Lanzalunga, Tetrahedron 1997, 53, 4469-4478.
C. J. Regan, D. P. Walton, O. S. Shafaat, D. A. Dougherty, J. Am. Chem. Soc. 2017, 139, 4729-4736.
M. Bettoni, T. Del Giacco, M. Stradiotto, F. Elisei, J. Org. Chem. 2015, 80, 8001-8008.
M. Kamata, H. Otogawa, E. Hasegawa, Tetrahedron Lett. 1991, 32, 7421-7424.
G. Oksdath-Mansilla, V. Hajj, D. M. Andrada, J. E. Argüello, J. Bonin, M. Robert, A. B. Peñéñory, J. Org. Chem. 2015, 80, 2733-2739.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, revision D.01; Gaussian, Inc.: Wallingford, CT 2009.
Y. Zhao, D. G. Truhlar, J. Chem. Phys. 2006, 125, 194101.
F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
H. D. Dakin, J. Am. Chem. Soc. 1909, 42, 477-498.
H. L. J. Bäckström, J. Am. Chem. Soc. 1927, 49, 1460-1472.
M. Sankar, E. Nowicka, E. Carter, D. M. Murphy, D. W. Knight, D. Bethell, G. J. Hutchings, Nat. Commun. 2014, 5.
J. R. McNesby, C. A. Heller, Chem. Rev. 1954, 54, 325-346.
C. A. McDowell, L. K. Sharples, Can. J. Chem. 1958, 36, 251-257.
M.-Y. Ngai, A. Banerjee, Z. Lei, Synthesis 2018, 51, 303-333.
L. Vanoye, A. Favre-Réguillon, A. Aloui, R. Philippe, C. de Bellefon, RSC Adv. 2013, 3, 18931.
M. Hajimohammadi, N. Safari, H. Mofakham, A. Shaabani, Tetrahedron Lett. 2010, 51, 4061-4065.
L. A. P. Antony, T. Slanina, P. Šebej, T. Šolomek, P. Klán, Org. Lett. 2013, 15, 4552-4555.
J. D. Crounse, H. C. Knap, K. B. Ørnsø, S. Jørgensen, F. Paulot, H. G. Kjaergaard, P. O. Wennberg, J. Phys. Chem. A 2012, 116, 5756-5762.
H. G. Kjaergaard, H. C. Knap, K. B. Ørnsø, S. Jørgensen, J. D. Crounse, F. Paulot, P. O. Wennberg, J. Phys. Chem. A 2012, 116, 5763-5768.
W.-U. Palm, Photochem. Photobiol. Sci. 2018, 17, 964-974.
A. D. Britt, W. B. Moniz, J. Org. Chem. 1973, 38, 1057-1059.
P. C. Beaumont, D. G. Johnson, B. J. Parsons, J. Photochem. Photobiol. A 1997, 107, 175-183.
T. J. Chozinski, L. A. Gagnon, J. C. Vaughan, FEBS Lett. 2014, 588, 3603-3612.
S. van de Linde, I. Krstić, T. Prisner, S. Doose, M. Heilemann, M. Sauer, Photochem. Photobiol. Sci. 2011, 10, 499-506.
H. Görner, Photochem. Photobiol. Sci. 2008, 7, 371.
C. Chatgilialoglu, D. Crich, M. Komatsu, I. Ryu, Chem. Rev. 1999, 99, 1991-2070.
J. Zelenka, R. Cibulka, J. Roithová, Angew. Chem. Int. Ed. 2019, 58, 15412-15420.
S. Chen, M. S. Hossain, F. W. Foss, Org. Lett. 2012, 14, 2806-2809.
Y.-R. Luo, Comprehensive Handbook of Chemical Bond Energies, CRC Press, Boca Raton 2007.
J. R. R. Majjigapu, A. N. Kurchan, R. Kottani, T. P. Gustafson, A. G. Kutateladze, J. Am. Chem. Soc. 2005, 127, 12458-12459.
Note that all IRPD spectra reported in this work contain more bands than those predicted by the theoretical calculations for individual ions. This is most likely associated with different conformations of piperidine groups with respect to the xanthene backbone and with respect to each other.
E. Bodo, A. Ciavardini, A. Giardini, A. Paladini, S. Piccirillo, F. Rondino, D. Scuderi, Chem. Phys. 2012, 398, 124-128.
Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials